

Recent ML developments in jet clustering and substructure techniques

Marco Letizia – Machine Learning Genoa Center and INFN

Intro and outline

- Meaningfull data representation.
- Physics-informed strategies.
- Robustness and efficiency.

- Optimal transport and jet physics.
- Foundation models in HEP.

Geometric description of event/jet shapes using optimal transport:

- Komiske, Metodiev, Thaler PRL 2019 <u>1902.02346</u>
- Komiske, Metodiev, Thaler, JHEP 2020 <u>2004.04159</u>
- Romao, Castro, Milhano, Pedro, Vale EPJC 2021 2004.09360
- Tianji Cai, Junyi Cheng, Katy Craig, Nathaniel Craig PRD 2020 2008.08604
- Park, Harris, Ostdiek, JHEP 2023 2208.05484
- Ba, Dogra, Gambhir, Tasissa, Thaler JHEP 2023 2302.12266
- ATLAS, JHEP 2023 2305.16930

(Kantorovich problem) Wasserstein distance between two measures μ and ν

$$\mathcal{W}_p = \inf_{\gamma \in \Gamma(\mu, \nu)} \left(\mathbb{E}_{(x, y) \sim \gamma} d(x, y)^p \right)^{1/p}$$

d(x, y) is the ground metric, $p \in [1, +\infty]$ and $\Gamma(\mu, \nu)$ set of all joint measures with marginals μ and ν .

Canonical way to lift a ground metric between points to a metric between measures.

If d(x, y) is a distance then \mathcal{W}_p is a distance

- symmetric,
- nonnegative,
- $\mathcal{W}_p(\alpha,\beta) = 0$ if and only if $\alpha = \beta$
- it satisfies the triangle inequality

Peyré, Cuturi, Computational Optimal Transport, Foundations and Trends in Machine Learning 1803.00567

Energy flow density

$$\mathcal{E}(x) = \sum_{i=1}^{M} E_i \,\delta(x - x_i)$$

Detector space

$$\mathcal{X} = [y_{\min}, y_{\max}] \times S^1$$

Event Shape	Description	Expression
Thrust [1, 7, 8]	How Pencil-Like?	$t(\mathcal{E}) = 2\min_{\hat{n}} \left(\sum_{i} E_i (1 - \hat{n}_i \cdot \hat{n}) \right)$
Spherocity [55]	How Tranverse-Planar?	$s(\mathcal{E}) = \min_{\hat{n}} \left(\sum_i E_i \hat{n}_i imes \hat{n} ight)^2$
Broadening [56]	How 2-Pronged?	$b(\mathcal{E}) = \min_{\hat{n}_1, \hat{n}_2} \left(\sum_i E_i \min(d_{i1}, d_{i2}) \right)$
N-jettiness [54, 57]	How N -particle like?	$\mathcal{T}_N^{(eta)}(\mathcal{E}) = \min_{\hat{n}_1,,\hat{n}_N} \left(\sum_i E_i \min(R^{eta}, d^{eta}_{i1},, d^{eta}_{iN}) ight)$
Isotropy [40]	How Uniform?	$\mathcal{I}^{(\beta)}(\mathcal{E}) = \min_{\mathcal{U} \in \mathcal{M}} \left(\mathrm{EMD}^{(\beta,R)}(\mathcal{E},\mathcal{U}) \right)$
XCONE [54]	Which N -particles?	$\hat{n}_i(\mathcal{E}) = \operatorname{argmin}_{\hat{n}_1, \dots, \hat{n}_N} \left(\sum_i E_i \min(R^\beta, d_{i1}^\beta, \dots, d_{iN}^\beta) \right)$
S. Recomb. [60–64]	Clustering History?	$d_{ij}^{N}(\mathcal{E}) = \min(E_{i}^{2p}, E_{j}^{2p}) \frac{\dot{d}_{ij}^{2}}{R^{2}}; \ d_{iR}^{N}(\mathcal{E}) = E_{i}^{2p}$

Jet Shape	Description	Expression
Angularities [9, 10]	Angular Moments?	$\lambda_{eta}(\mathcal{J}) = \sum_i E_i d_{iJ}^{eta}$
	Recoil Free?	$\lambda_eta(\mathcal{J}) = \min_{\hat{n}} \left(\sum_i E_i d_{in}^eta ight)$
N-subjettiness [68]	How N -Particle Like?	$\mathcal{T}_{N}^{(eta)}(\mathcal{J}) = \min_{\hat{n}_{1},,\hat{n}_{N}} \left(\sum_{i}^{\prime} E_{i} \min(d_{i1}^{eta},,d_{iN}^{eta}) ight)$
Int. Shape [65, 66]	Radial Energy CDF?	$\psi_{\mathcal{J}}(r/R) = \left(\sum_{i} E_i \Theta(r - d_{iJ})\right) / \left(\sum_{i} E_i \Theta(R - d_{iJ})\right)$

Event/jet shapes: $\mathcal{O}(p_1, \dots, p_M) = \min_{\theta \in \mathcal{M}} F\left(\sum_{i=1}^M E_i \phi_{\theta}(x_i)\right)$

IRC-safe weighted sum over the four-momenta of the particles in an event/jet

Shape info: \mathcal{M} , F, ϕ_{θ} .

Find $\mathcal{L}: \mathcal{O}_{\mathcal{M}}(\mathcal{E}) = \min_{\mathcal{E}_{\theta} \in \mathcal{M}} [\mathcal{L}(\mathcal{E}; \mathcal{E}_{\theta})]$ How close, in event space, is my event to looking like an optimal \mathcal{E}^* ?

Ba, Dogra, Gambhir, Tasissa, Thaler JHEP 2023 2302.12266;

- Infrared safety: For any atomic event \mathcal{E} , adding or removing an ϵ -soft emission to \mathcal{E} eaves \mathcal{O} unchanged as $\epsilon \to 0$.
- **Collinear safety:** For any atomic event \mathcal{E} , splitting any particle into two particles at the same location with the same total energy leaves \mathcal{O} unchanged. Moreover, translating either particle by an ϵ -small displacement leaves O unchanged as $\epsilon \to 0$.

Definition. An observable O is IRC safe if it is continuous with respect to the weak* topology on energy flows.

Must depend on d(x, y) and requiring a faithful lift:

$$\operatorname{EMD}^{(\beta,R)}(\mathcal{E},\mathcal{E}') = \min_{\pi \in \mathcal{M}(\mathcal{X} \times \mathcal{X})} \left[\frac{1}{\beta R^{\beta}} \langle \pi, d(x,y)^{\beta} \rangle \right] + |\Delta E_{\operatorname{tot}}|,$$
$$\pi(\mathcal{X},Y) \le \mathcal{E}'(Y), \pi(X,\mathcal{X}) \le \mathcal{E}(X), \pi(\mathcal{X},\mathcal{X}) = \min(E_{\operatorname{tot}}, E'_{\operatorname{tot}})$$

N-subjettiness: how N-particle like

$$\tau_N(\mathcal{J}) = \min_{N \text{ axes}} \sum_i E_i \min\{\theta_{1i}, \theta_{2i}, \dots, \theta_{Ni}\}$$

distance between the jet and the manifold of all N-particle jets

$$\to \tau_N(\mathcal{J}) = \min_{\mathcal{J}' \in \mathcal{P}_N} \text{EMD}\left(\mathcal{J}, \mathcal{J}'\right)$$

(jet angularity: distance from \mathcal{P}_1)

Novel shapes

SHAPER

4.0

3.5

3.0

2.5 rsity

a 2.0

1.5

1.0

0.5

0.0

Sce

Sigr

COMETA WG3 - Jet substructure

Unsupervised jet tagging Gaertner, Reiten 2312.06948

$$\mathcal{J}(\eta,\phi) = \sum_{k \in jet} \frac{p_{T_k}}{p_T^{jet}} \delta(\eta - \eta_k) \delta(\phi - \phi_k)$$

COMETA WG3 - Jet substructure

DBSCAN

Uni**Ge**

Density-based clustering.

 $B_{\epsilon}(\mathcal{J}_i) = \left\{ \mathcal{J}_i \in D | \text{EMD}_{ij} \le \epsilon \right\}$ $|B_{\epsilon}(\mathcal{J}_i)| \ge \mu$

Ricci flow on graphs

Unsuperv. clustering with Ricci curvature.

 $G = (V, E, \omega)$ fully connected

 \rightarrow reduce the edge set $G_K = (V, E_k, \omega)$

$$R^{(t)}(v_i v_j) = 1 - \frac{W_1(P_i^{(t)}, P_j^{(t)})}{d_G^{(t)}(v_i, v_j)},$$

$$\omega^{(t+1)}(v_i v_j) = (1 - R^{(t)}(v_i v_j)) \times d_G^{(t)}(v_i, v_j)$$

Architecture	Accuracy	Parameters	Learning
ResNeXt [49]	0.9360	1.46e6	Supervised
ParticleNET [50]	0.9380	4.98e5	Supervised
PFN [51]	0.9320	8.20e4	Supervised
LGN [52]	0.9290	4.50e4	Supervised
nPELICAN _{hidden=1} [53]	0.8951	11	Supervised
$\mathrm{DBSCAN}_{\mathrm{EMD}}$	0.9003	2	Unsupervised
$Ricci\text{-}Flow_{\mathrm{Curvature}}$	0.9113	2	Unsupervised
$Ricci-Flow_{UMAP}$	0.9104	2	Unsupervised

TABLE I: Comparison to a limited selection of top-taggers from the literature.

COMETA WG3 - Jet substructure

The use of pre-trained models is ubiquitus in NLP and CV. Learn good features: useful for a large family of downstream tasks.

- Vision Transformer Dosovitskiy et al, ICLR 2021 2010.11929
- GPT-4 OpenAl 2303.08774
- BERT Devlin, Chang, Lee, Toutanova EMNLP 2018 1810.04805

Large computational cost is shared among tasks
Scarce data

- Supervised training on large datasets with several classes (Imagenet: 20M images in 20k classes)
- No labels → self-supervision: training on pretext objectives with self-generated labels.

Examples in science:

Rives et al, *Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences,* PNAS 2021 Irwin et al, *Chemformer: a pre-trained transformer for computational chemistry, MLST (2022)* Lanusse et al, *Astroclip: Cross-modal pre-training for astronomical foundation models,* <u>2310.03024</u>

HEP:

L. Heinrich et al, Masked Particle Modeling on Sets, <u>2401.13537</u>
M. Vigl et al, Finetuning Foundation Models for Joint Analysis Optimization, <u>2401.13536</u>

P. Harris et al, Re-Simulation-based Self-Supervised Learning for Pre-Training Foundation Models 2403.07066

J. Birk et al, OmniJet- α : The first cross-task foundation model for particle physics, <u>2403.05618</u>

Uni**Ge | Mal Ga**

Harris et al, R3SL (self-supervision with contrastive learning)

Strategy: map a data point and its augmentation(s) to similar representations, while pushing different data points toward differing representations.

COMETA WG3 - Jet substructure

0.7

 134 ± 2

 114 ± 2

Uni**Ge**