Proton beam performance with and without IR3 upgrade

> A Rossi on behalf of the collimation team Collimation Upgrade Review 2011 June 14th, 2011

- Performance reach from collimation
- Highlights of recent MDs :
 - Nominal collimator settings and DS quench test
- Performance reach predictions
- Description of IR3 upgrade
- Comparison between simulations and measurements
- Simulation results for IR3 combined cleaning
 - With and without DS collimators
 - With machine alignment imperfections
- Summary and conclusions

Maximum allowed beam intensity :

- Higher cleaning efficiency => higher intensity can be tolerated
- Smaller gaps in the whole hierarchy => a smaller aperture can be protected, and thus a smaller β* can be used

 Local cleaning inefficien downstre improved order of r tight setti
New tight
New tight
Iarger ret primary a invented keep hier

Higher cl
Smaller ç
protectec

Project

Highlights of MD on DS quench test

- 3.5 TeV operational collimator settings (not best possible)
- No magnet quenched => Either quench limit higher than expected or losses more diluted

Performance reach : predictions

Performance reach : predictions

	3.5 TeV						
	η_{ineff}	Efficiency	R _q L _{dil} [p/s]	τ _{min} [h]	N _{max} [p]	N _{lim} @BLM [p]	N _{lim} /N _{nom}
2010	5.20E-04	99.95%	8.40E+07	0.6	3.7E+14	1.2E+14	41%
MD	1.56E-04	99.98%	1.22E+09	1.0	2.8E+16	0.94E+16	2900%

	Extrapolation to 7 TeV						
	η_{ineff}	Efficiency	R _q L _{dil} [p/s]	τ _{min} [h]	N _{max} [p]	N _{lim} @BLM [p]	N _{lim} /N _{nom}
2010	1.30E-03	99.87%	2.71E+07	0.6	4.8E+13	1.6E+13	5%
MD			1	1			

- $\hfill\square$ Same minimum beam lifetime at 3.5 TeV and 7 TeV.
- □ Minimum beam lifetime independent from intensity.
- □ No disturbing effect from much larger impedance.
- □ Theoretical scaling of cleaning efficiency and quench limit.
- Same spatial distribution of losses in SC magnets at 3.5 TeV and 7 TeV.
- □ Peak MD performance achievable in routine operation and at 7 TeV.
- $\hfill\square$ No disturbing effect from smaller impact parameters at 7 TeV.
- □ Both beams behave the same.
- □ Same locations for peak loss into SC magnets.
- \square No other performance limits included (IR1/5, ions, ...).

Comparison simulations versus measurements

Simulations: perfect machine, B1 vertical, 3.5TeV, β *=3.5m

Project

Comparison simulations versus measurements

Project

Comparison simulations versus measurements

DS region

Project

□ Graphite collimators replacing TCHSH and phase 2.

□ **R2E**:

- Super Conducting link cables in IR3 OK for 500 kW losses at primary collimators (nominal). Maybe require additional passive absorbers.
- Limitations with Single Event Upset in IR7 are avoided as losses are relocated to IR3 (100 times less radiation to electronics for same beam loss in IR3).

□ Operations:

- LHC collimation with 28 collimators less than now → faster setup and lower impedance (20 TCP/TCS instead of 38 TCP/TCS)
- System in IR7 would be kept operational → larger flexibility to react to limitations + spares

Simulation results for IR3 combined cleaning, vertical

Simulation results for IR3 combined cleaning, vertical

Tungsten collimators in front of Q8 and Q10 to catch off momentum particles (from Single Diffractive scattering at collimators, from collisions ...) at high dispersion regions

Cleaning inefficiency with DS collimators

Cleaning inefficiency with DS collimators

LHC Collimation

Project

Cleaning inefficiency with machine alignment imperfections

Summary and conclusions

- Present system (IR7) : ~4 times nominal intensity if extrapolation correct.
- IR3 combined cleaning (without DS collimators)
 - Improves R2E, reduces setup time, increases flexibility (IR7 still operational).
 - Performance ~5 times worse than present: 80% nominal if IR7 limited by R2E.
 - □ MD measurements yet to be carried out.
 - □ Higher leakage predicted in the experimental regions.
- IR3 combined cleaning (with DS collimators):
 - □ Gain factor > 10 \rightarrow factor ~ 8 margin for nominal intensity in 2014.
 - Efficiency becomes independent of imperfections (in the H plane). The V plane is sensitive to imperfections (no DS collimator).
- BUT work close to limit:
 - □ No efficiency margin.
 - □ No operational margin.
 - \Box No margin to open for impedance.
- Can we assume the same performance of the LHC at 7 TeV (lifetimes, loss locations and dilution, scaling of inefficiency and quench limit, ...)?

LHC Collimation

Project

Measured losses during stable beams 1092 b

LHC Collimation Project

Present machine, tight settings, vertical (TCT 26sigma)

) Project CERN

Simulation results for IR3 combined cleaning, horizontal

Project

Cleaning inefficiency with DS collimators

Machine alignment imperfections worsen performance by max. a factor of ~ 2 (over 10 cases studied) LHC Collimation

Project

Cleaning inefficiency with and without DS collimators

Cleaning inefficiency with and without DS collimators

Intermediate settings at 3.5 TeV, beam1

LHC Collimation
Project
CERN
CERN

name		Material	Length[m] nsig	halfg	gap[mm]	betax[m] beta	ıy[m]
TCL.5R1.B1	hor	CU	1.00	-	open	73.525	360.65
TCTH.4L2.B1	hor	W	1.00	26.00	7.28	77.917	90.428
TDI.4L2.B1	ver	CU	4.00	-	open	138.58	87.798
TCTVB.4L2	ver	W	1.00	26.00	7.86	155.16	91.013
TCLIA.4R2	ver	С	1.00	-	open	89.858	149.7
TCLIB.6R2.B1	ver	С	1.00	-	open	176.59	74.453
TCP.6L3.B1	hor	С	0.60	12.00	4.36	131.52	144.7
TCSG.5L3.B1	hor	С	1.00	15.60	3.66	54.607	298.63
TCSG.4R3.B1	hor	С	1.00	15.60	2.53	26.211	395.17
TCSG.A5R3.B1	skw	С	1.00	15.60	3.27	35.868	344.08
TCSG.B5R3.B1	skw	С	1.00	15.60	3.70	45.538	312.65
TCLA.A5R3.B1	ver	W	1.00	17.60	7.40	142.52	176
TCLA.B5R3.B1	hor	W	1.00	17.60	6.87	151.61	168.67
TCLA.6R3.B1	hor	W	1.00	17.60	6.35	129.42	168.7
TCLA.7R3.B1	hor	W	1.00	17.60	4.54	66.234	96.901
TCTH.4L5.B1	hor	W	1.00	11.80	9.04	584.21	225.66
TCTVA.4L5.B1	ver	W	1.00	11.80	5.77	586.15	237.79
TCL.5R5.B1	hor	CU	1.00	-	open	73.654	361.76
TCDQA.A4R6.B	hor	С	3.00	9.80	6.90	493.7	167.94
TCDQA.B4R6.B	hor	С	3.00	9.80	6.98	504.79	172.21
TCSG.4R6.B1	hor	С	1.00	9.30	6.71	517.2	177.14
TCP.D6L7.B1	ver	С	0.60	5.70	1.60	158.87	78.263
TCP.C6L7.B1	hor	С	0.60	5.70	2.22	150.53	82.763
TCP.B6L7.B1	skw	С	0.60	5.70	1.87	142.46	87.488
TCSG.A6L7.B1	skw	С	1.00	8.80	2.97	39.872	226.93
TCSG.B5L7.B1	skw	С	1.00	8.80	3.55	159.98	166.51
TCSG.A5L7.B1	skw	С	1.00	8.80	3.63	185.96	145.93
TCSG.D4L7.B1	ver	С	1.00	8.80	2.32	332.92	68.864
TCSG.B4L7.B1	hor	С	1.00	8.80	3.30	139.75	130.98
TCSG.A4L7.B1	skw	С	1.00	8.80	3.24	128.66	141.28
TCSG.A4R7.B1	skw	С	1.00	8.80	3.25	118.28	152.21
TCSG.B5R7.B1	skw	С	1.00	8.80	3.73	121.85	267.55
TCSG.D5R7.B1	skw	С	1.00	8.80	3.74	213.87	158.53
TCSG.E5R7.B1	skw	С	1.00	8.80	3.75	241.4	136.1
TCSG.6R7.B1	skw	С	1.00	8.80	5.11	335.75	47.359
TCLA.A6R7.B1	ver	W	1.00	17.70	3.89	297.06	48.158
TCLA.B6R7.B1	hor	W	1.00	17.70	7.09	159.49	76.391
TCLA.C6R7.B1	ver	W	1.00	17.70	6.92	68.608	151.89
TCLA.D6R7.B1	hor	W	1.00	17.70	4.53	65.041	157.92
TCLA.A7R7.B1	hor	W	1.00	17.70	4.50	64.255	147.41
TCTH.4L8.B1	hor	W	1.00	11.80	5.81	241.35	302.67
TCTVB.4L8	ver	W	1.00	11.80	6.85	536.73	335.57
TCTH.4L1.B1	hor	W	1.00	11.80	9.04	584.21	225.66
TCTVA 4I 1 B1	ver	W	1.00	11.80	5 77	586 15	237 79

Tight settings at 3.5 TeV MD, beam 1

LHC Collimation
Project
CERN

name		Material	Length[m] nsig	halfga	ıp[mm]	betax[m] b	etay[m]
TCL.5R1.B1	hor	CU	1.00	999.00 open		7.35E+01	3.61E+02
TCTH.4L2.B1	hor	W	1.00	26.00	7.28	7.79E+01	9.04E+01
TDI.4L2.B1	ver	CU	4.00	999.00 open		1.39E+02	8.78E+01
TCTVB.4L2	ver	W	1.00	26.00	7.86	1.55E+02	9.10E+01
TCLIA.4R2	ver	С	1.00	999.00 open		8.99E+01	1.50E+02
TCLIB.6R2.B1	ver	С	1.00	999.00 open		1.77E+02	7.45E+01
TCP.6L3.B1	hor	С	0.60	12.00	4.36	1.32E+02	1.45E+02
TCSG.5L3.B1	hor	С	1.00	15.60	3.66	5.46E+01	2.99E+02
TCSG.4R3.B1	hor	С	1.00	15.60	2.53	2.62E+01	3.95E+02
TCSG.A5R3.B1	skw	С	1.00	15.60	3.27	3.59E+01	3.44E+02
TCSG.B5R3.B1	skw	С	1.00	15.60	3.70	4.55E+01	3.13E+02
TCLA.A5R3.B1	ver	W	1.00	17.60	7.40	1.43E+02	1.76E+02
TCLA.B5R3.B1	hor	W	1.00	17.60	6.87	1.52E+02	1.69E+02
TCLA.6R3.B1	hor	W	1.00	17.60	6.35	1.29E+02	1.69E+02
TCLA.7R3.B1	hor	W	1.00	17.60	4.54	6.62E+01	9.69E+01
TCTH.4L5.B1	hor	W	1.00	26.00	19.93	5.84E+02	2.26E+02
TCTVA.4L5.B1	ver	W	1.00	26.00	12.71	5.86E+02	2.38E+02
TCL.5R5.B1	hor	CU	1.00	999.00 open		7.37E+01	3.62E+02
TCDQA.A4R6.B	hor	С	3.00	7.50	5.28	4.94E+02	1.68E+02
TCDQA.B4R6.B	hor	С	3.00	7.50	5.34	5.05E+02	1.72E+02
TCSG.4R6.B1	hor	С	1.00	7.00	5.05	5.17E+02	1.77E+02
TCP.D6L7.B1	ver	С	0.60	4.00	1.12	1.59E+02	7.83E+01
TCP.C6L7.B1	hor	С	0.60	4.00	1.56	1.51E+02	8.28E+01
TCP.B6L7.B1	skw	С	0.60	4.00	1.31	1.42E+02	8.75E+01
TCSG.A6L7.B1	skw	С	1.00	6.00	2.03	3.99E+01	2.27E+02
TCSG.B5L7.B1	skw	С	1.00	6.00	2.42	1.60E+02	1.67E+02
TCSG.A5L7.B1	skw	С	1.00	6.00	2.47	1.86E+02	1.46E+02
TCSG.D4L7.B1	ver	С	1.00	6.00	1.58	3.33E+02	6.89E+01
TCSG.B4L7.B1	hor	С	1.00	6.00	2.25	1.40E+02	1.31E+02
TCSG.A4L7.B1	skw	С	1.00	6.00	2.21	1.29E+02	1.41E+02
TCSG.A4R7.B1	skw	С	1.00	6.00	2.22	1.18E+02	1.52E+02
TCSG.B5R7.B1	skw	С	1.00	6.00	2.54	1.22E+02	2.68E+02
TCSG.D5R7.B1	skw	С	1.00	6.00	2.55	2.14E+02	1.59E+02
TCSG.E5R7.B1	skw	С	1.00	6.00	2.56	2.41E+02	1.36E+02
TCSG.6R7.B1	skw	С	1.00	6.00	3.49	3.36E+02	4.74E+01
TCLA.A6R7.B1	ver	W	1.00	8.00	1.76	2.97E+02	4.82E+01
TCLA.B6R7.B1	hor	W	1.00	8.00	3.20	1.59E+02	7.64E+01
TCLA.C6R7.B1	ver	W	1.00	8.00	3.13	6.86E+01	1.52E+02
TCLA.D6R7.B1	hor	W	1.00	8.00	2.05	6.50E+01	1.58E+02
TCLA.A7R7.B1	hor	W	1.00	8.00	2.03	6.43E+01	1.47E+02
TCTH.4L8.B1	hor	W	1.00	26.00	12.81	2.41E+02	3.03E+02
TCTVB.4L8	ver	W	1.00	26.00	15.10	5.37E+02	3.36E+02
TCTH.4L1.B1	hor	W	1.00	26.00	19.93	5.84E+02	2.26E+02
TCTVA.4L1.B1	ver	W	1.00	26.00	12.71	5.86E+02	2.38E+02

LHC Collimation Project

Simulation at 3.5TeV, horizontal sheet beam 1

LHC Collimation Project

Simulation at 3.5TeV, vertical sheet beam 1

Machine alignment imperfections

 Alignment errors applied randomly (1.5σ cut) starting from measured values

	RMS _x (mm)	RMS _y (mm)
MB.	2.4	1.56
MQ.	2.0	1.2
MQX	1.0	1.0
MQWA	2.0	1.2
MQWB	2.0	1.2
MBW.	1.5	1.5
BPM	0.5	0.5