

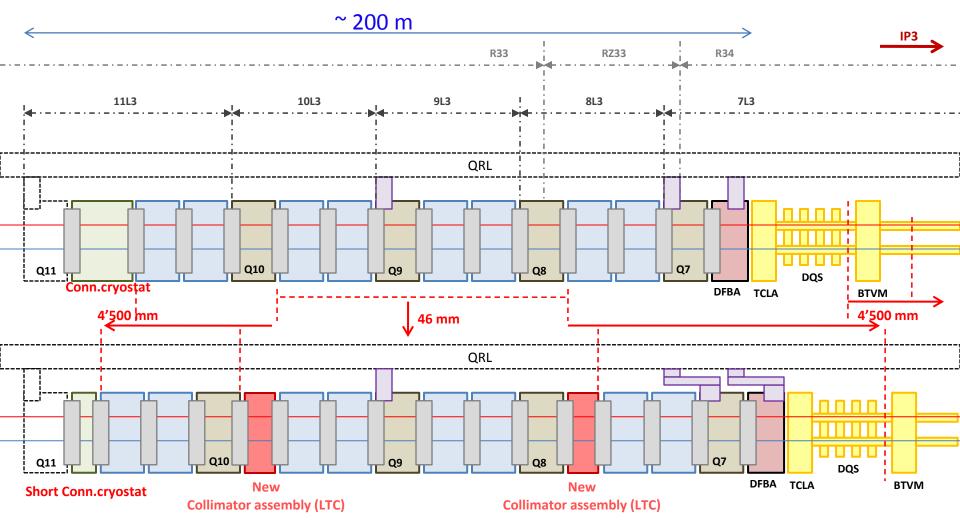
# Dispersion-suppressor upgrade in IR3

V.Parma, CERN, TE-MSC

On behalf of the Dispersion Suppressor collimator project team:

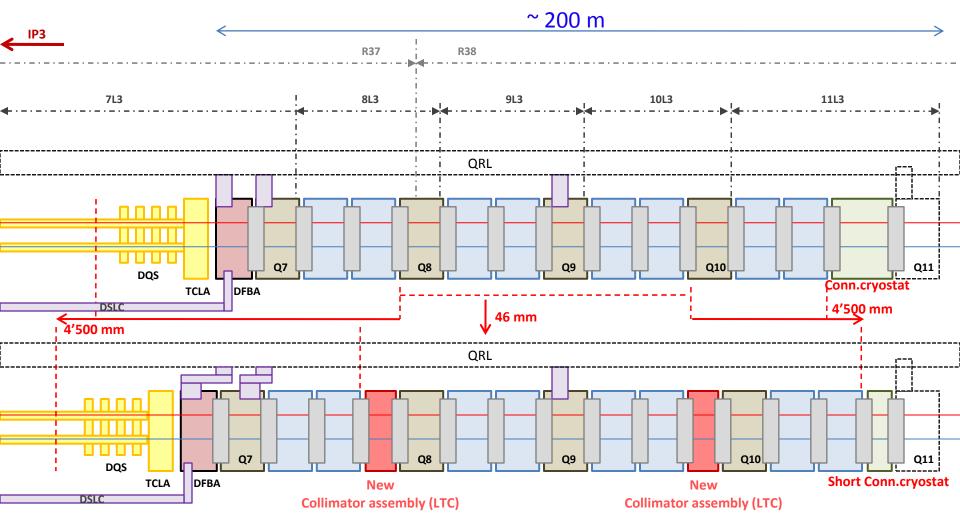
R.Assmann, V.Baglin, M.Bajko, P.Bestman, A.Bertarelli, C.Bertone, N.Bourcey, J.Coupard, S.Chemli, K.Dahlerup-Petersen, J.C.Guillaume, Y.Muttoni, D.Ramos, A.Perin, J.Ph.Tock, R.Van Weelderen, A.Vande Craen, R.Principe, A.Rossi, S.Russenchuck, ...and many others

LHC Collimation Review 2011, CERN 14-15 June 2011




# Outline

- DS Collimators in IR3: description, implications
- Organization and cost estimate
- Changes to technical systems (cryogenics, vacuum, powering...)
- Hardware modifications and status:
  - New equipment
  - Tunnel integration issues
- Schedule
- Summary and Outlook




## DS collimators: Left side of point 3



## DS collimators: Right side of point 3

CÉRI





## Work Breakdown Structure

|    |                                                                                        |                      | zone of IR3 |
|----|----------------------------------------------------------------------------------------|----------------------|-------------|
|    |                                                                                        | Responsibles         | TCLD        |
| 1  | Project Management                                                                     |                      |             |
|    | I.1 LHC Collimation Upgrade Management                                                 | R.Assmann            | x           |
|    | 1.2 LSS Technical coordination                                                         | O.Aberle             |             |
|    | 1.3 DS Technical coordination                                                          | V.Parma              | х           |
|    | I.4 Quality Assurance                                                                  | A.Rossi              | х           |
|    | 1.5 Baseline configuration management and QA                                           | S.Chemli             | х           |
|    | Coordination of Installation                                                           |                      |             |
|    | II.1 Scheduling and Coordination                                                       | J.Coupard            |             |
|    | II.1.1 Scheduling of surface preparation                                               |                      | x           |
|    | II.1.2 Scheduling of underground works and installation<br>II.1.3 Coordination on-site |                      | x           |
|    |                                                                                        | S.Chemli             | x           |
|    | II.2 Layout Database                                                                   | Y.Muttoni            | x           |
|    | II.3 Integration Office<br>II.3.1 Integration studies                                  | r.Muttoni            | x           |
|    | II.3.2 Installation non conformities                                                   |                      | x           |
|    | II.4 Survey activity                                                                   | P.Betsmann           | <u>^</u>    |
|    | II.4.1 Alignment of machine elements                                                   |                      | x           |
|    | II.4.2 Smoothing of the machine elements                                               |                      | x           |
|    | II.5 Transport and Handling operation                                                  | C.Bertone            | x           |
|    | Operation                                                                              |                      |             |
|    | III.1 Electrical Quality Assurance                                                     | N.Catalan            | х           |
|    | III.2 Hardware commissioning To be completed ??                                        | O.Aberle & V.Parma   | х           |
|    | III.2.1 Collimators                                                                    | O.Aberle, A. Masi    |             |
|    | III.2.1.1 10 TCS/TCP                                                                   |                      |             |
|    | III.2.1.2 4 TCLD                                                                       |                      | x           |
|    | III.2.1.3 2 TCT, removal of 2 TCTVB ?                                                  |                      |             |
|    | III.2.1.4 14 TCTx in IP 1, 2, 5 and 8                                                  | V.Parma              |             |
|    | III.2.2 Cryostats & Cryogenics<br>III.3 Remote commissioning / MP tests                | A.Rossi & S.Redaelli | x           |
| IV | Safety                                                                                 | A.Rossi & S.Reddelli | ×           |
|    | IV.1 Safety Engineering and Environment                                                | C.Colloca            | x           |
|    | IV.2 Radiation Protection                                                              | S.Roesler            | x           |
|    |                                                                                        | J. NOCHET            | ^           |

5

(A.Rossi)

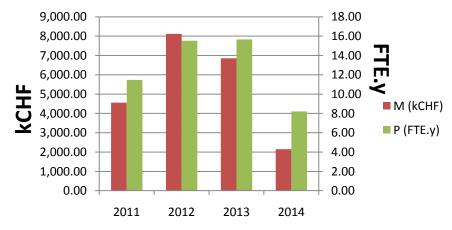
Auxiliary collimators in DS



### Work Breakdown Organization

#### Activities

v


| V.1 LHC systems upgrade studies                                          |                         |   |   |
|--------------------------------------------------------------------------|-------------------------|---|---|
| V.1.1 IR3 optics and layout                                              | M.Giovannozzi           | х |   |
| V.1.2 Impedance from collimators                                         | E.Metral                | x |   |
| V.1.3 Collimation Performance                                            | A.Rossi                 | х |   |
| V.1.4 Integration and layout studies                                     | Y.Muttoni               | х |   |
| V.1.5 Cryogenics systems                                                 | R.Van Weelderen         | х |   |
| V.1.6 Vacuum systems                                                     | V.Baglin                | х |   |
| V.1.7 Magnet Electrical systems                                          | K.Dahlerup-Petersen     | х |   |
| V.2 LHC equipment Engineering (Design, Production & Testing)             |                         |   |   |
|                                                                          | A.Bertarelli            |   |   |
| V.2.1.1 DS collimator module (TCLD with support)                         |                         | х |   |
| V.2.1.2 TCT with integrated BPM (TCTP)                                   |                         |   |   |
| V.2.1.3 Phase 1+ Collimators (TCP - TCSG)                                |                         |   |   |
| V.2.1.4 Phase 2 Collimators (TCSM)                                       |                         |   |   |
| V.2.1.5 FLUKA studies                                                    | F.Cerutti               | х |   |
| V.2.2 Collimators manufacturing external to CERN (contracts)             | O.Aberle                |   |   |
| V.2.2.1 Contract for 6 TCSG (plan A)                                     |                         |   |   |
| V.2.2.2 Contract for 18 TCTP                                             |                         |   |   |
| V.2.2.3 Contract for 34 TCSM Phase 2 collimators                         |                         |   |   |
| V.2.3 Collimators final assembly and testing before installation (B 252) | O.Aberle, A. Masi       | х |   |
| V.2.3.1 10 TCS/TCP + 3 spares                                            |                         |   |   |
| V.2.3.2 4 + 1 TCLD                                                       |                         |   |   |
| V.2.3.3 2 TCT for Alice                                                  |                         |   |   |
| V.2.3.4 18 TCTP                                                          |                         |   |   |
| V.2.4 DS Cryostat Equipment Eng & Mfct                                   |                         |   |   |
|                                                                          | J.Ph.Tock               | х |   |
|                                                                          | A.Bertarelli            | х |   |
|                                                                          | R.Principe              | х |   |
| , .                                                                      | J.P.Tock                | х |   |
|                                                                          | M.Bajko                 | Х |   |
| V.2.5.1 QTC Cold testing                                                 |                         |   |   |
| V.2.5.2 SCC Cold testing                                                 |                         |   |   |
| V.2.6 Cryogenics equipment                                               |                         |   |   |
|                                                                          | A.Perin                 | х |   |
| , .                                                                      | O.Pirotte               | х |   |
|                                                                          | R.Van Weelderen         | Х |   |
| V.2.7 Vacuum equipment                                                   | V De elle               |   |   |
|                                                                          | V.Baglin<br>D.Gwikshank | X |   |
|                                                                          | P.Cruikshank            | x | 6 |
|                                                                          | P.Gomes                 | X |   |
| V.2.8 Transport system                                                   |                         |   |   |

(A.Rossi)



## Cost Estimate (P+M)

| -                |                                                                      |                     |                                 |          |          |          | Totals   |               |               |
|------------------|----------------------------------------------------------------------|---------------------|---------------------------------|----------|----------|----------|----------|---------------|---------------|
| Department/Group | WP name                                                              | WP responsible      |                                 | 2011     | 2012     | 2013     | 2014     | M Cost [kCHF] | Staff [FTE.y] |
| E/MSC            | DS collimators Technical Coordination                                | V.Parma             | Total M [kCHF]                  | 0.00     | 0.00     | 0.00     | 0.00     | 0.00          |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0.5      | 0.5      | 0.7      | 0.5      |               | 2.2           |
| N/MEF            | Configuration management and QA                                      | S.Chemli            | Total M [kCHF]                  | 0.00     | 0.00     | 0.00     | 0.00     | 0.00          |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0.15     | 0.15     | 0.15     | 0.15     |               | 0.6           |
| N/MEF            | Planning, Layout and Integration                                     | J.Coupard           | Total M [kCHF]                  | 51.00    | 34.00    | 34.00    | 34.00    | 153.00        |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0.2      | 0.4      | 0.4      | 0.3      |               | 1.3           |
| TE/CRG           | Modifications and new cryogenics systems/equipment DS                | R.Van Weldereen     | Total M [MCHF]                  | 130.00   | 460.00   | 560.00   | 570.00   | 1,720.00      |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0.6      | 1.1      | 1.1      | 1.1      |               | 3.9           |
| TE/VCS           | Modifications and new vacuum systems/equipment DS                    | V.Baglin            | Total M [kCHF]                  | 746.87   | 1,218.06 | 179.58   | 42.45    | 2,186.95      |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0.4      | 1.4      | 2.4      | 1.2      |               | 5.4           |
| TE/MPE           | QPS modifications and new systems                                    | K.Dahlerup-Petersen | Total M [kCHF]                  | 0.00     | 0.00     | 20.00    | 0.00     | 20.00         |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0        | 0.1      | 0.1      | 0        |               | 0.2           |
| EN/EL            | Modifications of Electrical System and Cabling                       | J.C.Guillaume       | Total M [kCHF]                  | 0.00     | 50.00    | 800.00   | 100.00   | 950.00        |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0.3      | 0.3      | 0.3      | 0        |               | 0.9           |
| N/CV             | Modification of CV system                                            | M.Nonis             | Total M [MCHF]                  | 0.00     | 0.00     | 0.00     | 0.00     | 0.00          |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0        | 0        | 0        | 0        |               | 0             |
| EN/MME           | Engineering, Design & Manufacture of DS collimators (4+1)            | A.Bertarelli        | Total M [kCHF]                  | 2,167.00 | 1,601.00 | 396.00   | 0.00     | 4,164.00      |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 5.46     | 4.83     | 2.45     | 0        |               | 12.74         |
| TE/MSC           | Supply of special components to EN/MME                               | P.Fessia            | Total M [kCHF]                  | 544.00   | 544.00   | 272.00   | 0.00     | 1.360.00      |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 1        | 1        | 0.5      | 0        | 2,000.000     | 2.5           |
| re/MSC           | Engineering, Design & Manufacture of Short Connection Crystats (2+1) | J.Ph.Tock           | Total M [kCHF]                  | 760.00   | 2,725.00 | 760.00   | 0.00     | 4,245.00      |               |
|                  | ,,,,,,,                                                              |                     | Total P [FTE.y] - staff/fellows | 1.3      | 1.8      | 0.5      | 0        |               | 3.6           |
| re/MSC           | Tunnel IC work and components                                        | J.Ph.Tock           | Total M [kCHF]                  | 50.00    | 326.00   | 1,281.00 | 625.00   | 2,282,00      | 0.0           |
|                  |                                                                      |                     | Total P [FTE,v] - staff/fellows | 0.5      | 1.1      | 3.1      | 3.1      | 2,202.00      | 7.8           |
| TE/MSC           | Cold power testing of cryostat assemblies                            | M.Bajko             | Total M [kCHF]                  | 50.00    | 200.00   | 200.00   | 0.00     | 450.00        |               |
|                  |                                                                      |                     | Total P [FTE.v] - staff/fellows | 0        | 1        | 1        | 0        |               | 2             |
| TE/MPE           | Modifications to magnet electrical circuits, ELQA                    | N.Catalan Lasheras  | Total M [kCHF]                  | 0.00     | 600.00   | 600.00   | 200.00   | 1,400.00      |               |
|                  |                                                                      |                     | Total P [FTE.v] - staff/fellows | 0.5      | 0.5      | 0.5      | 0.5      | -,            | 2             |
| 3E/BI            | Modification to existing and new beam instrumentation                | B.Dehning           | Total M [kCHF]                  | 0.00     | 0.00     | 0.00     | 0.00     | 0.00          | _             |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0        | 0        | 0        | 0        |               | 0             |
| GS/SE            | Civil engineering modifications                                      | J.Osborne           | Total M [kCHF]                  | 0.00     | 0.00     | 100.00   | 0.00     | 100.00        |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0.15     | 0.15     | 0.15     | 0        |               | 0.45          |
| N/HE             | Transport and handling assistance                                    | C.Bertone           | Total M [kCHF]                  | 55.00    | 359.00   | 1,596.00 | 558.00   | 2,568.00      |               |
|                  |                                                                      |                     | Total P [FTE.v] - staff/fellows | 0.4      | 1.2      | 2.3      | 1.35     |               | 5.25          |
| 3E/ABP           | Alignment and Survey                                                 | P.Bestman           | Total M [kCHF]                  | 0.00     | 0.00     | 50.00    | 17.00    | 67.00         |               |
|                  |                                                                      |                     | Total P [FTE.y] - staff/fellows | 0        | 0        | 0        | 0        |               | 0             |
|                  |                                                                      |                     |                                 | -        | _        |          | -        |               |               |
|                  |                                                                      |                     | Overall Total M [kCHF]          | 4,553.87 | 8.117.06 | 6,848.58 | 2.146.45 | 21,665.95     |               |

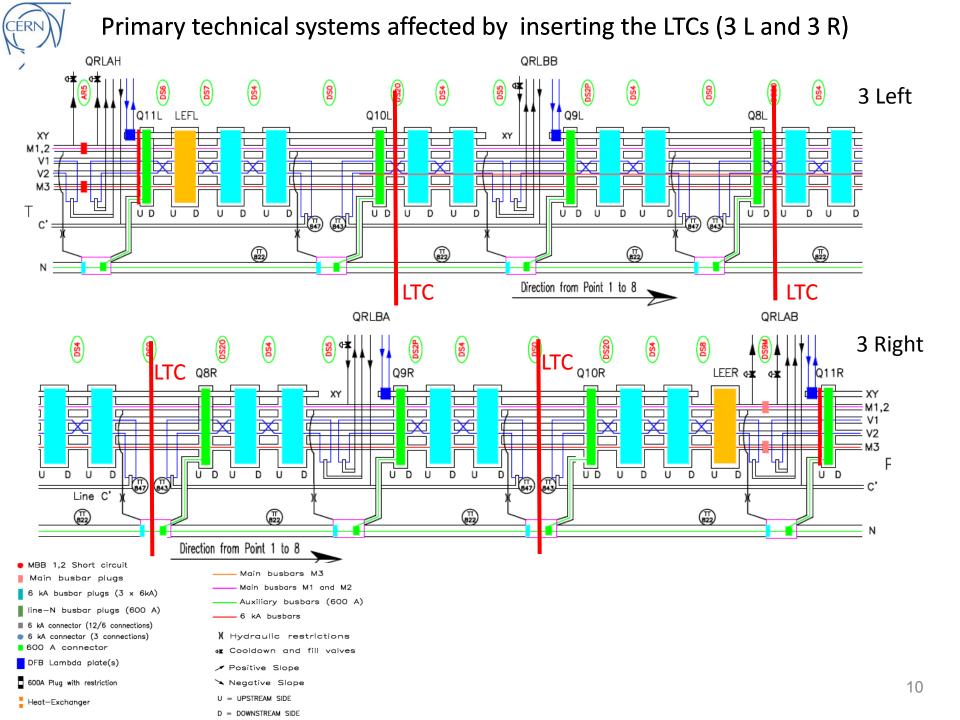


#### Up to date, M expenditures:

- < 3 MCHF (estimate) ٠
- Includes design studies (also committed) ٠

Components/materials ordered (end • caps, supports, raw material...)




# Main H/W implications (3L+3R)

- Disconnect and remove:
  - 16 dipoles, 8 SSS, 2 Connection Cryostats, 2 DFBA
- Displace by 4.5 m:
  - TCLA, DQS, BTVM (3L only)
- Important cable re-layout work:
  - ~600 cables to be shortened, ~800 cables to be extended (warm and cooled cables)
  - Re-routing (through new cable duct UP33/R34); connections
- Civil engineering:
  - Remove, displace and fix jacks to ground
  - Grind passage wall (3-5 cm) on 2x100m length
  - Drilling new cable duct UP33/R34
- Modification of jumpers of Q7, Q9 and DFBAs (on surface or in the tunnel)
- Shortening of DSLC (cryostat+superc.cables) in 3R
- Produce new equipment:
  - 4 (+1) DS collimator assemblies (LTC)
  - 2 (+1) Short Connection Cryostats (SCC)
  - 2 QRL extensions
- Re-install and interconnect DFBA, magnets, SCC, LTC



# Strategic choices for new H/W

- Reuse of all possible existing component designs and technology (no R&D!):
  - Minimise risk of unexpected problems
  - Reduce design effort
  - Use on-the-shelf LHC spares (cryostat, vacuum, cold mass components)
  - Reduce procurement lead-time
  - Activate options on LHC contracts (e.g. End-caps, support posts)
- Keep interconnects standard
  - Standard tunnel installation (tools, assembly procedures, QA)
- Test both QTC and SCC in operating conditions in SM18 (cold power tests)
- Preparation for tunnel integration in SMI2 (as for magnets)
- Installation of collimators *in-situ* (can be staged) after installation of QTC
- Collimator integration compatible with "fast" removal if faulty (as for other collimators) and bridging with warm beam tubes





## Systems to be "bridged" and "extended"

#### Maintain functional continuity to:

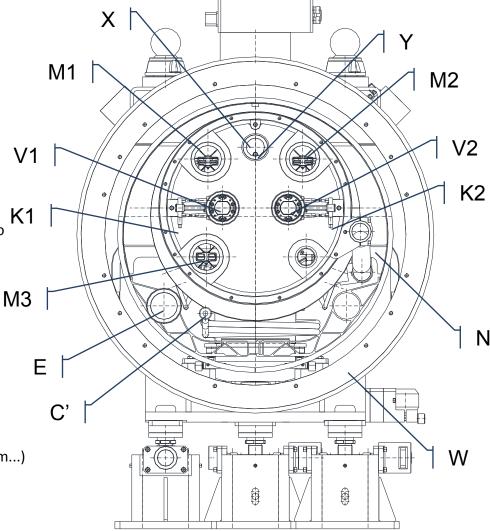
Beam lines (beam vacuum):

1. V1, V2

#### **Electrical powering:**

- 1. M1, M2, M3 and corrector spools (magnet powering)
- 2. Aux.BB line (line N, only 600 A cables, correctors powering)

#### Cryogenics:

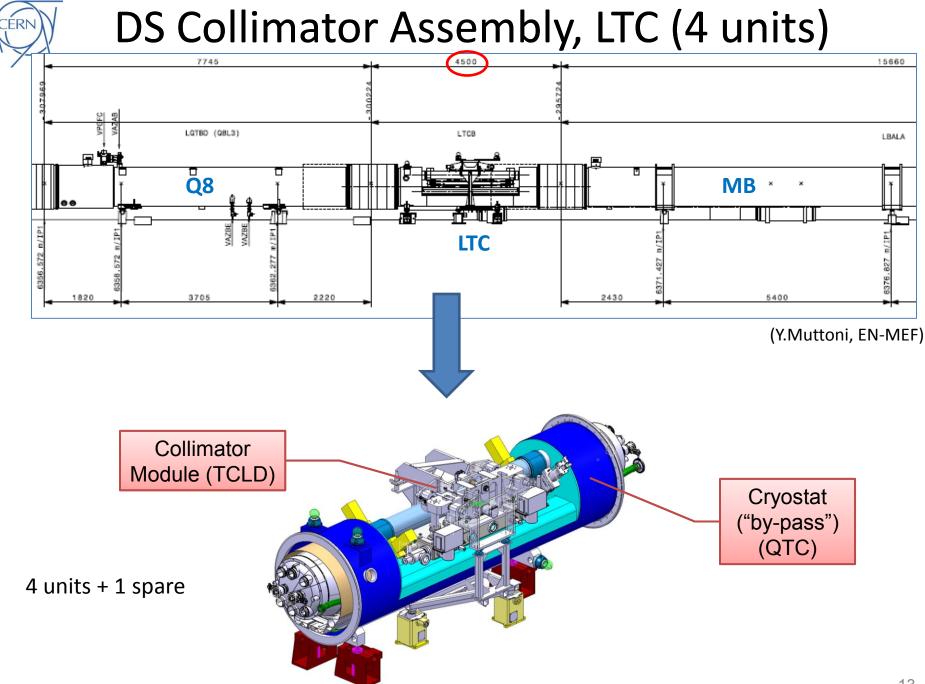

- 1. Pressurised Hell bath (line L)
- 2. Sub-cooled HeII (lines X, y)
- C', KD1, KD2 lines (4.5 K) for IR3L; none for IR3R (but needed to thermalise cryostat components)
- 4. Thermal shield line (line E)

#### Insulation vacuum:

1. Insulation vacuum (line W)

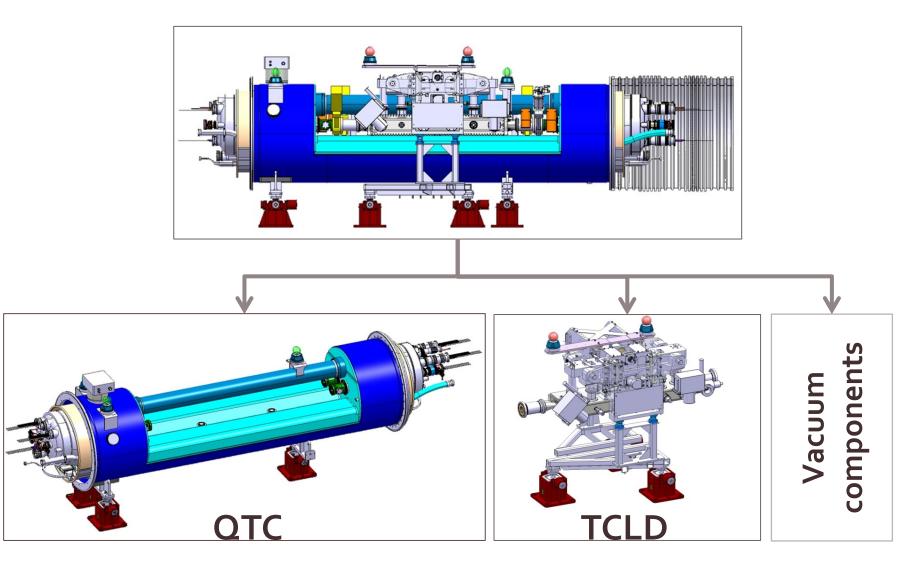
#### While extending the continuous cryostat:

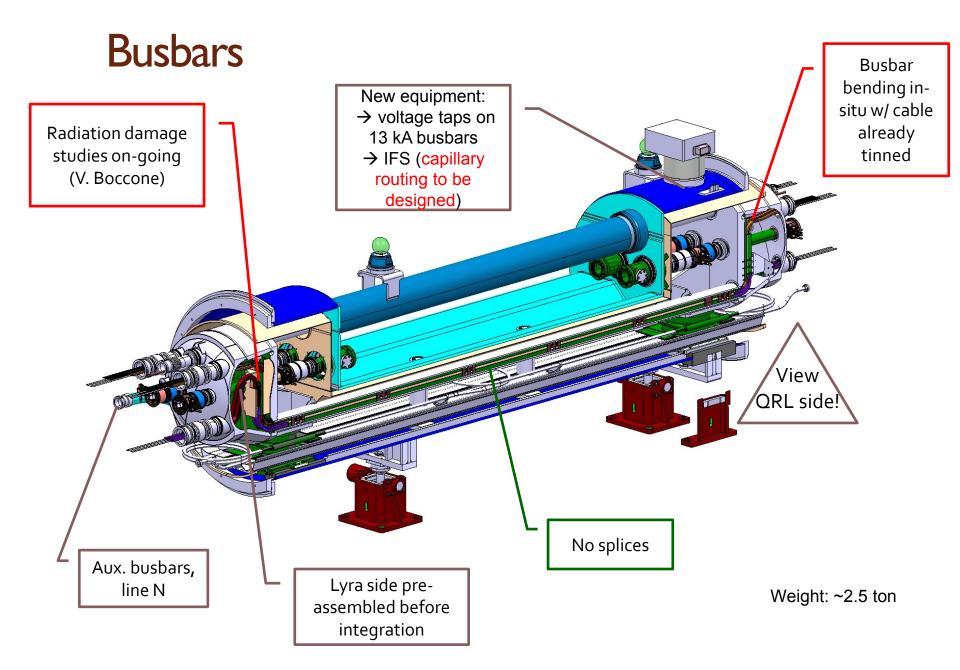
- 1. New optics (J.M. Jowett, ABP-LCU meeting, 19/10/2010)
- 2. Longer and new circuits (electrical, cryogenic, vacuum)
- 3. Displace interfering equipment (e.g. BTVM)
- 4. Re-match interfaces with systems (electrical, cryogenic, vacuum...)

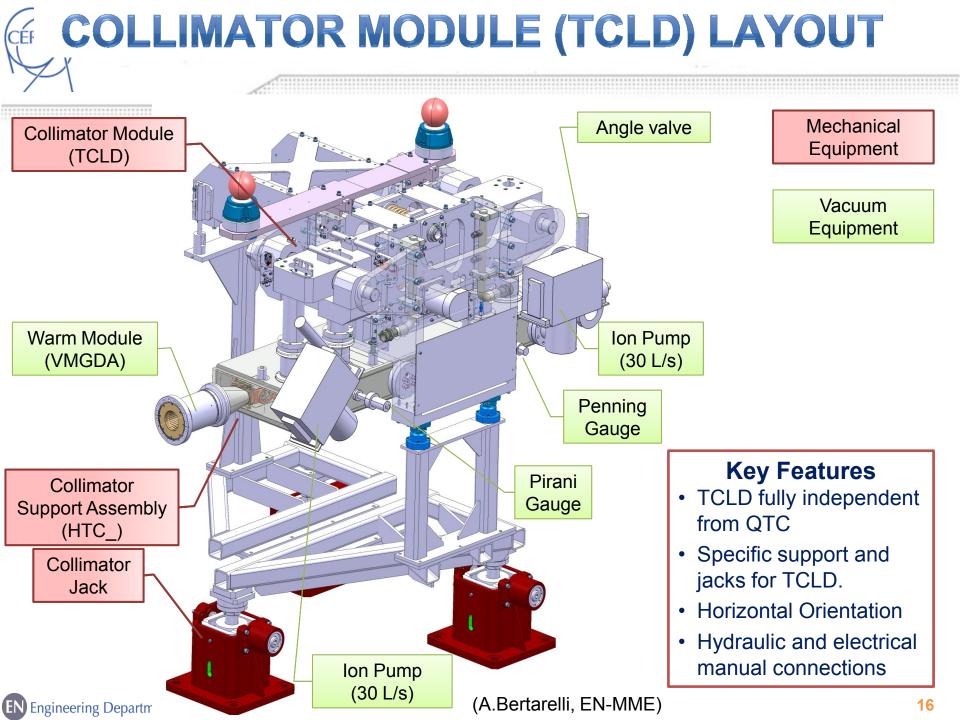



# Functionalities reviewed in the Review of the cryogenic by-pass for the LHC DS collimators (May 2011)→ Outcome presented by Ph.Lebrun in the next presentation

LHC Collimation Review 2011, CERN 14-15 June 2011



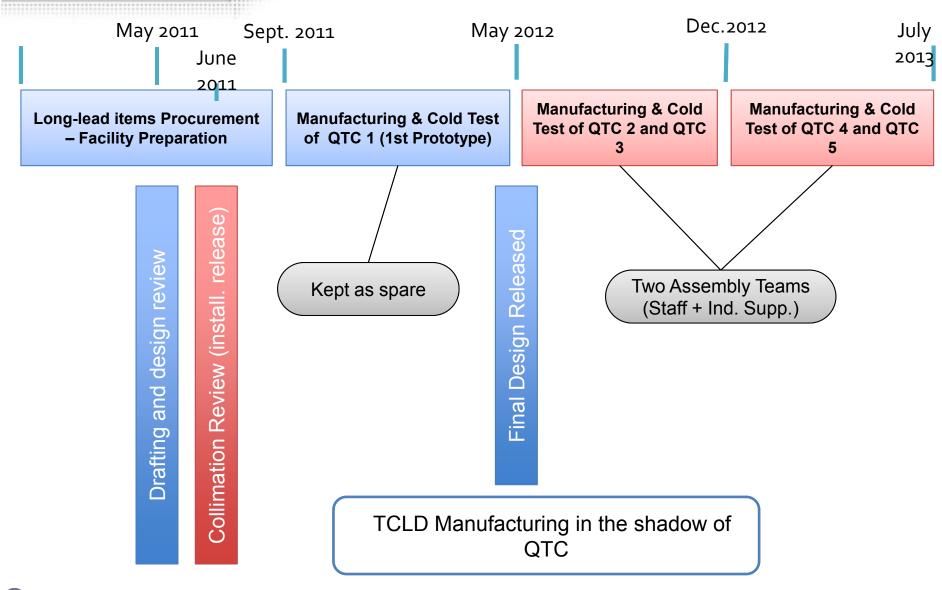


# **New Equipment**




LHC Collimation Review 2011, CERN 14-15 June 2011

# Equipment breakdown







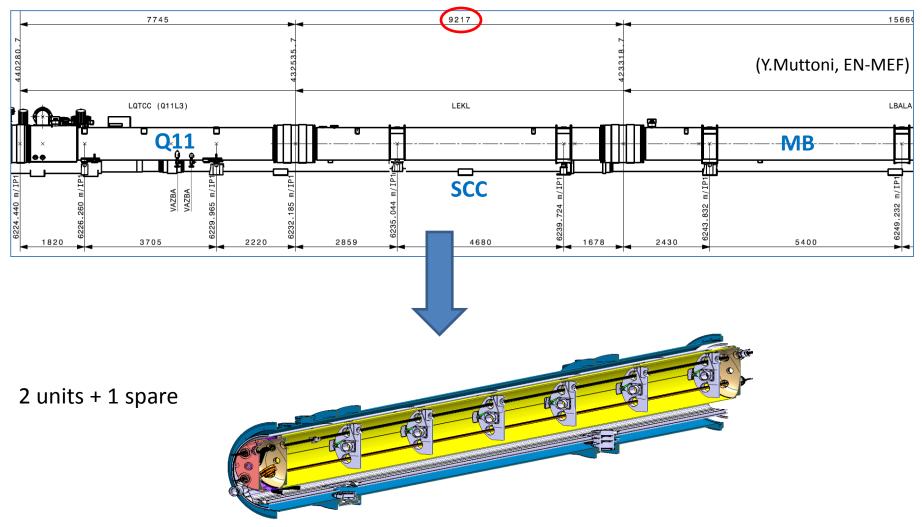



**EN** Engineering Department

## **MANUFACTURING TIMELINE**



A. Bertarelli EN/MME 26.05.2011




## Acknowledged challenges for the QTC

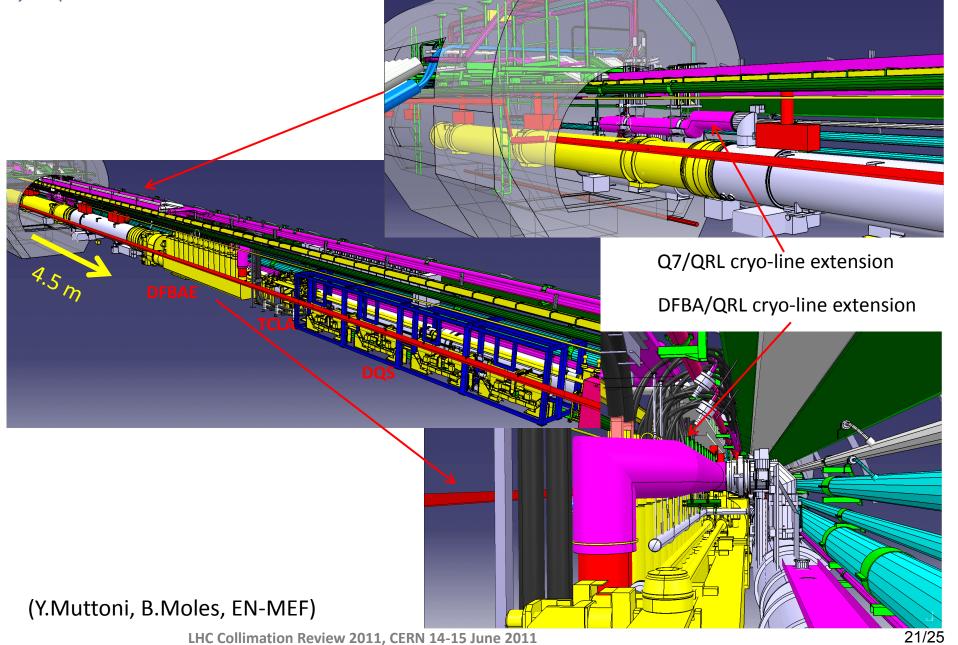
- QTC (cryostat by-pass)
  - New busbars layout, but design thoroughly studied. Radiation heat deposition studies in progress (results in this review? V.Boccone's talk). Some EM Cross-talk checks still pending.
  - Intricate assembly procedure: relying on good craftsmanship
  - Welding distortions during vacuum vessel closure
  - MLI fire hazard during vacuum vessel closure
  - Small gaps between busbars insulation and He vessel walls (electrical insulation, damage during welding) →
  - Access for repairs may imply destruction of the vacuum vessel
  - Beam vacuum lines partly inaccessible after cryostat closure
  - Cold test can reveal some possible defects but not all (wear and fatigue damage, interaction with neighboring magnets...)
  - ightarrow The first prototype should answer most of the issues

# Short Connection Cryostats (2 units, 1 per DS)

CÉRI



(J.Ph.Tock, A.Vande Craen, TE-MSC)



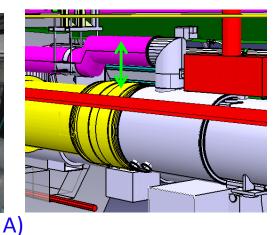

# Tunnel integration and H/W modifications

LHC Collimation Review 2011, CERN 14-15 June 2011



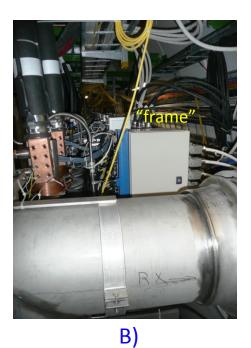
## Integration studies, 3L






## Integration studies

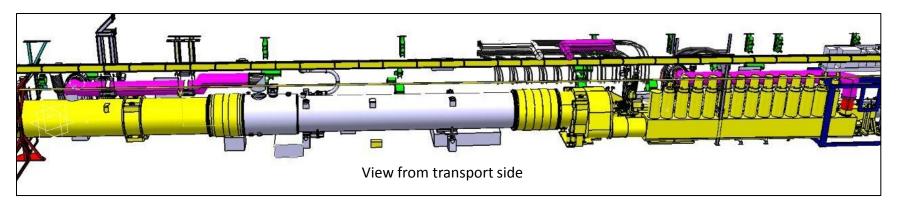
#### Issues:

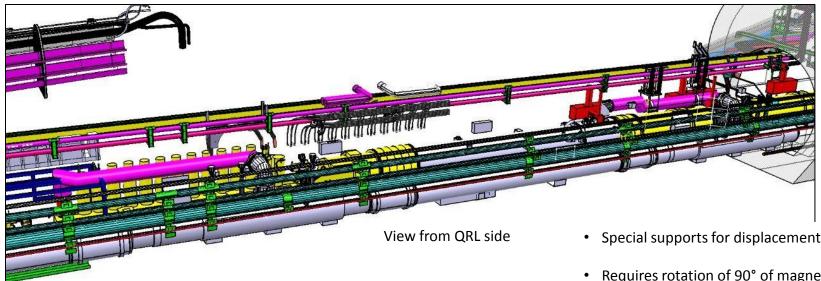

- Densely populated zone around the DFBAs
- Limited space for accessing Q7 interconnect (A)
- Proximity equipment difficult to place
  (B)
- Need to drill a new cable duct for cables re-routing (~1'400 cables) (C)









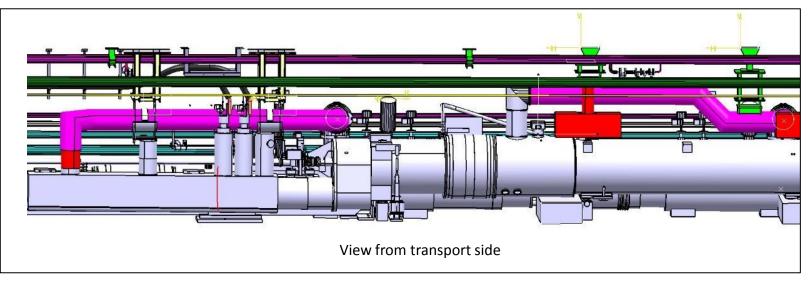

C)

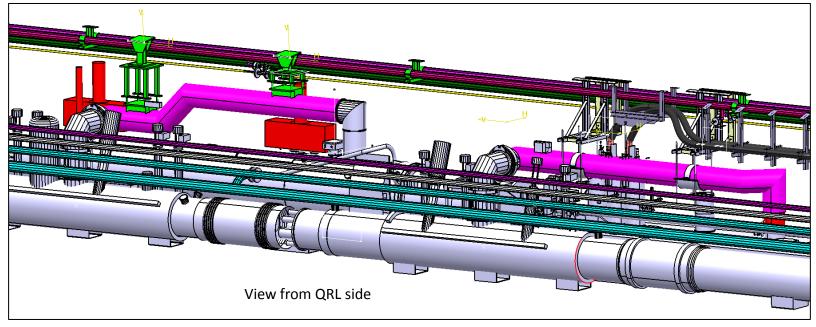


# **IR3** Left: jumper and QRL extensions






#### (Y.Muttoni, B.Moles, EN-MEF)

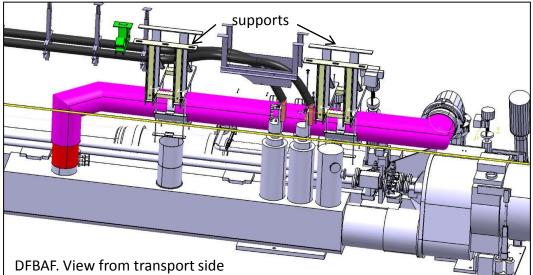

LHC Collimation Review 2011, CERN 14-15 June 2011

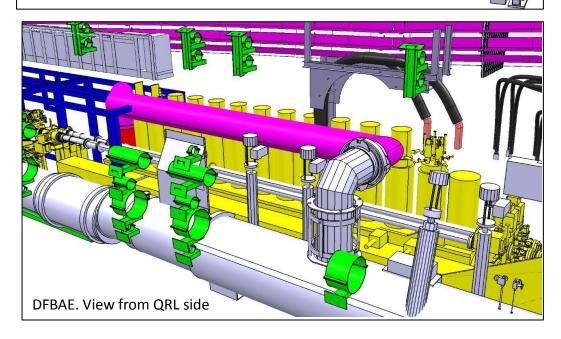
- Special supports for displacement
- Requires rotation of 90° of magnet jumper with respect to original.
- Magnet jumper also higher by about 300 mm
- In IR3L, the jumper extension will be installed after the interconnection work in order to guarantee the best access for the intervention.



# IR3 Right: jumper and QRL extensions





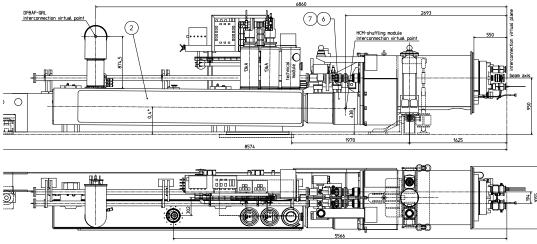


LHC Collimation Review 2011, CERN 14-15 June 2011

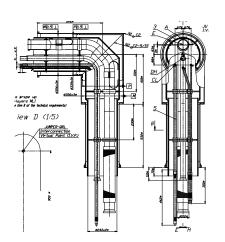
(Y.Muttoni, B.Moles, EN-MEF)



#### IR3 Right: DFBA jumper and QRL extensions, DSCL shortening







- Special supports for displacement
- Requires rotation of 45° of DFBA jumper with respect to original.
- Interference with "proximity equipment": transformers, connection boxes, etc.
- Superconducting link (DSLC) to be shortened (tunnel ceiling work)





## Moving the DFBAs





#### Impact on the DFBAs

- Needs to be moved by 4.5 m
- Connection to the jumper extension requires a rotation of 45° of the DFBA jumpers an internal piping with respect to original: essentially completely rebuild the jumper.
- Interference with "proximity equipment": transformers, connection boxes, etc: displacement of the proximity equipment
- No spare DFBA!

#### Tentative sequence of interventions

- Open interconnection to Q7, disconnect the DFBA from the QRL, from WL and cabling
- Move DFBA in a safe place (possibly IP4). Re-use the installation tooling.
- Perform all modifications on the DFBA jumper
- Full leak and pressure test of the modified piping on the DFBA (+ electrical qualification)
- Transport the DFBA in the new location and reconnect
  LHC Collimation Review 2011, CERN 14-15 June 2011

(A.Perin, TE-CRG)

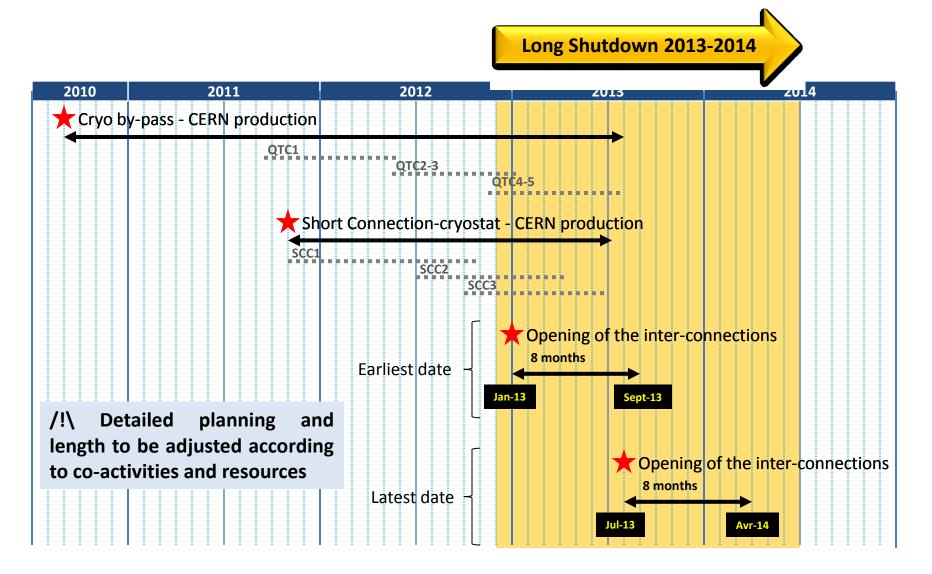


# Acknowledged tunnel integration challenges

- Regions around DFBAs are densely populated zones:
  - Integration studies based on 3D models: fully representative of reality?
  - limited working space: installation work correctly analyzed? Need for special tooling and procedures? Potential risk of unforeseen interference and impact on installation schedule
  - Coactivity between various teams: needs accurate preparation and coordination. Potential risk on installation schedule
  - → Accurate installation sequence to be studied; still risk of facing unplanned work. Potential risk on installation schedule
- Heavy re-cabling work with risk of errors and mishaps:
  - lengthy troubleshooting/repair. Potential risk on installation/commisionning schedules
- Modification of in-situ equipment:
  - Can be technically complex (e.g. DSLC mods) → risk of damaging unique equipment.
- Handling/Transport of heavy equipment (DFBA):
  - risk of damage of unique equipment (no spares)
- Coactivity with other shut-down activities. Handling/Transport:
  - Free transport passage. Potential risk on installation schedule
  - Share transport resources. Potential risk on installation schedule



# Summary of main H/W activity


- Status of DS Collimators
  - Design of Cryostat and Collimator Module well advanced (manufacturing drawings being released)
  - Long-lead components and material procurement under way
  - Manufacturing and assembly of first unit to start in coming weeks
- Status of Short Connection Cryostats
  - Short Connection Cryostat engineering almost completed
  - Schedule and budget are under control
  - No show stopper identified
- Modifications of other equipment:
  - Q7 jumpers not critical
  - DFBA jumpers not critical but on unique equipment
  - Cryo-links not critical (existing design in LHC) but complex integration
  - In-situ modification of DSCL complex and critical (unique installed equipment)
- Still in progress:
  - Study of cold testing and bench connections (SM18) for power testing of Collimator by-pass and Short Connection Cryostats



# Schedule



# Schedule





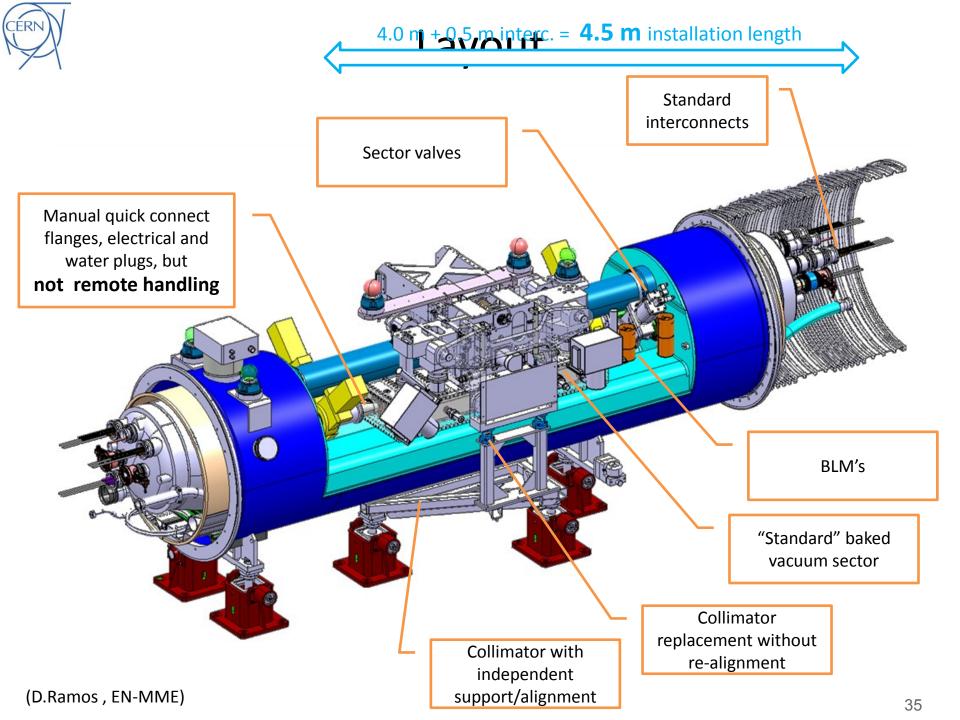
## **Tunnel work assumptions**

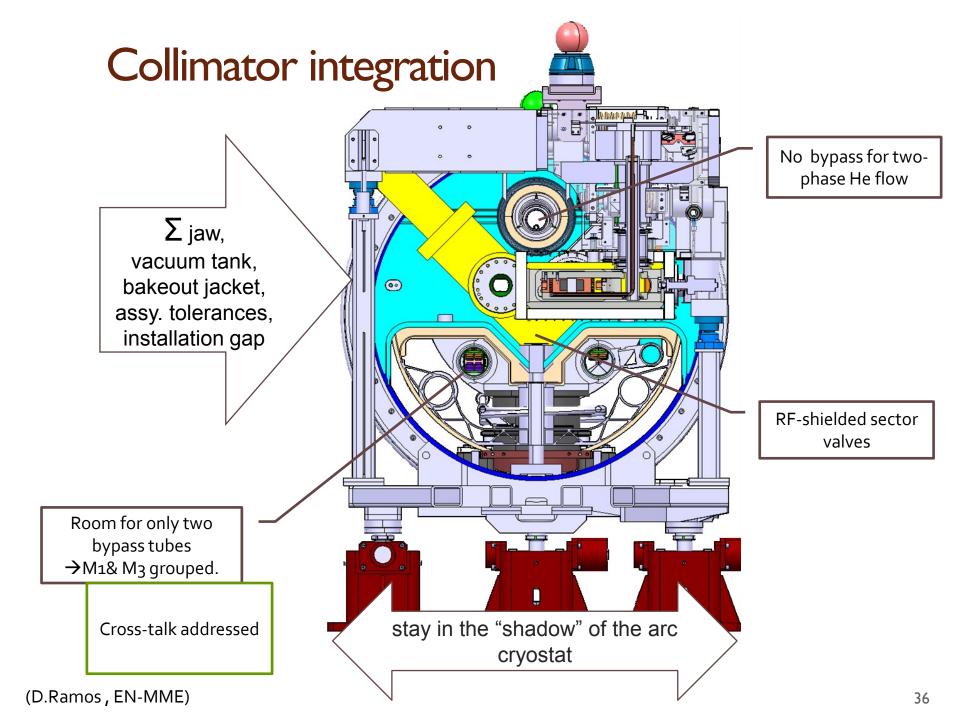
- Working assumptions:
  - All magnets up to surface (dipoles from PMI2, quads from P4)
  - Works on one (extended) shift, with night transport
  - 3L and 3R mostly parallel work
  - DFBAs moved and stored in P4 (underground)
  - 4 teams for cabling (DS, LSS&DFBA, connections, water-cooled cables)
- Limitations:
  - Planning not merged with other activities/projects
  - No resource sharing with other activities/projects (especially interconnects!)
  - No transport sharing with other activities/projects
  - …no contingency!

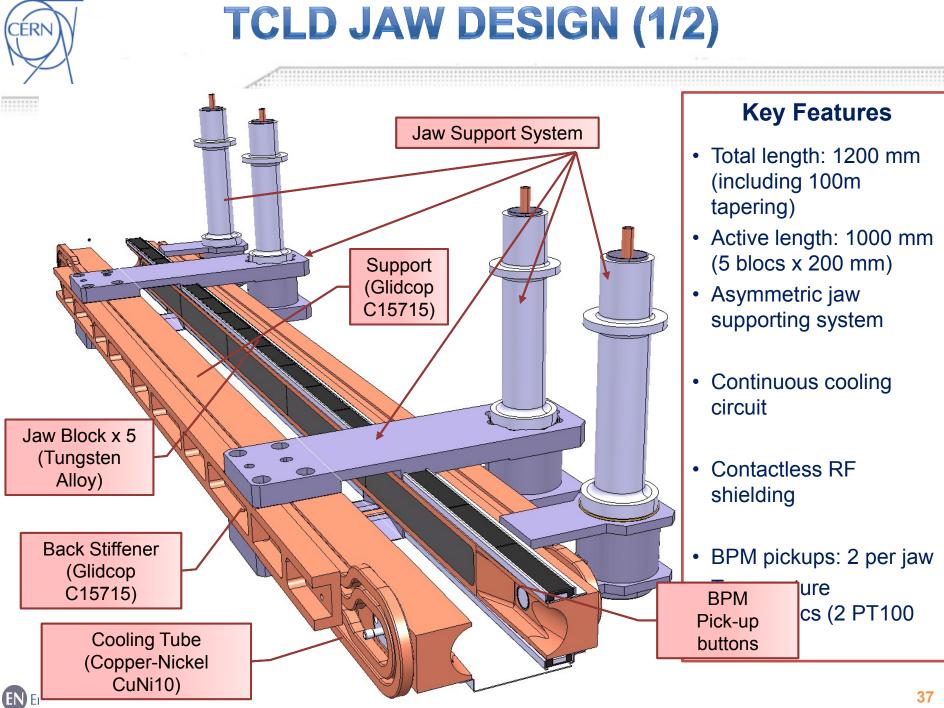
 $\rightarrow$  Minimum of 8 months of tunnel activity



# Summary and Outlook


- The DS collimator project in IR3, aimed at improving collimation efficiency (factor 5-10), is now structured and progressing full steam for the next log shut-down
- The DS collimators requires a challenging re-layout and integration study, which is almost completed and no technical show-stopper have been identified so far
- Considering the complex integration and densely populated area around the DFBAs, there is a certain risk of having underestimated the work. A detailed installation sequence should be studied
- In-situ modifications of highly integrated equipment (e.g. DSLC) and transport/handling of unique equipment (DFBAs), remain critical issues justifying a dedicated risk analysis
- The design of the new DS equipment (DS collimators, and Short Connection Cryostats) is close to completion and was reviewed recently (May review)
- Procurement of other long-lead components in industry is launched
- Construction of the first units (QTC and SCC) is to start (summer 2011)
- Planned availability dates of the QTC and SCC: mid 2012-mid 2013
- First draft schedule for 2013 shut-down, yields a ~8 months minimum installation for the DS collimators
- This preliminary schedule needs consolidation and matching with those of other shutdown projects (resources allocation, co-activity, transport sharing, etc.) so its duration could be considerably longer (up to 3 months?).

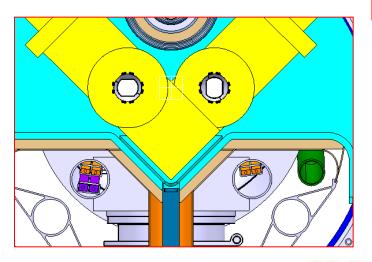




# Thank you for your attention!

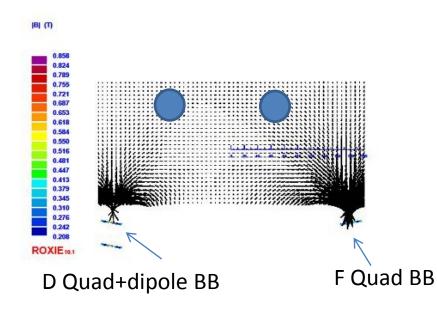


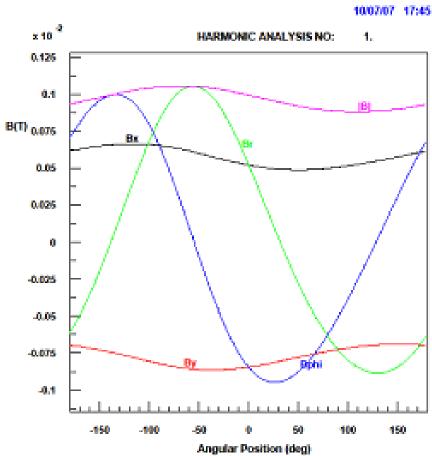
# Spare slides







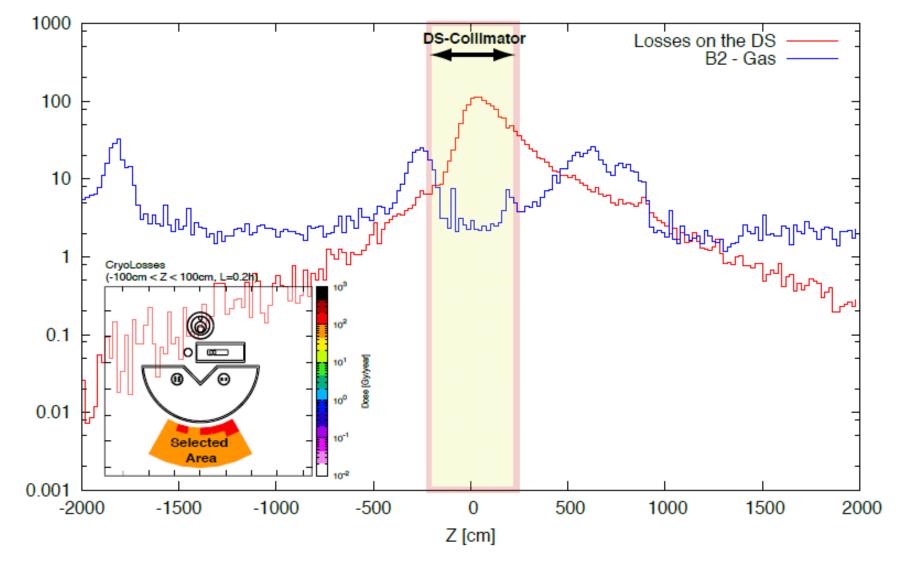


## BB stray field to beam

**Roxie calculations: S.Russenschuck** 



10/07/07 17:45






#### Negligible effect on beam

(LHC Collimation Working Group, July 2010)



#### Comparison of DOSE below LHC cryostat around the DS-Collimator



Dose [Gy/year]

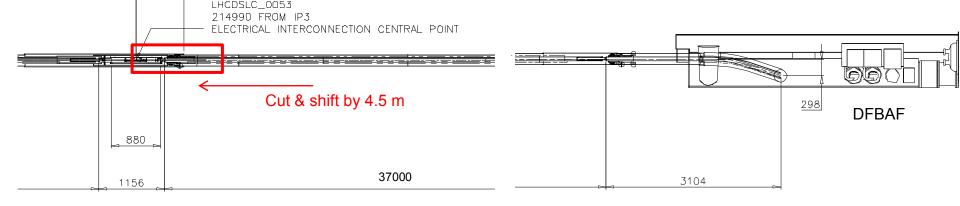


# Testing of QTC and SCC

- Construction testing:
  - Pressure test (construction integrity)
  - Dimensional checks (mechanical interfaces)
  - Leak tests
  - Electrical tests (@RT): continuity, HV
  - ...
- Qualification testing @ cold (SM18):
  - Envisaged tests:
    - Leak-tightness @ cold (insulation+beam vacua)
    - HV tests (before CD, @cryo)
    - Continuity and splices measurements
    - RRR measurements
    - Powering tests of all circuits (connected in series) @ ultimate current
    - Magnetic measurements (SCC only)
    - Thermal cycle(s)
    - Cryostat T measurments on QTC prototype
    - ...
  - Diagnostics instrumentation (T gauges, Vtaps...) needed

# Modifications to the DSLC (superconducting link)

- The DSLC needs to be shortened by 4.5 m
- Cable is 44 x 600A busbars
- Delicate operation but experience exists. Unique system.


Tentative sequence (details being studied):

- Open and disconnect at the DLSC-DFBAF connection
- Open and disconnect at ceiling connection 40 meters from DFBAF
- Shorten the helium piping while preserving the SC cable on the DFBAF segment
- Reconstruct the interface flanges on the piping
- Install temporary sliding supports on the DSLC vacuum envelope
- Shift the DFBAF segment by 4.5 m to the new position
- Reconnect the DSLC

853

- Perform leak tighness & Hi Voltage tests on the DSLC before reconnection to the DFBAF
- Reconnect to the DFBAF + leak tests + electrical test



