LIGHT NEW PHYSICS & FUNDAMENTAL CONSTANTS

Cédric DELAUNAY Laboratoire d'Annecy de Physique Théorique

Seoul Particle Theory Workshop | May 31, 2024

Challenging the Standard Model

The Standard Model was tested experimentally up to TeV energies $\sim 10^{-18} m$ at the Large Hadron Collider

(and indirectly at LEP and flavor factories)

Challenging the Standard Model

Next generation of high-energy colliders plan to extend the reach by a factor ~ 10

Challenging the Standard Model

Colliders probe heavy BSM particles with *large* coupling to known particles

Much lighter BSM particles could have escaped detection if very weakly coupled $\alpha_{\rm NP} \ll \mathcal{O}(1)$

Exploring this region requires precision measurements at low energies

4

Light New Physics

Sub-GeV physics beyond the SM is well-motivated theoretically :

- moduli fields in String theory compactifications
- approximate new global symmetries, e.g. QCD axion, ALPs, dilaton
- light (mediators for) non-thermal DM, e.g. DM produced by freeze-in
- cosmological solutions to the Higgs hierarchy problem, e.g. relaxion

The Precision Frontier

Atomic Spectrometry

Accuracy of spectroscopic measurements is very (very!) high:

18 digits in optical clock frequency comparison, e.g. ytterbium vs. strontium **BACON** coll. (Nature **591**, 2021)

$$\nu_{\rm Yb}/\nu_{\rm Sr} = 1.207\ 507\ 039\ 343\ 337\ 8482(82)$$

Can it be used to probe BSM physics?

Atomic Spectrometry

Accuracy of spectroscopic measurements is very (very!) high:

18 digits in optical clock frequency comparison, e.g. ytterbium vs. strontium **BACON** coll. (Nature **591**, 2021)

$$\nu_{\rm Yb}/\nu_{\rm Sr} = 1.207 \ 507 \ 039 \ 343 \ 337 \ 8482(82)$$

New bosons coupled to electrons and/or nuclei in a *parity-preserving* way will induce an exotic atomic force

$$V(r) = \gamma + \gamma + \gamma \phi - \alpha/r - (-1)^{s} \alpha_{\rm NP} e^{-m_{\phi} r} / r_{s}$$

Extracting New Physics

Nuclear finite size is a major obstacle for $m_{\phi} \gtrsim \Lambda_{\rm QCD} \simeq 200 \,{
m MeV}$

The range of the NP interaction must extend beyond the nucleus.

(NP interactions that breaks P or CP are well-known exceptions. Those are better probed in APV and EDM experiments)

Many-body effects need to be controlled for multi-electron atoms.

A Possible Strategy

Focus on few-body systems where precision QED calculation is possible, *e.g.* Hydrogen, μ H, Helium or positronium (e⁺e⁻), muonium (μ ⁺e⁻)

Hydrogen and muonic hydrogen spectral lines are best measured. They have the highest sensitivity to NP.

However, these lines are used to determine the values of fundamental (= not predicted by the SM) constants, *assuming the SM holds*!

FCs and NP parameters most be determined together.

Phys.Rev.Lett. 130 (2023) 25, 121801 CD (LAPTh), J.-P. Karr (LKB), T. Kitahara (Nagoya), J. C. J. Koelemeij (V.U. Amsterdam), Y. Soreq (Technion), and J. Zupan (U. Cincinnati)

The BSM CODATA

The Hydrogen Frontier

Measurements of atomic lines in **hydrogen** are very precise:

 $\nu_{1S-2S} = 2\,466\,061\,413\,187\,035(10)\,\text{Hz}$ $u_{\nu} = 4.2 \times 10^{-15} \qquad \text{Parthey et al. (2011)}$

The Hydrogen Frontier

Measurements of atomic lines in **hydrogen** are very precise:

 $\nu_{1S-2S} = 2\,466\,061\,413\,187\,035(10)\,\text{Hz}$ $u_{\nu} = 4.2 \times 10^{-15} \qquad \text{Parthey et al. (2011)}$

QED prediction is even better: $R_{\infty} \equiv \alpha^{2} m_{e} c/2h$ $\nu_{1S-2S} = \frac{3}{4} \frac{R_{\infty} c}{(1+m_{e}/m_{p})} [1 + \delta_{1S-2S}^{QED}(\alpha) + \delta_{1S-2S}^{FNS}(r_{p})]$ TH uncertainty ~ 2 Hz

The Hydrogen Frontier

Measurements of atomic lines in **hydrogen** are very precise:

 $\nu_{1S-2S} = 2\,466\,061\,413\,187\,035(10)\,\text{Hz}$ $u_{\nu} = 4.2 \times 10^{-15} \qquad \text{Parthey et al. (2011)}$

QED prediction is even better: $R_{\infty} \equiv \alpha^{2} m_{e} c/2h$ $\nu_{1S-2S} = \frac{3}{4} \frac{R_{\infty} c}{(1+m_{e}/m_{p})} [1 + \delta^{\text{QED}}_{1S-2S}(\alpha) + \delta^{\text{FNS}}_{1S-2S}(r_{p})]$ TH uncertainty ~ 2Hz

limited by proton radius

Direct comparison fixes the Rydberg constant:

Tiesinga et al. [CODATA 2018] $R_{\infty}c = 3.289\,841\,960\,2508(64) \times 10^{15}\,\mathrm{Hz}$ $u_{R_{\infty}} = 1.9 \times 10^{-12}$

most precisely known fundamental constant in physics! 14

Rydberg constant

hydrogen $\nu_{\rm 1S-2S}$ (+22 other lines)

still a **proton size puzzle**...

proton|deuteron (charge) radius

muonic hydrogen|deuterium Lamb shifts *or* ordinary hydrogen|deuterium lines *or* e-proton|e-deuteron scattering data

Rydberg constant

hydrogen $\nu_{\rm 1S-2S}$ (+22 other lines)

fine structure constant

electron g-2 Fan et al. [2023] or atomic recoil

$$\alpha^2 = 2R_{\infty}/c \times \frac{m}{m_e} \times \frac{h}{m}$$

 87 Rb **Morel** et al. [2020] 133 Cs **Parker** et al. [2018]

$\begin{array}{c} A_{\mathbf{r}}(p) & A_{\mathbf{r}}(d) \\ \textbf{atomic mass} \\ \textbf{constants} & m_X = A_{\mathbf{r}}(X)m_{\mathbf{u}} \\ \textbf{cyclotron motion} \\ \textit{or HD+ molecular lines Patra et al. [2020]} \\ \textbf{proton|deuteron} \\ \textbf{(charge) radius} \end{array}$

muonic hydrogen|deuterium Lamb shifts *or* ordinary hydrogen|deuterium lines *or* e-proton|e-deuteron scattering data

Rydberg constant

hydrogen $\nu_{\rm 1S-2S}$ (+22 other lines)

fine structure constant

electron g-2 Fan et al. [2023] or atomic recoil

$$\alpha^2 = 2R_{\infty}/c \times \frac{m}{m_e} \times \frac{h}{m}$$

 87 Rb **Morel** et al. [2020] 133 Cs **Parker** et al. [2018]

A_r(p) A_r(d) atomic mass constants $m_X = A_r(X)m_u$ cyclotron motion or HD+ molecular lines Patra et al. [2020] proton|deuteron (charge) radius

muonic hydrogen|deuterium Lamb shifts *or* ordinary hydrogen|deuterium lines *or* e-proton|e-deuteron scattering data

Rydberg constant

hydrogen $\nu_{\rm 1S-2S}$ (+22 other lines)

fine structure constant

electron g-2 Fan et al. [2023] or atomic recoil

$$\alpha^2 = 2R_{\infty}/c \times \frac{m}{m_e} \times \frac{h}{m}$$

 87 Rb **Morel** et al. [2020] 133 Cs **Parker** et al. [2018]

to be determined together in a global fit \rightarrow **CODATA** recommended values

https://pml.nist.gov/cuu/Constants/

CODATA 2018 values

Quantity	Symbol	Numerical value	Unit	Relative std. uncert. u_r
Rydberg frequency $\alpha^2 m_{\rm e} c^2/2h = E_{\rm h}/2h$	cR_{∞}	$3.2898419602508(64)\times 10^{15}$	Hz	1.9×10^{-12}
deuteron mass	m _d	$\begin{array}{c} 3.3435837724(10)\times10^{-27}\\ 2.013553212745(40)\end{array}$	kg u	3.0×10^{-10} 2.0×10^{-11}
electron mass	m _e	$\begin{array}{l} 9.1093837015(28)\times10^{-31} \\ 5.48579909065(16)\times10^{-4} \end{array}$	kg u	3.0×10^{-10} 2.9×10^{-11}
proton mass	$m_{\rm p}$	$\begin{array}{c} 1.67262192369(51)\times10^{-27}\\ 1.007276466621(53) \end{array}$	kg u	3.1×10^{-10} 5.3×10^{-11}
fine-structure constant $e^2/4\pi\epsilon_0\hbar c$ inverse fine-structure constant	$\alpha \alpha^{-1}$	$\begin{array}{l} 7.2973525693(11)\times10^{-3} \\ 137.035999084(21) \end{array}$		$\begin{array}{c} 1.5\times 10^{-10} \\ 1.5\times 10^{-10} \end{array}$
deuteron rms charge radius	r _d	$2.12799(74) \times 10^{-15}$	m	$3.5 imes 10^{-4}$
proton rms charge radius	r _p	$8.414(19) \times 10^{-16}$	m	2.2×10^{-3}

TABLE XXXI. The CODATA recommended values of the fundamental constants of phys	ysics and chemistry based on the 2018	adjustment.
--	---------------------------------------	-------------

This accuracy relies on *assuming the SM*. Is this robust to **BSM**?

New particles below $\sim GeV$ will affect the observables used to determine the fundamental constants:

$$\mathcal{L}_{ ext{int}} = \sum_{\psi \in e, \, \mu, \, p, \, n} g_{\psi} ar{\psi} [\Gamma \cdot \phi] \psi \ = e, \mu, p, n \ \psi = e, \mu, p, n \ \chi^{\mu} \phi_{\mu} ext{ scalar}$$
 vector

New particles below $\sim {\rm GeV}$ will affect the observables used to determine the fundamental constants:

 $\Rightarrow V_{\rm NP}^{ij} = (-1)^{s+1} \alpha_{\phi} q_i q_j \frac{e^{-m_{\phi}r}}{r}$ $= \frac{|g_e g_p|}{4\pi} \ge 0$ $= (-1)^{s+1} \alpha_{\phi} q_i q_j \frac{e^{-m_{\phi}r}}{r}$ $= q_i \equiv \frac{g_i}{\sqrt{|g_e g_p|}}$ Contributing to spectral lines

$$\begin{split} & \text{hydrogen} \ \sim \alpha_{\phi} q_e q_p = \pm \alpha_{\phi} \\ & \text{deuterium} \sim \alpha_{\phi} [1 + q_e q_n] \\ & \mu \text{H} / \mu \text{D} \ \sim \alpha_{\phi} q_{\mu} q_{p/n} \\ & \text{HD}^{\scriptscriptstyle +} \sim \alpha_{\phi} [1, q_e q_n, q_p q_n] \end{split}$$

New particles below $\sim {\rm GeV}$ will affect the observables used to determine the fundamental constants:

One-loop correction to a_e

 $\bigwedge_{1}^{2} \sim \alpha_{\phi} q_{e}^{2} / 4\pi$

spin $V_{\rm NP}^{ij} = (-1)^{s+1} \alpha_{\phi} q_i q_j \frac{e^{-m_{\phi}r}}{r}$ $q_i \equiv \frac{g_i}{\sqrt{|g_e g_p|}}$ **Yukawa potentials** $q_i \equiv \frac{g_i}{\sqrt{|g_e g_p|}}$ contributing to spectral lines

$$\begin{split} \text{hydrogen} &\sim \alpha_{\phi} q_e q_p = \pm \alpha_{\phi} \\ \text{deuterium} &\sim \alpha_{\phi} [1+q_e q_n] \\ & \mu\text{H}/\mu\text{D} &\sim \alpha_{\phi} q_{\mu} q_{p/n} \\ & \text{HD}^{\scriptscriptstyle +} \sim \alpha_{\phi} [1,q_e q_n,q_p q_n] \end{split}$$

New particles below $\sim GeV$ will affect the observables used to determine the fundamental constants:

One-loop correction to a_e

 $\bigwedge_{\phi} \sim \alpha_{\phi} q_e^2 / 4\pi$

Theoretical prediction for an observable \mathcal{O} :

 $-\equiv rac{|g_eg_p|}{4\pi} \ge 0$

Datasets

Rel. uncert.

 2.4×10^{-10}

 1.5×10^{-11}

- - - 0

*g*_e-2,masses...

Hydrogen/Deuterium

	<u> </u>		Label	Input datum	Valu	ıe
Label	Input datum	Value (kHz)	D1	$a_e \equiv \frac{1}{2}(g-2)_e$	1.1596521807	$3(28) \times 10^{-3}$
A1	$\nu_{\rm H}(2S_{1/2} - 4S_{1/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2} - 2S_{1/2})$	4797338(10)	D2	δ_e	0.000(18)	$\times 10^{-12}$
A2	$\nu_{\rm H}(2S_{1/2} - 4D_{5/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2} - 2S_{1/2})$	6490144(24)	D3	$h/m_{ m Rb}(^{87} m Rb)$	4.591 359 272 9(57	$) \times 10^{-9} \mathrm{m^2 s^{-1}}$
A3	$\nu_{\rm D}(2S_{1/2} - 4S_{1/2}) - \frac{1}{4}\nu_{\rm D}(1S_{1/2} - 2S_{1/2})$	4801693(20)	D4	$h/m_{\rm Cs}(^{133}{\rm Cs})$	3.002 369 472 1(12	$\times 10^{-9} \mathrm{m^2 s^{-1}}$
A4	$\nu_{\rm D}(2S_{1/2} - 4D_{5/2}) - \frac{1}{4}\nu_{\rm D}(1S_{1/2} - 2S_{1/2})$	6494841(41)	D5	$A_{\rm r}(^{87}{\rm Rb})$	86.909180	5312(65)
A5	$\nu_{\rm D}(1S_{1/2} - 2S_{1/2}) - \nu_{\rm H}(1S_{1/2} - 2S_{1/2})$	670994334.606(15)	D6	$A_{\rm r}(^{133}{\rm Cs})$	132.905451	9610(86)
A6	$ u_{ m H}(1S_{1/2}-2S_{1/2}) $	2466061413187.035(10	D7	$\omega_{\rm s}/\omega_{\rm c}(^{12}{\rm C}^{5+})$	4376.210 50	0087(12)
A7	$ u_{ m H}(1S_{1/2}-2S_{1/2})$	2466061413187.018(11	D8	$\Delta E_{\rm B}(^{12}{\rm C}^{5+})/h$	c 43.563 233(25	$) \times 10^{7} { m m}^{-1}$
A8	$ u_{ m H}(1S_{1/2} - 3S_{1/2}) $	2922743278659(17)	D9	$\delta_{ m C}$	0.0(2.5) :	$\times 10^{-11}$
A9	$\nu_{\rm H}(2S_{1/2}-4P)$	616520931626.8(2.3)	D10	$\omega_{\rm s}/\omega_{\rm c}(^{28}{ m Si}^{13+})$	3912.866 00	5484(19)
A10	$ u_{ m H}(2S_{1/2} - 8S_{1/2}) $	770649350012.0(8.6)	D11	$A_{\rm r}(^{28}{ m Si})$	27.9769265	3499(52)
A11	$ u_{ m H}(2S_{1/2}-8D_{3/2})$	770649504450.0(8.3)	D12	$\Delta E_{\rm B}(^{28}{\rm Si}^{13+})/\hbar$	420.6467(85)	$\times 10^7 \mathrm{m^{-1}}$
A12	$ u_{ m H}(2S_{1/2}-8D_{5/2})$	770649561584.2(6.4)	D13	$\delta_{ m Si}$	0.0(1.7)	$\times 10^{-9}$
A13	$\nu_{\rm D}(2S_{1/2} - 8S_{1/2})$	770859041245.7(6.9)	D14	$\omega_{\rm c}({\rm d})/\omega_{\rm c}(^{12}{ m C}^{6+}$	$) \qquad 0.99299665$	4743(20)
A14	$ u_{ m D}(2S_{1/2}-8D_{3/2})$	770859195701.8(6.3)	D15	$\omega_{\rm c}(^{12}{\rm C}^{6+})/\omega_{\rm c}(p$) 0.50377636	57662(17)
A15	$ u_{ m D}(2S_{1/2}-8D_{5/2})$	770859252849.5(5.9)	D19	$A_{\rm r}(^{1}{\rm H})$	1.00782503	2241(94)
A16	$\nu_{ m H}(2S_{1/2}-12D_{3/2})$	799191710472.7(9.4)	D21	$\Delta E_{\rm B}(^{1}{\rm H^{+}})/hc$	1.0967877174307	$7(10) \times 10^7 \mathrm{m}^{-1}$
A17	$ u_{ m H}(2S_{1/2}-12D_{5/2}) $	799191727403.7(7.0)	D23	$\Delta E_{\rm B}(^{12}{\rm C}^{6+})/h$	c 83.083 850(25	$) \times 10^{7} \mathrm{m}^{-1}$
A18	$ u_{ m D}(2S_{1/2}-12D_{3/2}) $	799409168038.0(8.6)				
A19	$\nu_{\rm D}(2S_{1/2} - 12D_{5/2})$	799409184966.8(6.8)	8.5×1	0^{-12}		
A20	$\nu_{\rm H}(2S_{1/2} - 6S_{1/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2} - 3S_{1/2})$	4197604(21)	4.9×1	10^{-6}		
A21	$\nu_{\rm H}(2S_{1/2} - 6D_{5/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2} - 4S_{1/2})$	4699099(10)	2.2×1	10^{-6}	/	_
A22	$ u_{ m H}(1S_{1/2} - 3S_{1/2}) $	2922743278678(13)	4.4×1	0^{-12}	uH/u	D
A23	$ u_{ m H}(1S_{1/2} - 3S_{1/2}) $	2922743278671.5(2.6)				
A24	$\nu_{\rm H}(2S_{1/2} - 4P_{1/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2} - 2S_{1/2})$	4664269(15)	Labe	el Input datum	Value	Rel. uncert.
A25	$\nu_{\rm H}(2S_{1/2} - 4P_{3/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2} - 2S_{1/2})$	6035373(10)	C1	$\mathbf{F}_{}(\mathbf{u}\mathbf{H})$	202 2706(22) moV	1.1×10^{-5}
A26	$ u_{ m H}(2S_{1/2}-2P_{3/2}) $	9911200(12)	C	$E_{\rm LS}(\mu \Pi)$	202.3700(23) meV	1.1×10^{-5}
A27	$ u_{ m H}(2P_{1/2}-2S_{1/2}) $	1057862(20)	02	$E_{\rm LS}(\mu D)$	202.8785(34) meV	1.7×10^{-5}
A28	$ u_{ m H}(2P_{1/2} - 2S_{1/2}) $	1057845.0(9.0)	C7	$\delta E_{\rm LS}(\mu {\rm H})$	0.0000(129) meV	6.4×10^{-6}
A29	$ u_{\rm H}(2P_{1/2}-2S_{1/2}) $	1057829.8(3.2)	C8	$\delta E_{ m LS}(\mu { m D})$	0.0000(210) meV	1.0×10^{-4}
			C9	r_p	0.880(20) fm	2.3×10^{-2}
			C10	r_d	2.111(19) fm	9.0×10^{-3}

DATA22

including post-CODATA18 improvements from

Hydrogen, HD+, pbar-He μHe lines, ge-2 and atomic masses

Label	Input datum	Value	Rel. uncert.	Reference
A30	$ u_{ m H}(1S_{1/2} - 3S_{1/2}) $	$2922743278665.79(72)~\mathrm{kHz}$	2.5×10^{-13}	Grinin et al. [21]
A31	$ u_{ m H}(2S_{1/2} - 8D_{5/2}) $	$770649561570.9(2.0)~{\rm kHz}$	2.6×10^{-12}	Brandt et al. [20]
D1	$a_e \equiv \frac{1}{2}(g-2)_e$	$1.15965218059(13) imes 10^{-3}$	1.1×10^{-10}	Fan <i>et al.</i> [70]
D3	$h/m_{ m Rb}(^{87}{ m Rb})$	$4.59135925890(65)\times 10^{-9}\mathrm{m^2 s^{-1}}$	1.4×10^{-10}	Morel <i>et al.</i> [69]
D5	$A_{\rm r}(^{87}{ m Rb})$	86.909180529(6)	6.9×10^{-11}	AME 2020 [73]
D6	$A_{\rm r}(^{133}{\rm Cs})$	132.905451958(8)	6.0×10^{-11}	AME 2020 [73]
D9	$\delta_{ m C}$	$0.0(9.4) \times 10^{-12}$	4.9×10^{-12}	Czarnecki et al. [71]
D13	$\delta_{ m Si}$	$0.0(5.8) \times 10^{-10}$	2.8×10^{-10}	Czarnecki et al. [71]
D11	$A_{\rm r}(^{28}{ m Si})$	27.97692653442(55)	2.0×10^{-11}	AME 2020 [73]
D14	$A_{\rm r}(^2{ m H})$	2.014101777844(15)	7.4×10^{-12}	AME 2020 [73]
D15	$\Delta E_{\rm B}(^2{\rm H^+})/hc$	$1.0970861455299(10)\times10^{7}\mathrm{m}^{-1}$	9.1×10^{-13}	NIST ASD 2021 [62]
D19	$A_{\rm r}(^1{ m H})$	1.007825031898(14)	1.4×10^{-11}	AME 2020 [73]
D23	$\Delta E_{\rm B}(^{12}{\rm C^{6+}})/hc$			
E1	$ u_{ m HD^+}((0,0)-(0,1)) $	1314925752.910(17) kHz	1.3×10^{-11}	Alighanbari et al. [33]
E2	$ u_{ m HD^+}((0,0)-(1,1)) $	58605052164.24(86) kHz	1.5×10^{-11}	Kortunov et al. [35]
E3	$ u_{ m HD^+}((0,3)-(9,3)) $	415264925501.8(1.3) kHz	3.1×10^{-12}	Patra et al. $[34]$ + Germann et al. $[14]$
G1	$\nu_{\rm \bar{p}^4He}((32,31)-(31,30))$	1132609226.7(4.0) MHz	3.5×10^{-9}	Hori <i>et al.</i> [37]
G2	$\nu_{\bar{p}^4He}((33,32) - (31,30))$	2145054858(7) MHz	3.4×10^{-9}	Hori <i>et al.</i> [36]
G3	$\nu_{\bar{\rm p}^{3}{\rm He}}((32,31)-(31,30))$	1043128581(6) MHz	6.2×10^{-9}	Hori <i>et al.</i> [37]
G4	$\nu_{\bar{\rm p}^{3}{\rm He}}((35,33)-(33,31))$	1553643100(10) MHz	6.7×10^{-9}	Hori <i>et al.</i> [36]
I1	$E_{\rm LS}(\mu^4{ m He})$	1378.521(48) meV	$3.5 imes 10^{-5}$	Krauth et al. [78]
I2	$E_{\rm LS}(\mu^3{ m He})$	1258.586(49) meV	$3.9 imes 10^{-5}$	Krauth [79]

Dark photon
$$\mathcal{L}_{int} = -\frac{\epsilon}{2}F^{\mu\nu}F'_{\mu\nu}$$

 $q_{\ell} = -q_{p} = -1$
 $q_{n} = 0$
Higgs portal $\alpha_{\phi} = \sin\theta^{2}m_{e}\kappa_{p}m_{p}/(4\pi v^{2})$
 $\kappa_{p} = 0.306(14), \kappa_{n} = 0.308(14) \leftarrow \text{from nucleon form-factors}$
 $q_{\ell} = m_{\ell}/\sqrt{m_{e}\kappa_{p}m_{p}}$
 $q_{p,n} = \kappa_{p,n}m_{p,n}/\sqrt{m_{e}\kappa_{p}m_{p}}$
 $\leftarrow \text{larger effects in muonic atoms and molecules}$

Hadrophilic scalar

 $\begin{aligned} \alpha_{\phi} &= \sin \theta^2 m_e \kappa_p m_p / (4\pi v^2) \\ q_{\ell} &= 0 \quad \leftarrow \text{highlights molecules} \\ q_{p,n} &= \kappa_{p,n} m_{p,n} / \sqrt{m_e \kappa_p m_p} \end{aligned}$

Up-Lepto-Darko-philic (ULD) scalar $\alpha_{\phi} = k^2 m_e \kappa'_p m_p / (4\pi v^2)$ $q_{\ell} = m_{\ell} / \sqrt{m_e \kappa'_p m_p}, \ q_{p,n} = \kappa'_{p,n} m_{p,n} / \sqrt{m_e \kappa'_p m_p}$ $\kappa'_p = 0.018(5), \ \kappa'_n = 0.016(5) \leftarrow \text{couples only to up-quark}$ + dominant ϕ decay to invisible states (see later) ²⁶

New Physics Bounds

New Physics Bounds

$\propto m_{\phi}^0$ thanks to **Deuterium** data

stronger sensitivity from internuclear forces in **molecules** in models where $q_N/q_e \sim m_N/m_e \sim 10^3$

stronger sensitivity from **muonic** atoms in models where $q_{\mu}/q_e \sim m_{\mu}/m_e \sim 200$

Non-zero Higgs Portal?

Best-fit point $\begin{vmatrix} \sin \theta \simeq 0.35 \\ m_{\phi} \simeq 400 \text{ keV} \end{vmatrix}$ is largely **excluded** by $K^+ \to \pi^+ X_{inv}$ searches

Non-zero Higgs Portal?

Best-fit point $\begin{vmatrix} \sin\theta \simeq 0.35 \\ m_{\phi} \simeq 400 \, \mathrm{keV} \end{vmatrix}$

is largely **excluded** by $K^+ \rightarrow \pi^+ X_{inv}$ searches

The **NA62** bound is driven by coupling to heavy quarks through one-loop penguins

The E137 beam-dump bound relies on scalars dominantly decaying to $\phi \rightarrow e^+e^-$

Evidence for ULD scalar

Best-fit point $egin{array}{c} lpha_{\phi} \simeq 6.7 imes 10^{-11} \ m_{\phi} \simeq 300 \, {\rm keV} \end{array}$

<u>evades</u> the **NA62** bound by coupling only to up quarks

The E137 bound does not apply assuming invisible decay dominantes ($\phi \rightarrow \text{DMDM}$?)

In that case NA64 is relevant $e^- Z \rightarrow e^- Z \phi$ And reevet al. [2021] yielding a weaker bound but NP sensitivity not clear below MeV

Impact on fundamental constants

Fondamental Contants undergo **huge shifts** in the presence of NP

Impact on fundamental constants

Fondamental Contants undergo **huge shifts** in the presence of NP

and their uncertainty *significantly* inflates relative to the SM-only hypothesis 33

Conclusions

Conclusions

Physicists (almost) exclusively searched for BSM at TeV energies and above, thinking physics at lower energies is very well understood.

Light & weakly-coupled New Physics is well motivated theoretically. Atomic spectroscopy can be repurposed to search for it.

Such low-energy probes complement the efforts (to be) invested at colliders

 \rightarrow « multi-messenger » program for HEP searches

PHYSTEV 2025 workshop in Les Houches

June $25 \rightarrow July 4$

backups

The Light Vector Case

— inverse Bohr radius

Vectors with $m_{\phi} \ll \alpha m_e \simeq 4 \, \mathrm{keV}$ induce a long-range force

Then, effects are suppressed for couplings aligned with QED ($q_i \simeq Q_i$) because:

$$\mathcal{L}_{\text{QED}}(\alpha) + \mathcal{L}_{A'_{\mu}}(\alpha', m_{A'} \to 0) \to \mathcal{L}_{\text{QED}}(\alpha + \alpha')$$

massless dark photon is **unobservable**!

This behavior is only manifest for $\mathcal{O}_{NP}(\alpha')$ and $\mathcal{O}_{SM}(\alpha)$ calculated at the <u>same</u> order in couplings. Otherwise:

$$\mathcal{O} \to \mathcal{O}_{\mathrm{SM}}^{\mathrm{LO}}(\alpha + \alpha') + \mathcal{O}_{\mathrm{SM}}^{\mathrm{NLO}}(\alpha)$$

would fictitiously distinguish photon from darkphoton

The Light Vector Case

inverse Bohr radius

Vectors with $m_{\phi} \ll \alpha m_e \simeq 4 \,\text{keV}$ induce a long-range force Then, effects are suppressed for couplings aligned with QED ($q_i \simeq Q_i$)

Instead, we use a simple *prescription*:

$$\begin{split} V_{\rm NP}^{ij} &= \alpha_{\phi} \frac{Q_i Q_j}{r} + \tilde{V}_{\rm NP}^{ij} & \text{ with } \tilde{V}_{\rm NP}^{ij} \equiv \alpha_{\phi} (q_i q_j e^{-m_{\phi}r} - Q_i Q_j)/r \\ \text{included to all orders} & & \\ \text{by shifting } \alpha \to \alpha + \alpha_{\phi} & \text{ deviations from either } m_{\phi} \neq 0 \text{ or } q_i \neq Q_i \\ \text{in } \mathcal{O}_{\rm SM} & \text{ deviations at LO} \end{split}$$

The Light Vector Case

inverse Bohr radius

Vectors with $m_{\phi} \ll \alpha m_e \simeq 4 \,\text{keV}$ induce a long-range force Then, effects are suppressed for couplings aligned with QED ($q_i \simeq Q_i$)

Instead, we use a simple *prescription*:

Hence:
$$\mathcal{O} = \mathcal{O}_{SM}(\alpha + \alpha_{\phi}) + \tilde{\mathcal{O}}_{NP}(\alpha + \alpha_{\phi}, \alpha_{\phi}, m_{\phi}) + \delta \mathcal{O}_{th}$$

 $\sum \propto m_{\phi}^2 \text{ or } \delta q_i Q_j + Q_i \delta q_j$

40