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Motivation
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Ultralight dark matter

Kim, Mitridate, 23’ 
Kim, Perez, 22’

Ø  Ultralight DM:  10!""	eV < 	𝑚	 < 	eV

Future atomic-/astro-physics experiments:  𝑚 < 10!#$eV  

wave-like, oscillatory

Quantum Sensor Pulsar Timing Arrays

See also talks by Konstantin and Wolfram 3



Axion from misalignment mechanism

Ø Axion: well-motivated ultralight DM (protected by shift symmetry)

V (η) = Λ4

η
[1− cos (η/fη)] ⇒ mη = Λ2

η
/fηη̈ + 3H η̇ +m2

η
η = 0
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Axion from misalignment mechanism

Ø Axion: well-motivated ultralight DM (protected by shift symmetry)

Ø Misalignment mechanism: axion starts to oscillate when 𝐻 ∼ 𝑚%, and behaves 
as matter after then, 𝜌% ∼ 𝑎!&

V (η) = Λ4

η
[1− cos (η/fη)] ⇒ mη = Λ2

η
/fηη̈ + 3H η̇ +m2

η
η = 0

(

Ωηh
2

0.12

)

QCD axion, mis.

∼

(

10−6 eV

mη

)3/2

(

Ωηh
2

0.12

)

ALP, mis.

∼

( mη

10−10 eV

)1/2
(

fη

1014 GeV

)2

misalignment angle (no fine-tuning)

θi = η/fη ∼ O(1)
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Axion from misalignment mechanism

Ø Axion: well-motivated ultralight DM (protected by shift symmetry)

Ø Misalignment mechanism: axion starts to oscillate when 𝐻 ∼ 𝑚%, and behaves 
as matter after then, 𝜌% ∼ 𝑎!&

Ø For QCD axion DM:  𝑚% ∼ 10!'	eV

    For ALP DM: 𝑓% 	> 10#(GeV  if  𝑚% < 10!#$	eV

    

V (η) = Λ4

η
[1− cos (η/fη)] ⇒ mη = Λ2

η
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0.12

)

ALP, mis.

∼

( mη

10−10 eV

)1/2
(

fη

1014 GeV

)2
θi = η/fη ∼ O(1)

misalignment angle (no fine-tuning)
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Axion from misalignment mechanism

Ø Axion: well-motivated ultralight DM (protected by shift symmetry)

Ø Misalignment mechanism: axion starts to oscillate when 𝐻 ∼ 𝑚%, and behaves 
as matter after then, 𝜌% ∼ 𝑎!&

Ø For QCD axion DM:  𝑚% ∼ 10!'	eV

    For ALP DM: 𝑓% 	> 10#(GeV  if  𝑚% < 10!#$	eV

    

V (η) = Λ4

η
[1− cos (η/fη)] ⇒ mη = Λ2

η
/fηη̈ + 3H η̇ +m2

η
η = 0

(

Ωηh
2

0.12

)

QCD axion, mis.

∼

(

10−6 eV

mη

)3/2

(

Ωηh
2

0.12

)

ALP, mis.

∼

( mη

10−10 eV

)1/2
(

fη

1014 GeV

)2
θi = η/fη ∼ O(1)

How to reduce 𝑓! for better 
experimental sensitivity?

misalignment angle (no fine-tuning)

We want to look for some 
new mechanism 

to produce ULDM
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Particle production from inflationary 
quantum fluctuations

Ø Particle production in expanding universe: Parker, 68’
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Particle production from inflationary 
quantum fluctuations

Ø Particle production in expanding universe: Parker, 68’

CFT must be broken:
1) mass term (suppressed for light particles)
2) coupling to gravity (significant during inflation)
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Particle production from inflationary 
quantum fluctuations

Ø Typical scale of inflationary quantum fluctuation:
TGH = Hinf/2π

Hinf ! 1014 GeV

Gibbons, Hawking, 77’

(constrained by tensor-to-scalar ratio)

Ø Particle production in expanding universe: Parker, 68’

CFT must be broken:
1) mass term (suppressed for light particles)
2) coupling to gravity (significant during inflation)

scalar curvature in 
de Sitter space

R = 12H
2

inf
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Particle production from inflationary 
quantum fluctuations

Ø Typical scale of inflationary quantum fluctuation:
TGH = Hinf/2π

Hinf ! 1014 GeV

Gibbons, Hawking, 77’

(constrained by tensor-to-scalar ratio)

Ø Axion production from inflationary fluctuations

Ωηh
2

0.12
∼

(

mη

10−5 eV

)1/2
(

Hinf

1014 GeV

)2

Turner, Widrow, 87’

Ø Particle production in expanding universe: Parker, 68’

CFT must be broken:
1) mass term (suppressed for light particles)
2) coupling to gravity (significant during inflation)

scalar curvature in 
de Sitter space

R = 12H
2

inf

Purely inflationary quantum fluctuation is not 
enough to produce axions lighter than 10!"eV  11



Particle production from inflationary 
quantum fluctuations

Ø Typical scale of inflationary quantum fluctuation:
TGH = Hinf/2π

Hinf ! 1014 GeV

Gibbons, Hawking, 77’

(constrained by tensor-to-scalar ratio)

Ø Axion production from inflationary fluctuations

Ωηh
2

0.12
∼

(

mη

10−5 eV

)1/2
(

Hinf

1014 GeV

)2

Turner, Widrow, 87’

Ø Particle production in expanding universe: Parker, 68’

CFT must be broken:
1) mass term (suppressed for light particles)
2) coupling to gravity (significant during inflation)

scalar curvature in 
de Sitter space

R = 12H
2

inf

Difficulties to have lighter DM:
1) mass suppression to relic abundance
2) kinematic suppression, 𝑝# ∼ 𝐻$%& ≫ 𝑚'

       DM is ultra-relativistic by the end of inflation
Purely inflationary quantum fluctuation is not 
enough to produce axions lighter than 10!"eV  12



Particle production from inflationary 
quantum fluctuations

Ø Typical scale of inflationary quantum fluctuation:
TGH = Hinf/2π

Hinf ! 1014 GeV

Gibbons, Hawking, 77’

(constrained by tensor-to-scalar ratio)

Ø Axion production from inflationary fluctuations

Ωηh
2

0.12
∼

(

mη

10−5 eV

)1/2
(

Hinf

1014 GeV

)2

Turner, Widrow, 87’

Ø Particle production in expanding universe: Parker, 68’

CFT must be broken:
1) mass term (suppressed for light particles)
2) coupling to gravity (significant during inflation)

scalar curvature in 
de Sitter space

R = 12H
2

inf

Difficulties to have lighter DM:
1) mass suppression to relic abundance
2) kinematic suppression, 𝑝# ∼ 𝐻$%& ≫ 𝑚'

       DM is ultra-relativistic by the end of inflation
Purely inflationary quantum fluctuation is not 
enough to produce axions lighter than 10!"eV  

Key of our mechanism: 
change the kinematics of 

axion by the end of 
inflation!
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Framework 
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Framework

S =

∫

d4x
√
−g

[

M2

Pl

2
R−

1

2
gµν∂µφ∂νφ− V (φ)−

1

2
K2(φ)gµν∂µη∂νη

]

• We assume the PQ symmetry has broken during inflation, fη > Hinf/2π.
Axion is effectively massless during inflation if mη/K < Hinf

φ: inflaton

η: axion

K(φ) dynamically reduces to unit after inflation
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Framework

S =

∫

d4x
√
−g

[

M2

Pl

2
R−

1

2
gµν∂µφ∂νφ− V (φ)−

1

2
K2(φ)gµν∂µη∂νη

]

• We assume the PQ symmetry has broken during inflation, fη > Hinf/2π.
Axion is effectively massless during inflation if mη/K < Hinf

φ: inflaton

η: axion

crucial for CFT breaking and axion production
K(φ) dynamically reduces to unit after inflation
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Framework

S =

∫

d4x
√
−g

[

M2

Pl

2
R−

1

2
gµν∂µφ∂νφ− V (φ)−

1

2
K2(φ)gµν∂µη∂νη

]

• We assume the PQ symmetry has broken during inflation, fη > Hinf/2π.
Axion is effectively massless during inflation if mη/K < Hinf

• Flat FLRW metric

ds2 = −dt2 + a
2(t)δijdx

idxj = a
2(τ)

(

−dτ2 + δijdx
idxj

)

conformal time: dτ ≡ dt/a

de Sitter background: a = −1/(Hτ)

φ: inflaton

η: axion

K(φ) dynamically reduces to unit after inflation

crucial for CFT breaking and axion production
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Framework

S =

∫

d4x
√
−g

[

M2

Pl

2
R−

1

2
gµν∂µφ∂νφ− V (φ)−

1

2
K2(φ)gµν∂µη∂νη

]

• We assume the PQ symmetry has broken during inflation, fη > Hinf/2π.
Axion is effectively massless during inflation if mη/K < Hinf

• Flat FLRW metric

ds2 = −dt2 + a
2(t)δijdx

idxj = a
2(τ)

(

−dτ2 + δijdx
idxj

)

conformal time: dτ ≡ dt/a

de Sitter background: a = −1/(Hτ)

φ: inflaton

η: axion

K(φ) dynamically reduces to unit after inflation

• EOM of axion:

f ′′
−∇

2f −

(

a′′

a
+

K ′′

K
+ 2

a′

a

K ′

K

)

f = 0

f ≡ aKη

f ′
≡ df/dτ

f (τ,k) =

∫

d3k

(2π)
3

[

fk(τ)âke
ik·x + f∗

k
(τ)â†

k
e−ik·x

] Mode functions 𝒇𝒌	depend on time, 
so particles can be produced

crucial for CFT breaking and axion production
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Effective curvature

• Parametrization:

slow-roll approximation: ϵV ≡ M2

Pl
(Vφ/V )

2
/2 ≪ 1

Kφ ≡ ∂K/∂φ

Vφ ≡ ∂V/∂φ

κ ≡ τ
2
K

′′

K
− 2τ

K
′

K

κ ≈ M
2

Pl

(

2ϵV
Kφφ

K
− 3

Kφ

K

Vφ

V

)
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Effective curvature

• Parametrization:

slow-roll approximation: ϵV ≡ M2

Pl
(Vφ/V )

2
/2 ≪ 1

Kφ ≡ ∂K/∂φ

Vφ ≡ ∂V/∂φ

κ ≡ τ
2
K

′′

K
− 2τ

K
′

K

κ ≈ M
2

Pl

(

2ϵV
Kφφ

K
− 3

Kφ

K

Vφ

V

)

• Geometric meaning of κ:
scalar curvature in dS space

R = 12H
2

inf
f ′′

−∇
2f −

1

6
a2

(

R+ 6κH2

inf

)

f = 0

Scalar curvature is responsible for light particle production in dS space (negative mass term)
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Effective curvature

• Parametrization:

slow-roll approximation: ϵV ≡ M2

Pl
(Vφ/V )

2
/2 ≪ 1

Kφ ≡ ∂K/∂φ

Vφ ≡ ∂V/∂φ

κ ≡ τ
2
K

′′

K
− 2τ

K
′

K

κ ≈ M
2

Pl

(

2ϵV
Kφφ

K
− 3

Kφ

K

Vφ

V

)

• Geometric meaning of κ:
scalar curvature in dS space

R = 12H
2

inf

R → R+ 6κH
2

inf

Positive 𝜅 effectively increases the scalar curvature and helps particle production
We call 𝜅 effective curvature

f ′′
−∇

2f −
1

6
a2

(

R+ 6κH2

inf

)

f = 0

Scalar curvature is responsible for light particle production in dS space (negative mass term)
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Effective curvature

• Parametrization:

slow-roll approximation:

• κ also serves as an order parameter to break the scale-invariant axion

spectrum

ϵV ≡ M2

Pl
(Vφ/V )

2
/2 ≪ 1

Kφ ≡ ∂K/∂φ

Vφ ≡ ∂V/∂φ

κ ≡ τ
2
K

′′

K
− 2τ

K
′

K

κ ≈ M
2

Pl

(

2ϵV
Kφφ

K
− 3

Kφ

K

Vφ

V

)

• Geometric meaning of κ:
scalar curvature in dS space

R = 12H
2

inf

R → R+ 6κH
2

inf

Positive 𝜅 effectively increases the scalar curvature and helps particle production
We call 𝜅 effective curvature

f ′′
−∇

2f −
1

6
a2

(

R+ 6κH2

inf

)

f = 0

Scalar curvature is responsible for light particle production in dS space (negative mass term)

𝜅 drives a phase transition from CFT conserving phase to broken phase 
22



Axion power spectrum

• Two-point correlation function:

⟨f
k
f∗

k
⟩ =

∫
d3k

(2π)
3
|fk|

2
=

∫
d log k

k3

2π2
|fk|

2

• Power spectrum: Pk ≡
1

a2
k3

2π3
|fk|

2

fk(τ) =

√

π

2

√

−τH(1)
ν

(−kτ)

ν ≡

√

9/4 + κ

23



Axion power spectrum

• Two-point correlation function:

⟨f
k
f∗

k
⟩ =

∫
d3k

(2π)
3
|fk|

2
=

∫
d log k

k3

2π2
|fk|

2

• Power spectrum: Pk ≡
1

a2
k3

2π3
|fk|

2

fk(τ) =

√

π

2

√

−τH(1)
ν

(−kτ)

So the power spectrum for superhorizon modes becomes:

ν ≡

√

9/4 + κ

For superhorizon modes (x ≪ 1): |fk|
2
≈

22ν

4πk
Γ2(ν)x1−2ν x ≡ k/(aHinf)

Pk =
22ν

2π
Γ2(ν)

(

Hinf

2π

)2 (

1

x

)2ν−3

≈

(

Hinf

2π

)2 (

1

x

)2κ/3
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Axion power spectrum

• Two-point correlation function:

⟨f
k
f∗

k
⟩ =

∫
d3k

(2π)
3
|fk|

2
=

∫
d log k

k3

2π2
|fk|

2

• Power spectrum: Pk ≡
1

a2
k3

2π3
|fk|

2

fk(τ) =

√

π

2

√

−τH(1)
ν

(−kτ)

So the power spectrum for superhorizon modes becomes:

ν ≡

√

9/4 + κ

For superhorizon modes (x ≪ 1): |fk|
2
≈

22ν

4πk
Γ2(ν)x1−2ν x ≡ k/(aHinf)

Pk =
22ν

2π
Γ2(ν)

(

Hinf

2π

)2 (

1

x

)2ν−3

≈

(

Hinf

2π

)2 (

1

x

)2κ/3

𝜅 = 0: critical point (scale invariant)

𝜅 > 0: red tilt (exponential enhancement)

𝜅 < 0: blue tilt (no enhancement)

Quantum Phase Transition (QPT) 
modulated by 𝜿
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Axion power spectrum

Pk =
22ν

2π
Γ2(ν)

(

Hinf

2π

)2 (

1

x

)2ν−3

≈

(

Hinf

2π

)2 (

1

x

)2κ/3

comoving horizon exponentially shrinks during inflation

comoving length

scale factor

k
�1

ai ae

ex
it
ho
ri
zo
n

mode growing

horizon
(a
H
inf ) �

1

(am⌘)
�1

no
nr
el
at
iv
is
ti
c

aNR(k)

H = m⌘

aosc

os
ci
lla
ti
on

ho
riz
on

aexit(k)

k
�1
min

⇒ power spectrum exponentially grows if κ > 0

x ≡ k/(aHinf)

∝

(

aHinf

k

)2κ/3

kmin ∝ aiHinf

minimal mode receives 
largest enhancement

Pkmin
∝ e

2κN/3
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Axion power spectrum

Pk =
22ν

2π
Γ2(ν)

(

Hinf

2π

)2 (
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comoving horizon exponentially shrinks during inflation

comoving length
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mode growing

horizon
(a
H
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1

(am⌘)
�1

no
nr
el
at
iv
is
ti
c

aNR(k)

H = m⌘

aosc

os
ci
lla
ti
on

ho
riz
on

aexit(k)

k
�1
min

⇒ power spectrum exponentially grows if κ > 0

x ≡ k/(aHinf)

∝

(

aHinf

k

)2κ/3

kmin ∝ aiHinf

minimal mode receives 
largest enhancement

Pkmin
∝ e

2κN/3This kind of exponential 
enhancement is heavily constrained 
by cosmology (e.g., isocurvature): 

𝜅 < O(1)
So, it cannot be the whole story
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Axion energy density

• Energy density from inflationary fluctuations:

⟨ρη(τ)⟩ =
1

2a4

(

∫

d3k

(2π)
3

∣

∣

∣

∣

f ′

k +
1 + κ/3

τ
fk

∣

∣

∣

∣

2

+ k2 |fk|
2

)
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Axion energy density

• Energy density from inflationary fluctuations:

If 𝜿 = 𝟎, first term vanishes for superhorizon modes (due to CFT)

second term is suppressed 
after exiting the horizon⟨ρη(τ)⟩ =

1

2a4

(

∫

d3k

(2π)
3

∣

∣

∣

∣

f ′

k +
1 + κ/3

τ
fk

∣

∣

∣

∣

2

+ k2 |fk|
2

)

But we want superhorizon modes (small 𝒌) to dominate the energy
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Axion energy density

• Energy density from inflationary fluctuations:

If 𝜿 = 𝟎, first term vanishes for superhorizon modes (due to CFT)

second term is suppressed 
after exiting the horizon⟨ρη(τ)⟩ =

1

2a4

(

∫

d3k

(2π)
3

∣

∣

∣

∣

f ′

k +
1 + κ/3

τ
fk

∣

∣

∣

∣

2

+ k2 |fk|
2

)

∣

∣

∣

∣

f ′

k
+

1 + κ/3

τ
fk

∣

∣

∣

∣

2

≈ a2H2

inf

(

3

2
+

κ

3
− ν

)2

|fk|
2 κ≪1

≈
κ4

729
a2H2

inf
|fk|

2

ν ≡

√

9/4 + κ

But we want superhorizon modes (small 𝒌) to dominate the energy

• However, if we have a nonzero κ:
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Axion energy density

• Energy density from inflationary fluctuations:

If 𝜿 = 𝟎, first term vanishes for superhorizon modes (due to CFT)

second term is suppressed 
after exiting the horizon⟨ρη(τ)⟩ =

1

2a4

(

∫

d3k

(2π)
3

∣

∣

∣

∣

f ′

k +
1 + κ/3

τ
fk

∣

∣

∣

∣

2

+ k2 |fk|
2

)

But we want superhorizon modes (small 𝒌) to dominate the energy

𝜿 ≠ 𝟎 gives the non-vanishing leading term for superhorizon modes!

⟨ρη(τ)⟩ ≈
H4

inf

16π3

∫ O(1)

−kminτ

dx

x

{

22(ν−1)Γ2 (ν − 1)x7−2ν + 22ν

[

(

κ

3
+

3

2
− ν

)2

+ x2

]

Γ2 (ν)x3−2ν

+22ν
(

κ

3
+

3

2
− ν

)

Γ (ν − 1)Γ (ν)x5−2ν

}

• However, if we have a nonzero κ:

∣

∣

∣

∣

f ′

k
+

1 + κ/3

τ
fk

∣

∣

∣

∣

2

≈ a2H2

inf

(

3

2
+

κ

3
− ν

)2

|fk|
2 κ≪1

≈
κ4

729
a2H2

inf
|fk|

2

ν ≡

√

9/4 + κ
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Axion energy density
• For κ > 0, axion energy is dominated by superhorizon modes:

⟨ρη(τ)⟩ ≈
H4

inf

16π3
22ν

(

κ

3
+

3

2
− ν

)2

Γ2(ν)

∫ O(1)

−kminτ

dxx2−2ν
minimal mode is set 
by the initial horizon:

kmin ∼ aiHinf
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Axion energy density

• Axion energy density at the end of inflation (dominated by kmin):

⟨ρη (τe)⟩ =
H4

inf

16π3

22ν (κ/3 + 3/2− ν)
2
Γ2(ν)

2ν − 3

(

1

κ

)ν−3/2

eN(2ν−3) ≈
H4

inf

3888π2
κ3 e2κN/3

• For κ > 0, axion energy is dominated by superhorizon modes:

⟨ρη(τ)⟩ ≈
H4

inf

16π3
22ν

(

κ

3
+

3

2
− ν

)2

Γ2(ν)

∫ O(1)

−kminτ

dxx2−2ν
minimal mode is set 
by the initial horizon:

kmin ∼ aiHinf
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Axion energy density

• Axion energy density at the end of inflation (dominated by kmin):

⟨ρη (τe)⟩ =
H4

inf

16π3

22ν (κ/3 + 3/2− ν)
2
Γ2(ν)

2ν − 3

(

1

κ

)ν−3/2

eN(2ν−3) ≈
H4

inf

3888π2
κ3 e2κN/3

• For κ > 0, axion energy is dominated by superhorizon modes:

⟨ρη(τ)⟩ ≈
H4

inf

16π3
22ν

(

κ

3
+

3

2
− ν

)2

Γ2(ν)

∫ O(1)

−kminτ

dxx2−2ν
minimal mode is set 
by the initial horizon:

kmin ∼ aiHinf

There are two kinds of enhancements:

1) Fluctuation enhancement ∼ 𝒆𝟐𝜿𝑵/𝟑	 from mode expansion during inflation

2) Kinematic enhancement ∼ 𝜿𝟑	𝒆𝑵 due to less redshift received from minimal mode after inflation

pe = kmin/ae ∼ e−NHinf
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Axion energy density

• Axion energy density at the end of inflation (dominated by kmin):

⟨ρη (τe)⟩ =
H4

inf

16π3

22ν (κ/3 + 3/2− ν)
2
Γ2(ν)

2ν − 3

(

1

κ

)ν−3/2

eN(2ν−3) ≈
H4

inf

3888π2
κ3 e2κN/3

• For κ > 0, axion energy is dominated by superhorizon modes:

⟨ρη(τ)⟩ ≈
H4

inf

16π3
22ν

(

κ

3
+

3

2
− ν

)2

Γ2(ν)

∫ O(1)

−kminτ

dxx2−2ν
minimal mode is set 
by the initial horizon:

kmin ∼ aiHinf

There are two kinds of enhancements:

1) Fluctuation enhancement ∼ 𝒆𝟐𝜿𝑵/𝟑	 from mode expansion during inflation

2) Kinematic enhancement ∼ 𝜿𝟑	𝒆𝑵 due to less redshift received from minimal mode after inflation

heavily constrained by backreaction, 
isocurvature, and domain walls, 𝜅 < O(1)

pe = kmin/ae ∼ e−NHinf
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Axion energy density

• Axion energy density at the end of inflation (dominated by kmin):

⟨ρη (τe)⟩ =
H4

inf

16π3

22ν (κ/3 + 3/2− ν)
2
Γ2(ν)

2ν − 3

(

1

κ

)ν−3/2

eN(2ν−3) ≈
H4

inf

3888π2
κ3 e2κN/3

• For κ > 0, axion energy is dominated by superhorizon modes:

⟨ρη(τ)⟩ ≈
H4

inf

16π3
22ν

(

κ

3
+

3

2
− ν

)2

Γ2(ν)

∫ O(1)

−kminτ

dxx2−2ν
minimal mode is set 
by the initial horizon:

kmin ∼ aiHinf

There are two kinds of enhancements:

1) Fluctuation enhancement ∼ 𝒆𝟐𝜿𝑵/𝟑	 from mode expansion during inflation

2) Kinematic enhancement ∼ 𝜿𝟑	𝒆𝑵 due to less redshift received from minimal mode after inflation

main contribution to relic abundance to compensate 
the suppression from small mass

heavily constrained by backreaction, 
isocurvature, and domain walls, 𝜅 < O(1)

pe = kmin/ae ∼ e−NHinf
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Relic abundance

• Axion momentum by the end of inflation: pe = kmin/ae ∼ e−NHinf

Compared with the usual case, the axion momentum is suppressed by 𝒆!𝑵, so it 
will become nonrelativistic earlier and the energy density is redshifted less
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Relic abundance

• Axion momentum by the end of inflation: pe = kmin/ae ∼ e−NHinf

Compared with the usual case, the axion momentum is suppressed by 𝒆!𝑵, so it 
will become nonrelativistic earlier and the energy density is redshifted less

⟨ρη(τ0)⟩ = ⟨ρη(τe)⟩

(

ae

aNR

)4 (

aNR

a0

)3

∼ ⟨ρη(τe)⟩

(

T0

Treh

)3
mη

Hinf

eN

• Present-day energy density:
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Relic abundance

• Axion momentum by the end of inflation: pe = kmin/ae ∼ e−NHinf

Compared with the usual case, the axion momentum is suppressed by 𝒆!𝑵, so it 
will become nonrelativistic earlier and the energy density is redshifted less

⟨ρη(τ0)⟩ = ⟨ρη(τe)⟩

(

ae

aNR

)4 (

aNR

a0

)3

∼ ⟨ρη(τe)⟩

(

T0

Treh

)3
mη

Hinf

eN

• Present-day energy density:
kinematic enhancement 
due to less redshift
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Relic abundance

• Axion momentum by the end of inflation: pe = kmin/ae ∼ e−NHinf

Compared with the usual case, the axion momentum is suppressed by 𝒆!𝑵, so it 
will become nonrelativistic earlier and the energy density is redshifted less

⟨ρη(τ0)⟩ = ⟨ρη(τe)⟩

(

ae

aNR

)4 (

aNR

a0

)3

∼ ⟨ρη(τe)⟩

(

T0

Treh

)3
mη

Hinf

eN

• Present-day energy density:
kinematic enhancement 
due to less redshift

• Relic abundance:

F(κ) ≡
22ν (κ/3 + 3/2− ν)

2
Γ2(ν)

2ν − 3

(

1

κ

)ν−3/2

Ωη =
g∗0g

−1/4
∗reh

48π3

(

π2

90

)3/4
mηT

3
0H

3/2
inf

M
7/2
Pl H2

0

F(κ)
√
κ

eNeN(2ν−3)

ν ≡

√

9/4 + κ
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Relic abundance

• Axion momentum by the end of inflation: pe = kmin/ae ∼ e−NHinf

Compared with the usual case, the axion momentum is suppressed by 𝒆!𝑵, so it 
will become nonrelativistic earlier and the energy density is redshifted less

⟨ρη(τ0)⟩ = ⟨ρη(τe)⟩

(

ae

aNR

)4 (

aNR

a0

)3

∼ ⟨ρη(τe)⟩

(

T0

Treh

)3
mη

Hinf

eN

• Present-day energy density:
kinematic enhancement 
due to less redshift

• Relic abundance:

F(κ) ≡
22ν (κ/3 + 3/2− ν)

2
Γ2(ν)

2ν − 3

(

1

κ

)ν−3/2

Ωη =
g∗0g

−1/4
∗reh

48π3

(

π2

90

)3/4
mηT

3
0H

3/2
inf

M
7/2
Pl H2

0

F(κ)
√
κ

eNeN(2ν−3)

ν ≡

√

9/4 + κ

𝑒- comes from 
kinematic 

enhancement

𝑒-(/0!1) comes from 
enhancement to 

inflationary fluctuations
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Relic abundance

• Axion momentum by the end of inflation: pe = kmin/ae ∼ e−NHinf

Compared with the usual case, the axion momentum is suppressed by 𝒆!𝑵, so it 
will become nonrelativistic earlier and the energy density is redshifted less

⟨ρη(τ0)⟩ = ⟨ρη(τe)⟩

(

ae

aNR

)4 (

aNR

a0

)3

∼ ⟨ρη(τe)⟩

(

T0

Treh

)3
mη

Hinf

eN

• Present-day energy density:
kinematic enhancement 
due to less redshift

• Relic abundance:

F(κ) ≡
22ν (κ/3 + 3/2− ν)

2
Γ2(ν)

2ν − 3

(

1

κ

)ν−3/2

Ωη =
g∗0g

−1/4
∗reh

48π3

(

π2

90

)3/4
mηT

3
0H

3/2
inf

M
7/2
Pl H2

0

F(κ)
√
κ

eNeN(2ν−3)

Ωη

Ωcdm
= 2.7× 10−32 ×

F(κ)
√
κ

e
N
e
N(2ν−3) ×

(

mη

10−20 eV

)

(

Hinf

1013 GeV

)3/2

ν ≡

√

9/4 + κ
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Relic abundance

• Axion momentum by the end of inflation: pe = kmin/ae ∼ e−NHinf

Compared with the usual case, the axion momentum is suppressed by 𝒆!𝑵, so it 
will become nonrelativistic earlier and the energy density is redshifted less

⟨ρη(τ0)⟩ = ⟨ρη(τe)⟩

(

ae

aNR

)4 (

aNR

a0

)3

∼ ⟨ρη(τe)⟩

(

T0

Treh

)3
mη

Hinf

eN

• Present-day energy density:
kinematic enhancement 
due to less redshift

• Relic abundance:

F(κ) ≡
22ν (κ/3 + 3/2− ν)

2
Γ2(ν)

2ν − 3

(

1

κ

)ν−3/2

Ωη =
g∗0g

−1/4
∗reh

48π3

(

π2

90

)3/4
mηT

3
0H

3/2
inf

M
7/2
Pl H2

0

F(κ)
√
κ

eNeN(2ν−3)

Ωη

Ωcdm
= 2.7× 10−32 ×

F(κ)
√
κ

e
N
e
N(2ν−3) ×

(

mη

10−20 eV

)

(

Hinf

1013 GeV

)3/2

ν ≡

√

9/4 + κ

For example, for 𝑵 = 𝟔𝟎 e-folds, 𝜿 = 𝟎. 𝟓 
F(κ)
√
κ

e
N
e
N(2ν−3) = 0.6× 1032

well compensate the 
mass suppression!
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Results 
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Parameter space for effective curvature

Hinf = 2πMpl

√

AsrT/8

As = 2.1× 10
−9

rT < 0.036

⇒ Hinf < 4.8× 1013 GeV

backreaction

10-20 10-15 10-10 10-5 1
0.0

0.2

0.4

0.6

0.8

1.0

For N = 60 e-folds:

mη can reach 10
−24

eV

QCD axion is further

bounded below 10−2 eV

relaxed with larger e-folds

DM relic abundance does not depend on the breaking scale directly
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Axion-photon coupling

L ⊃
αEM

8πfη
ηFµν F̃

µν

Future haloscopes 
(red dashed line): 

DANCE, SRF,  DM-Radio, etc.

Future CMB, 21 cm telescopes
(gray dashed line): 

CMB-S4, SKA2

astrophysics

haloscopes

misalignment

naturalness

Q
C
D

ax
io

n

10-20 10-15 10-10 10-5 1
10-18

10-15

10-12

10-9

10-6
Photon coupling

Compared with misalignment prediction, our mechanism allows lower axion 
decay constant and therefore larger couplings to SM particles 

generic lower bound from 
Ly-𝜶 forest: 𝒎𝜼 > 𝟏𝟎$𝟐𝟏eV
(not included in figure) 
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Axion-gluon coupling
L ⊃

αs

8πfη
ηGa

µν
G̃µν

a

Future nuclear clock 
(red dashed line): 

Thorium-229

Future CMB, 21 cm telescopes
(gray dashed line): 

CMB-S4, SKA2

CASPEr (brown dashed line) 

ηGG̃ is heavily constrained by experiments for ALPs lighter than 10−10 eV

But this operator is not predicted in our mechanism and can simply be turned off

The generic axion-gluon coupling can be induced by gravity
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Gluon coupling
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Possible origin of kinetic coupling

A. EFT operators

• Exponential enhancement could be realized by some effective operator:

K(φ) = 1 +
C6

M2

Pl

φ2

Effective curvature: V (φ) = m2

φφ
2/2

Wilson coefficient plays the 
role of effective curvature

κ > 0 ⇔ C6 < 0

κ ≈ M
2

Pl

(

2ϵV
Kφφ

K
− 3

Kφ

K

Vφ

V

)

∣

∣C6φ
2
∣

∣ < M2

Pl

κ ≈ −4C6 (3− ϵV ) ≈ −12C6
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Possible origin of kinetic coupling

A. EFT operators

• Exponential enhancement could be realized by some effective operator:

K(φ) = 1 +
C6

M2

Pl

φ2

κ ≈ −4C6 (3− ϵV ) ≈ −12C6

V (φ) = m2

φφ
2/2

Wilson coefficient plays the 
role of effective curvature

κ > 0 ⇔ C6 < 0

• Resuming form also works:

K(φ) ∼ e−βφ/MPl Such coupling form can come from 
string-theory compactification

κ ≈ 3β
√
2ϵV κ > 0 ⇔ β > 0

∣

∣C6φ
2
∣

∣ < M2

Pl

Effective curvature: κ ≈ M
2

Pl

(

2ϵV
Kφφ

K
− 3

Kφ

K

Vφ

V

)
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Possible origin of kinetic coupling

B.  UV completion

• Noncanonical kinetic term can be realized in the supergravity framework

Ellis et al., 84’
Ellis et al., 13’

φ: inflaton T : modulus

Kinetic coupling is determined by Kähler potential, but one needs to check whether it gives positive 𝜅
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Possible origin of kinetic coupling

B.  UV completion

• Noncanonical kinetic term can be realized in the supergravity framework

Ellis et al., 84’
Ellis et al., 13’

φ: inflaton T : modulus

• Radial mode as inflaton Linde, 91’
Fairbairn, Hogan, Marsh, 14’

S =

∫

d
4x

√
−g

[

M2

Pl

2
R

(

1 + ξ
ρ2

M2

Pl

)

−
1

2
gµν∂µρ∂νρ−

1

2

ρ2

f2
η

gµν∂µη∂νη −
λ

4

(

ρ2 − f2

η

)2

]

|∂µχ|
2
=

1

2

[

(∂µρ)
2
+

ρ2

f2
η

(∂µη)
2

]

χ = ρ eiη/fη/
√

2

κ ≈− 4q4
[

3ξ2(6ξ + 1)2 +
(

24ξ2 + 8ξ + 3
)

q4 + 2ξ
(

24ξ2 + 22ξ + 3
)

q2
]

/
(

6ξ2 + ξ + q2
)3

q ≡ MPl/ρ

κ > 0 ⇒ ξ should satisfy −1/6 < ξ < 0

Kinetic coupling is determined by Kähler potential, but one needs to check whether it gives positive 𝜅
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Summary

Ø Inflationary quantum fluctuations + Quantum Phase Transition 
     ⇒ sufficient production of axion as ultralight DM

Ø This new mechanism predicts much larger couplings to SM particles and a 
wider range of allowed couplings than misalignment mechanism

Ø Much of the parameter space will be probed by near-future axion   
experiments

Ø It covers a large range of DM masses, from sub-eV down to fuzzy DM range

Ø It works for both QCD axion and ALPs. We expect it can also be applicable to 
other bosonic ultralight DM scenarios (e.g., dilaton, majoron, dark photon)
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Backup slides
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Backreaction constraint

φ̈+ 3Hinf φ̇+ Vφ +KKφg
µν∂µη∂νη = 0

|KKφ⟨g
µν∂µη∂νη⟩| ≪

∣

∣

∣

3Hinf φ̇
∣

∣

∣

⟨ρη⟩ ≪ 3M2

Pl
H2

inf

κF(κ) eN(2ν−3)
≪ 18π/As

As ≡ H2

inf
/
(

8π2ϵM2

Pl

)

= 2.1× 10
−9

F(κ) ≡
22ν (κ/3 + 3/2− ν)

2
Γ2(ν)

2ν − 3

(

1

κ

)ν−3/2

ν ≡

√

9/4 + κ

• EOM of inflaton:

• Axion should not affect inflaton dynamics (single-field inflation):

• Upper bound on the effective curvature κ:

N = 50 ⇒ κ < 0.79

N = 60 ⇒ κ < 0.67

N = 70 ⇒ κ < 0.58
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Relic abundance: ALP F(κ) ≡
22ν (κ/3 + 3/2− ν)

2
Γ2(ν)

2ν − 3

(

1

κ

)ν−3/2

• For lighter ALP with mη < pe: ⟨ρη(τ0)⟩ = ⟨ρη(τe)⟩ (ae/aNR)
4
(aNR/a0)

3

• For heavier ALP with mη > pe: ⟨ρη(τ0)⟩ = ⟨ρη(τe)⟩ (ae/a0)
3

Ωη =
g∗0g

−1/4
∗reh

48π3

(

π2

90

)3/4
T 3
0H

5/2
inf

M
7/2
Pl H2

0

F(κ) eN(2ν−3)

g∗0 = 2

g∗reh = 106.75

ν ≡

√

9/4 + κ

Ωη

Ωcdm
= 2.7× 10−34 ×

F(κ)
√
κ

e
N(2ν−2) ×

(

mη

10−22 eV

)

(

Hinf

1013 GeV

)3/2

Ωη

Ωcdm
= 2.6F(κ)eN(2ν−3)

(

Hinf

109 GeV

)5/2

Ωη =
g∗0g

−1/4
∗reh

48π3

(

π2

90

)3/4
mηT

3
0H

3/2
inf

M
7/2
Pl H2

0

F(κ)
√
κ

eNeN(2ν−3)
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Relic abundance: QCD axion

• Assuming Treh ≫ ΛQCD, axion is relativistic when produced, and becomes

nonrelativistic when pe < mη

• Relic abundance of QCD axion:

• Upper bound on QCD axion mass:

fηmη ≈ Λ
2
QCD

PQ symmetry broken during inflation: fη > Hinf/2π ⇒ mη < 2πΛ2
QCD/Hinf

For N = 60 e-folds, we have mη < 10−2 eV

It can be further relaxed with a larger number of e-folds

mη(T ) = βmη

(

ΛQCD

T

)γ β ∼ 10
−2

γ ≈ 4

Ωη

Ωcdm
= 10−3

F(κ)eN(2ν−3)

(

Hinf

1013 GeV

)2 (
TNR

102 GeV

)

TNR =

(

β
√
κ
eN

mη

Hinf

TrehΛ
4
QCD

)
1

5

∼ 100 GeV

( mη

10−6 eV

)
1

5

(

Hinf

1010 GeV

)

−

1

10

.
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Isocurvature bound

βiso ≡ Aiso/ (As +Aiso) ≈ Aiso/As

• The isocurvature (entropy) mode measures the deviation from the adia-
batic mode of single-field inflation, parametrized by:

As = scalar amplitude

Aiso = isocurvature perturbation

• For our mechanism, isocurvature perturbation is dominated by kmin
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〈

δη2(τ, k)
〉

=
k3

2π2

∫

d3x e−i⃗k·x⃗η (τ, x⃗) η (τ, 0)

〈

δη2(τ, k)
〉

=
22ν

2π
Γ2(ν)

(

Hinf

2π

)2 (

1

−kτ

)2ν−3

〈

δη2(τ∗, kmin)
〉

=
22ν

2π
Γ2(ν)

(

Hinf

2π

)2 (

k∗

kmin

)2ν−3

τ∗ = −1/k∗

Aiso (k∗, kmin) = 4
〈

δη2(τ∗, kmin)
〉

/η2

=
22ν

2π
Γ2(ν)

(

k∗
kmin

)2ν−3 (

Hinf

πfηθi

)2



Isocurvature bound

• It is more intuitive to rewrite the ratio k∗/kmin in terms of e-folds:
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N ≡ log

(

ae

ai

)

Aiso (k∗, kmin) =
22ν

2π
Γ2(ν)

(

1

κ

)ν−3/2

e(N−N∗)(2ν−3)

(

Hinf

πfηθi

)2

≡ G (κ, k∗)

(

Hinf

πfηθi

)2

βiso(k∗) = G (κ, k∗)
Ωη

Ωcdm

1

As

(

Hinf

πfηθi

)2

• Upper bounds on βiso from Planck

total number of e-folds

N∗ ≡ log

(

ae

a∗

)

number of e-folds between the time when 𝑘∗	exits 
the horizon until the end of inflation



Isocurvature bound
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k* = 0.1 Mpc-1

k* = 0.05 Mpc-1

k* = 0.002 Mpc-1
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G (κ, k∗) =
22ν

2π
Γ2(ν)

(

1

κ

)ν−3/2

e(N−N∗)(2ν−3)

(

Hinf

πfηθi

)2

• Compared with the usual pre-inflationary scenario, the isocurvature per-

turbation in our case is enhanced by G

Planck measurement gives

As long as the backreaction 
bound is satisfied, 𝜅 < 𝑂 1 , 

we have 𝐺 < 𝑂(10), so only 
a mild enhancement 



Isocurvature bound
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• Some numerical values of enhancement with different values of κ

N = 60

We can realize a large enhancement to the relic abundance 
with only O(1) enhancement to the isocurvature

N −N∗ = 6.1



Axion EOM and solution during inflation

• Axion EOM reduces to:

• Bunch-Davis initial condition:

lim
kτ→−∞

fk(τ) =
1

√

2k
e−ikτ

• Solution of axion field during inflation:

fk(τ) =

√

π

2

√

−τH(1)
ν

(−kτ)
ν ≡

√

9/4 + κ

f ′′

k
+

(

k2 −
2 + κ

τ2

)

fk = 0

small κ: ν ≈ 3/2 + κ/3
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Axion evolution after inflation
comoving length

scale factor

k
�1

ai ae

ex
it
ho
ri
zo
n

mode growing

horizon
(a
H
inf ) �

1

(am⌘)
�1

no
nr
el
at
iv
is
ti
c

aNR(k)

H = m⌘

aosc

os
ci
lla
ti
on

ho
riz
on

aexit(k)

k
�1
min

aNR(k) = k/mη

H(aosc) ∼ mη

a > aNR: axion becomes nonrelativistic

a > aosc: axion starts coherent oscillation

for the minimal mode:
kmin ∝ e

−N
Hinf

aNR(kmin) ≪ aosc

turn NR much earlier than oscillation

comoving Compton wavelength
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Classical & Quantum phase transition

Classical Phase Transition (CPT)

driven by thermal fluctuations 𝑘(𝑇

Quantum Phase Transition (QPT)
driven by quantum fluctuations ℏ𝜔 
(zero temperature)
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Analogy to condensed matter system
Ø In some condensed matter systems, scale invariance is restored when 

the parameter approaches the critical point

ξ ∼ (g − gc)
−α

Pk ∼ ⟨fkf
∗

k ⟩ ∼ (Hinf/2π)
2
(1/x)

2κ/3

Sachdev & Keimer, 1102.4628

Ø In our axion case, QPT is modulated by
     the effective curvature 𝜅 

⟨ρ(τe)⟩ ∝ H4

infκ
3e2κN/3

⟨φ(x)φ(0)⟩ ∼ e−|x|/ξ

as g → gc, ξ → ∞, ⟨φ(x)φ(0)⟩ ∼ 1/|x|d−2+γ

2nd order QPT happens, the theory becomes

scale invariant

correlation function

correlation length

1/x = aHinf/k κ → 0, Pk ∼ (Hinf/2π)
2, scale-invariant spectrum

κ > 0, exponential enhancement to axion abundance
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