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BSM effects manifest at TeV-scale mVV
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Performance of heavy-flavour jet identification in boosted topologies in CMS 13 TeV data
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➔ Tagging the heavy resonance X to bb̅/cc̅ decay is 
an important technique for Higgs and BSM 
resonance search 
❖ algorithms developed in CMS during Run 2:  
‣ ParticleNet-MD, DeepDoubleX, DeepAK8-MD, 

double-b 

❖ calibrating the algorithm from data is a necessary 
step for physics measurements

Boosted heavy-flavour jet tagging

➔ Boosted topologies are crucial in LHC physics 
program 
❖ highly Lorentz-boosted resonance  

   → decay products are collimated
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A simulated Z(νν̅)H(bb̅) events in CMS

H→bb̅

more Lorentz-boosted

TeV-scale mVV

“boosted” boson decays -> collimated decay products
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Sequential clustering algorithms with distance parameter R
1) kT

2) Cambridge-Aachen (CA)
3) anti-kT (AK)

Jet Algorithms in CMS 4

“Standard” jet algorithms for CMS
• Small-R jets: anti-kT R = 0.4 [AK4]
• Large-R jets: anti-kT R = 0.8 [AK8]
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the speed issue in Sect. 3.1, while the irregularity is visible
as the jagged boundaries of the jets in Fig. 7, p. 652 (related
issues will be discussed in Sect. 4.4).

Given the number of experimental objections that have
been raised in the past regarding the kt algorithm in a pp

environment, it is worth commenting briefly on the two
sets of hadron-collider measurements that have been car-
ried out with the kt algorithm. One, from D∅ [77, 78], had
to go to considerable lengths (introducing preclustering) to
get around the speed issue (D∅’s fine calorimeter meant
that it had many input towers) and found rather large non-
perturbative corrections from the underlying event (UE);
the latter issue perhaps discouraged further use of the kt

algorithm until CDF performed a similar measurement in
2005 [1, 79]. CDF did not suffer particularly from the speed
issue, largely because their coarser calorimeter segmenta-
tion ensured modest input multiplicities. Also, crucially,
they showed that D∅’s large UE corrections were probably a
consequence of taking the jet radius parameter R = 1. When
CDF instead took R = 0.7 (as is common for cone algo-
rithms), they found UE corrections that were commensurate
with those for cone algorithms.

It should also be added that the longitudinally invariant
kt algorithm was the main jet algorithm used at HERA, both
in photoproduction (e.g. [3, 80]), the first (published) ex-
perimental context in which it was used [81], and deep in-
elastic scattering (e.g. [82, 83]). Compared to Tevatron this
was probably facilitated by the lower particle multiplicities
in DIS and photoproduction and also by the quieter under-
lying event.

2.2.4 The Cambridge and Aachen algorithms

The Cambridge algorithm [30] is a sequential recombina-
tion algorithm for e+e− collisions that introduces two dis-
tance measures between pairs of particles. It has vij = 2(1−
cos θij ) (i.e. the squared angle) as well as the yij of (3). It
reads as follows

1. If only one particle is left, call it a jet and stop.
2. Otherwise find the pair of particles with smallest vij .
3. If the corresponding yij < ycut, replace i and j with the

recombined one and go to step 1.
4. Otherwise: take the less energetic of i and j , remove it

from the list of particles, call it a jet, and go to step 1.

The idea here was to combine the ycut jet resolution of the
kt algorithm with a clustering sequence dictated by angular
ordering, i.e. one that relates closely to the powerful concept
of angular ordering that arises when considering multiple
gluon emission [84–88].

Cambridge/Aachen The most widely discussed extension
(and simplification) of the Cambridge algorithm to hadron

colliders was actually originally given in the context of DIS
studies [31, 32] (another one [89] has seen less study). It is
like the inclusive kt algorithm in that it uses longitudinally
invariant variables, introduces an R parameter, and does
away with the yij cut on jets. It proceeds by recombining
the pair of particles with the smallest ∆Rij , and repeating
the procedure until all objects are separated by a ∆Rij > R.
The final objects are then the jets.11

This algorithm was originally named the Aachen algo-
rithm, though it is often now called the Cambridge/Aachen
(C/A) algorithm, reflecting its angular-ordered Cambridge
roots.

Like the kt algorithm, the C/A algorithm gives somewhat
irregular jets, and its original implementations took a time
that scales as N3. The latter problem is now solved (as for
the kt algorithm) and the fact that the C/A has a clustering
hierarchy in angle makes it possible to consistently view a
specific jet on many different angular scales, a feature whose
usefulness will become apparent in Sect. 5.3 and is also rel-
evant for a “filtering” method discussed below.

2.2.5 The anti-kt algorithm

One can generalise the kt and Cambridge/Aachen distance
measures to [37]

dij = min
(
p

2p
ti , p

2p
tj

)∆R2
ij

R2 , (10a)

diB = p
2p
ti , (10b)

where p is a parameter that is 1 for the kt algorithm, and 0
for C/A. It was observed in [37] that if one takes p = −1,
dubbed the “anti-kt” algorithm, then this favours cluster-
ings that involve hard particles rather than clusterings that
involve soft particles (kt algorithm) or energy-independent
clusterings (C/A). This ultimately means that the jets grow
outwards around hard “seeds”. However since the algorithm
still involves a combination of energy and angle in its dis-
tance measure, this is a collinear-safe growth (a collinear
branching automatically gets clustered right at the begin-
ning of the sequence).12 The result is an IRC safe algorithm
that gives circular hard jets, making it an attractive replace-
ment for certain cone-type algorithms (notably IC-PR algo-
rithms).

11Alternatively, one can formulate it like the inclusive kt algorithm, but
with dij = ∆R2

ij /R
2 and diB = 1.

12If one takes p → −∞ then energy is privileged at the expense of
angle and the algorithm then becomes collinear unsafe, and somewhat
like an IC-PR algorithm.
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Fig. 7 A sample parton-level event (generated with Herwig [112,
113]), together with many random soft “ghosts”, clustered with four
different jet algorithms, illustrating the “active” catchment areas of the

resulting hard jets (cf. Sect. 4.4). For kt and Cam/Aachen the detailed
shapes are in part determined by the specific set of ghosts used, and
change when the ghosts are modified

Figure 7 illustrates the jets that are produced with the four
“choice” IRC-safe algorithms in a simple, parton-level event
(generated with Herwig), showing among other things, the
degree of regularity (or not) of the boundaries of the result-
ing jets and their extents in the rapidity-azimuth place.

3 Computational geometry and jet finding

It takes the human eye and brain a fraction of a second to
identify the main regions of energy flow in a calorimetric
event such as Fig. 7. A good few seconds might be needed
to quantify that energy flow, and to come to a conclusion
as to how many jets it contains. Those are timescales that
usefully serve as a reference when considering the speed of
jet finders—if a jet finder takes a few seconds to classify an
event it will seem somewhat tedious, whereas a few millisec-
onds will seem fast. One can reach similar conclusions by

comparing to the time for a Monte Carlo event generator to
produce an event (from tens of milliseconds to a fraction of a
second), or for a fast detector simulation to process it. Or by
considering the number of CPU hours needed to process a
typical event sample, which might consist of O(107) events.

The time taken for jet finding by computer codes de-
pends strongly on the number of input particles (or tow-
ers, etc.), N . We do not yet know the exact average mul-
tiplicities of LHC events, but rough estimates are given in
Table 3. With the kt algorithm’s “standard” N3 timing, as-
suming about 109 computer operations per second, one ex-
pects a time for clustering a low-luminosity LHC event of
1 s (this is also what one finds in practice). So this is close to
being “tedious,” and becomes dissuasive for high-luminosity
LHC and heavy-ion collisions, or if one wishes to try out
many distinct jet definitions (e.g. several different R values
to see which is best). A more extreme example is the exact
seedless cone algorithm following the method in [21], which
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• AK or CA R=1.5 are 
sometimes used. Analysis 
specific.

• “Non-standard” jets used 
also (e.g Variable-R jets)
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2 The CMS Particle Flow algorithm

Figure 1 – The CMS Particle Flow algorithm combines sub-detector information and reconstructs individual

particles in collision events for converting detector signals back to physical objects. Image: Francesco Pandolfi

The CMS Particle Flow algorithm2,3 reconstructs individual particles in the collision events
by combining the information of sub-detectors in an optimized way and aims to convert the
image created by detector signals back to what actually happened in nature, as depicted in
Fig. 1.

Where conventionally jets are formed from energy deposits in calorimeters, the CMS PF
jets are clustered directly from reconstructed particles, or PF candidates, using the anti-kT
algorithm4. This bottom-up approach is what makes detailed jet substructure studies possible.
Before clustering, the events are cleaned from charged hadrons originating from pileup vertices
for minimizing the energy contribution to jets from non-leading proton-proton interactions.
The jet energies are then corrected with a sequential calibration procedure that corrects the
jet response R = pObserved

T /pTrue

T to unity as a function of jet transverse momentum pT and
direction ⌘.1

The PF algorithm associates every particle track and calorimeter energy deposit to a passing
electron, muon, photon or charged or neutral hadron by using the information from all CMS
sub-detectors. Electrons produce a curved track followed by a deposit in the electromagnetic
calorimeter (ECAL), where muons deposit energy also to the muon system. Both charged and
neutral hadrons deposit energy to ECAL and hadronic calorimeter, HCAL, but they can be
distinguished by the curved track connected to the deposit, or lack thereof. The signature of a
photon is an energy deposit in the ECAL which is not preceded by a track.

3 Jet energy composition

In Monte Carlo simulations the jet energy composition is predicted at particle level and di↵erent
hadrons are distinguished, for example, as seen in the study made with pythia6 hadronization
model in Fig. 2 (left). In the hadronization process the most probable hadrons to be created
from the kinetic energy of the mother parton are pions as they are the lightest mesons in the
nature. The probability of producing any of the three pions, ⇡+, ⇡� and ⇡0, is roughly equal as
seen in the pythia6 simulation, where on average about 20% of energy in jets is carried by each
type of pions. Thus, roughly 60% of the jet energy is from pions. While ⇡± having c⌧ > 10 mm
are considered stable, the contribution of ⇡0 appears as photons (�) due to the short lifetime
of neutral pions that decay virtually instantly to photons. The other significant contributions
come from kaons (K+, K�, K0

S
, K0

L
), light baryons (p, p̄, n, n̄), strange baryons (⌃±, ⇤0)

Input for Jet Reconstruction 5

Particle Flow (PF) Algorithm  JINST 12 (2017) P10003
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Pileup Mitigation for Jet Reconstruction 6

Constituent-level pileup mitigation
Charged Hadron Subtraction (CHS)

Pileup per Particle Identification (Puppi)

JINST 15 (2020) P09018
CMS-DP-2021-001 

Figure by Andrea Malara

https://cms-results.web.cern.ch/cms-results/public-results/publications/JME-18-001/
https://cds.cern.ch/record/2751563


1. Recluster with Cambridge-Aachen algorithm.
2. Reverse clustering history.
3. Check criterion:

4. Pass: two subjets are final. 
Fail: remove sub-leading subjet & repeat (1).

(Large-R) Jet Grooming 7
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6.1 Substructure variable based algorithms

Historically, the high momentum t quark and W/Z/H boson tagging methods used by the CMS
Collaboration are based on a combination of selection criteria on the jet mass and the energy
distribution inside the jet [16–20].

The jet mass is one of the most powerful observables to discriminate t quark and W/Z/H
boson jets from background jets (i.e., jets stemming from the hadronization of light-flavor quarks
or gluons). The QCD radiation will cause a radiative shower of quarks and gluons, which will be
collimated within a jet. The probability for a gluon to be radiated from a propagating quark or
gluon is inversely proportional to the angle and energy of the radiated gluon. Hence, the radiated
gluon will tend to appear close to the direction of the original quark or gluon. These radiated gluons
tend to be soft, resulting in a characteristic “Sudakov peak” structure. This is explained in detail in
ref. [8]. Contributions from initial-state radiation, the underlying event, and pileup also contribute
strongly to the jet mass, especially at larger values of R. As such, jet mass from QCD radiation
scales as the product of the jet pT and R.

Several methods have been developed to remove soft or uncorrelated radiation from jets, a
procedure generally called “grooming”. These methods strongly reduce the Sudakov peak structure
in the jet mass distribution. The removal of the soft and uncorrelated radiation results in a much
weaker dependence of the jet mass on its pT.

The t quark and W/Z/H bosons have an intrinsic mass, and the jet substructure tends to be
dominated by electroweak splittings [57] at larger angles than QCD. This can be exploited to
separate such jets from jets arising from heavy SM particles.

The grooming method used most often in CMS is the “modified mass drop tagger” algorithm
(mMDT) [58], which is a special case of the “soft drop” (SD) method [59]. This algorithm system-
atically removes the soft and collinear radiation from the jet in a manner that can be theoretically
calculated [60, 61] (comparisons to data are found in ref. [8]).

The first step in the SD algorithm is the reclustering of the jet constituents with the CA
algorithm, and then the identification of two “subjets” within the main jet by reversing the CA
clustering history. The jet is considered as the final jet if the two subjets meet the SD condition:

min(pT1, pT2)

pT1 + pT2
> zcut

✓
�R12

R0

◆�
, (6.1)

where R0 is the distance parameter used in jet clustering algorithm, pT1 (pT2) is the pT of the leading
(subleading) subjet and �R12 is their angular separation. The parameters zcut and � define what
the algorithm considers “soft” and “collinear,” respectively. The values used in CMS are zcut = 0.1
and � = 0 (making this identical to the mMDT algorithm, although for notation we still denote this
as SD). If the SD condition is not met, the subleading subjet is removed and the same procedure is
followed until eq. (6.1) is satisfied or no further declustering can be performed.

The two subjets returned by the SD algorithm are used to calculate the jet mass. Figure 2
shows the distribution of the AK8 jet mass after applying the SD algorithm (mSD) in simulated
signal and background jets. The jet mass has been measured in data in previous papers by CMS for
t-tagged [6] and QCD jets [7, 8].

The mSD in background jets peaks close to zero because of the suppression of the Sudakov
peak [58], whereas the mSD for signal jets peaks around the mass of the heavy SM particle (t quark,

– 9 –
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or W/Z/H bosons). In figure 2 (right), the peak around 80 GeV is from jets that contain just the
two quarks from the W decay and not all three quarks from the t decay. Similar conclusions also
hold for CA15 jets. Based on these observations, we define three regions in mSD. The “W/Z mass
region” with 65 < mSD < 105 GeV, the “H mass region” with 90 < mSD < 140 GeV, and the “t
mass region” with 105 < mSD < 210 GeV. These definitions will be used throughout this paper
unless stated otherwise.
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Figure 2. Comparison of the mSD shape in signal and background AK8 jets in simulation. The fiducial
selection on the jets is displayed on the plots. Signal jets are defined as jets arising from hadronic decays of
W/Z/H bosons (left) or t quarks (right), whereas background jets are obtained from the QCD multijet sample.

An additional handle to separate signal from background events is to exploit the energy
distribution inside the jet. Jets resulting from the hadronic decays of a heavy particle to N separate
quarks or gluons are expected to have N subjets. For two-body decays like W/Z/H, there are two
subjets, while for t quarks, there are three. In contrast, jets arising from the hadronization of light
quarks or gluons are expected to only have one or two (in the case of gluon splitting) subjets. The
N-subjettiness variables [62, 63],

⌧N =
1
d0

’
i

pT,i min
⇥
�R1,i,�R2,i, . . . ,�RN ,i

⇤
, (6.2)

provide a measure of the number of subjets that can be found inside the jet. The index i refers to the
jet constituents, while the �R terms represent the spatial distance between a given jet constituent
and the subjets. The quantity d0 is a normalization constant. The centers of hard radiation are
found by applying the exclusive kT algorithm [64, 65] on the jet constituents before the use of any
grooming techniques. The values of the ⌧N variables are typically small if the jet is compatible with
having N or more subjets. However, a more discriminating observable is the ratio of di�erent ⌧N
variables. For this purpose, the ratio ⌧3/⌧2 ⌘⌧32 is used for t quark identification, whereas the ratio
⌧21 is used for W/Z/H boson identification. The distribution ⌧21 and ⌧32 for signal and background
AK8 jets is shown in figure 3. Measured values of these distributions at CMS can also be found for
light-flavor jets in ref. [9]. Typical operating regions for ⌧21 (⌧32) are 0.35–0.65 (0.44–0.89), which
correspond to a misidentification rate after the mSD selection of 0.1–10% for both.
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the momenta of the two b hadrons. Although the algorithm is developed using simulated H ! bb
events, any dependence of the algorithm performance on the mass or pT of the bb pair is avoided.
This strategy allows the usage of the tagger in physics analyses with a large range of jet pT. The
dependence on the jet mass is avoided as this variable is often used to define a region for the
estimation of the background. In addition, this strategy also permits the use of the double-b tagger
for the identification of boosted Z ! bb jets or any other boosted bb resonance where the kinematics
of the decay products are similar.

A variable sensitive to the substructure is the N-subjettiness, ⌧N [47], which is a jet shape
variable, computed under the assumption that the jet has N subjets, and it is defined as the pT-
weighted distance between each jet constituent and its nearest subjet axis (�R):

⌧N =
1
d0

’
k

pkT min(�R1,k, . . . ,�RN,k), (6.1)

where k runs over all jet constituents. The normalization factor is d0 =
Õ

k pkTR0 and R0 is the
original jet distance parameter, i.e. R0 = 0.8. The ⌧N variable has a small value if the jet is
consistent with having N or fewer subjets. The subjet axes are used as a starting point for the ⌧N
minimization. After the minimization, the ⌧N axes, also called ⌧ axes, are obtained. These are then
used to estimate the directions of the partons giving rise to the subjets, as schematically illustrated
in figure 21 (right).

Many of the CSVv2 variables are also used in the double-b tagger algorithm. The variables
rely on reconstructed tracks, secondary vertices obtained using the IVF algorithm, as well as the
system of two secondary vertices. Tracks with pT > 1 GeV are associated with jets in a cone of
�R < 0.8 around the jet axis. Each track is then associated with the closest ⌧ axis, where the
distance of a track to the ⌧ axis is defined as the distance at their point of closest approach. The
selection requirements applied to tracks in the CSVv2 algorithm are also applied here, using the ⌧
axis instead of the jet axis. The reconstructed secondary vertices are associated first with jets in a
cone �R < 0.7 and then to the closest ⌧ axis within that jet. For each ⌧ axis, the track four-momenta
of the constituent tracks from all the secondary vertices associated with a given ⌧ axis are added to
compute the secondary vertex mass and pT for that ⌧ axis.

Input variables are selected that discriminate between H ! bb jets and other jet flavours, and
that improve the discrimination against the background from inclusive multijet production by at
least 5% compared to the performance of the tagger without the variable. In addition, as mentioned
earlier, variables are chosen that do not have a strong dependence on the jet pT or jet mass. This
procedure resulted in the following list of variables:

• The four tracks with the highest impact parameter significance.

• The impact parameter significance of the first two tracks ordered in decreasing impact pa-
rameter significance, for each ⌧ axis.

• The 2D impact parameter significance, of the first two tracks (first track) that raise the total
mass above 5.2 (1.5) GeV. These tracks are obtained as explained in section 5.1.2 in the
context of the CSVv2 algorithm. In the case of the highest threshold, also the second track
above the threshold mass is used. The thresholds of 5.2 GeV and 1.5 GeV are related to the b
and c hadron masses, respectively.
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minimization. After the minimization, the ⌧N axes, also called ⌧ axes, are obtained. These are then
used to estimate the directions of the partons giving rise to the subjets, as schematically illustrated
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Many of the CSVv2 variables are also used in the double-b tagger algorithm. The variables
rely on reconstructed tracks, secondary vertices obtained using the IVF algorithm, as well as the
system of two secondary vertices. Tracks with pT > 1 GeV are associated with jets in a cone of
�R < 0.8 around the jet axis. Each track is then associated with the closest ⌧ axis, where the
distance of a track to the ⌧ axis is defined as the distance at their point of closest approach. The
selection requirements applied to tracks in the CSVv2 algorithm are also applied here, using the ⌧
axis instead of the jet axis. The reconstructed secondary vertices are associated first with jets in a
cone �R < 0.7 and then to the closest ⌧ axis within that jet. For each ⌧ axis, the track four-momenta
of the constituent tracks from all the secondary vertices associated with a given ⌧ axis are added to
compute the secondary vertex mass and pT for that ⌧ axis.

Input variables are selected that discriminate between H ! bb jets and other jet flavours, and
that improve the discrimination against the background from inclusive multijet production by at
least 5% compared to the performance of the tagger without the variable. In addition, as mentioned
earlier, variables are chosen that do not have a strong dependence on the jet pT or jet mass. This
procedure resulted in the following list of variables:

• The four tracks with the highest impact parameter significance.

• The impact parameter significance of the first two tracks ordered in decreasing impact pa-
rameter significance, for each ⌧ axis.

• The 2D impact parameter significance, of the first two tracks (first track) that raise the total
mass above 5.2 (1.5) GeV. These tracks are obtained as explained in section 5.1.2 in the
context of the CSVv2 algorithm. In the case of the highest threshold, also the second track
above the threshold mass is used. The thresholds of 5.2 GeV and 1.5 GeV are related to the b
and c hadron masses, respectively.
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• Measure the tagging efficiency in 
simulation & data.

• Often done with samples enriched with 
W➝qq (semi-leptonic tt decay).

• Procedure:
- Define a tagging selection
- Create pass/fail regions.
- Simultaneous likelihood fit of both 

regions to obtain relative normalizations.

https://cds.cern.ch/record/2718978
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• Adapt efficiency measurement 
analyses to measure the jet mass 
scale (JMS).

• Done with samples enriched with 
W➝qq (tt & W+jets).

• Fit the JMS in data & simulation.

https://cds.cern.ch/record/2865845


Recent developments of 
jet tagging & substructure 



ParticleNet (Latest)
Ø “Particle cloud” representation of jets.
Ø Graph CNN architecture.
Ø Output: Multi classification scores for W / Z / H / 

top/QCD + decays.

Constituents-based Jet Tagging 13

arxiv:1902.08570

Can we improve boson tagging using lower-level jet information 
(i.e constituents, secondary vertices) as inputs to Machine 

Learning techniques? 

DeepAK8 
Ø 1D Convolutional Neural Network (CNN)
Ø Based on ResNet architecture.

arXiv:2004.08262

Figure by Huilin Qu

arxiv:1512.03385

https://arxiv.org/abs/1902.08570
http://arxiv.org/abs/2004.08262
https://arxiv.org/abs/1512.03385
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CMS-DP-2020-002

W➝qq 

ParticleNet improves on the 
performance of DeepAK8.
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W➝qq 

DeepAK8 significantly better at 
tagging jets compared to 
substructure variables.

https://cds.cern.ch/record/2707946
https://cms-results.web.cern.ch/cms-results/public-results/publications/JME-18-002/index.html
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• Substructure variables / tagger outputs are correlated 
with jet mass.

• Selections leads to sculpting of jet mass distribution of 
QCD background processes. 
Ø Undesirable for analyses using jet mass to predict 

background processes.

• Mitigate mass-sculpting through Mass-Decorrelation.

• ParticleNet Mass-Decorrelated version (ParticleNet-MD)
- Training with dedicated signal sample of hadronic 

decays of spin-0 particle X with flat mass spectrum mX.
- Smooth mass shapes achieved. 

9

Figure 4. The shape of the mSD distribution 
for background QCD jets with 500 < pT < 1000 
GeV, inclusively and after successively tighter 
selections by the DeepAK8 (upper left), 
DeepAK8-MD (upper right), DeepAK8-
DDT(5%) (lower left) and the ParticleNet-MD 
(lower right) algorithms for Higgs boson 
(H→bb) identification. The selections 
correspond to background efficiencies of 5%, 
1% and 0.5%, defined with the jet mass 
selection 90 < mSD < 140 GeV also applied. 
For the DeepAK8-DDT algorithm, the 
nominal working point, DeepAK8-DDT > 0, is 
also displayed. As shown in the lower left 
plot, for DeepAK8-DDT, mass decorrelation 
is achieved only for the designed nominal 
working point, while large modification of 
the mSD distribution is observed for 
significantly different selections. Therefore, 
these selections are shown for illustration 
purposes only and should not be used for 
physics analyses. 
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nominal working point, DeepAK8-DDT > 0, is 
also displayed. As shown in the lower left 
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working point, while large modification of 
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Figure 1: Performance of the ParticleNet regression (green - solid) and the soft drop algorithm (red - dashed). The mass response is
shown for large-R (R=0.8) Higgs boson jets with pT > 400 GeV and 100 < Mtarget < 150 GeV for various jet compositions: H→ bb
(left), H→ cc (center) and H→ qq (right). The last bin contains the overflow contribution. The resolution degrades for the heavier
quark flavours due to the larger presence of neutrinos. For all the jet compositions, the mass regression shows a substantial
improvement in the mass resolution and in the absolute scale. In addition, tails are strongly mitigated with the mass regression, in
particular at M≈0, where the soft drop algorithm incorrectly identifies the large R jet as single-prong.
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• Develop algorithm to reconstruct jet mass with the 
best possible jet mass scale and resolution

• Exploit ParticleNet architecture to predict the mass of 
AK8 jets.

- Same inputs & training configuration as tagging.

• Additional output of ParticleNet: “regressed mass”. 

• Substantial improvement in the jet mass scale & 
resolution.

https://cds.cern.ch/record/2777006
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Improvement of signal jets’ 
regressed mass resolution & stable 

across mass.

CMS-DP-2021-017

https://cds.cern.ch/record/2777006
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• CMS uses Anti-kT R=0.8 jets to tag boosted hadronically decaying bosons.
Ø Inputs: Particle Flow + Puppi.
Ø Grooming: Soft-drop.

• Tag jets with mass & variables quantifying substructure of the jets.

• Recent developments with Machine Learning techniques for substructure.
Ø Latest tagger: ParticleNet architecture to identify jets from hadronic boson 

decays & the mass of the jets.
Ø Substantial gain in performance with respect to substructure variables & 

DeepAK8.
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https://opendata.cern.ch/docs/cms-releases-2016data-2024

• CMS recently released (half of) 2016 
datasets & simulations.

• New data format: NanoAOD
- Light-weight.
- Readable with bare ROOT or python 

with uproot.

• NanoAOD with Particle Flow objects.
- Available for subset of datasets [1].
- Example provided to produce them by 

yourself [2].

[1] https://opendata.cern.ch/search?q=&f=experiment%3ACMS&f=file_type%3Ananoaod-pf
[2] https://opendata.cern.ch/record/12504

https://opendata.cern.ch/docs/cms-releases-2016data-2024
https://opendata.cern.ch/search?q=&f=experiment%3ACMS&f=file_type%3Ananoaod-pf
https://opendata.cern.ch/record/12504


CMS Open Data Workshop 21

5th CMS Open Data Workshop (& Hackathon)

Bridge the technical gap between external 
analysts and CMS analysis machinery.

https://indico.cern.ch/event/1387505

https://indico.cern.ch/event/1387505
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Figure 3. Performance of the algorithms for identifying hadronically decaying Higgs bosons (Left: H→bb; Right:
H→cc). A selection on the jet mass, 90 < mSD < 140 GeV, is applied in addition to the ML-based identification
algorithm when evaluating the signal and background efficiencies. For the signal (background), the generated
Higgs bosons (quarks and gluons) are required to satisfy 500 < pT < 1000 GeV and |η| < 2.4. For each of the two
DeepAK8-DDT algorithms, the marker indicates the performance of the nominal working point, DeepAK8-DDT
> 0, and its background efficiency (shown in the vertical axis) is different from the design value (5% or 2%) due to
the additional selection on the jet mass.
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Figure 1. Performance of the DeepAK8 and ParticleNet algorithms for identifying hadronically decaying top
quarks. A selection on the jet mass, 105 < mSD < 210 GeV, is applied in addition to the ML-based identification
algorithm when evaluating the signal and background efficiencies. For the signal (background), the generated
top quarks (other quarks and gluons) are required to satisfy 500 < pT < 1000GeV and |η| < 2.4.
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https://cds.cern.ch/record/2707946


Jet tagging: Mass-decorrelation 24
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Figure 4. The shape of the mSD distribution 
for background QCD jets with 500 < pT < 1000 
GeV, inclusively and after successively tighter 
selections by the DeepAK8 (upper left), 
DeepAK8-MD (upper right), DeepAK8-
DDT(5%) (lower left) and the ParticleNet-MD 
(lower right) algorithms for Higgs boson 
(H→bb) identification. The selections 
correspond to background efficiencies of 5%, 
1% and 0.5%, defined with the jet mass 
selection 90 < mSD < 140 GeV also applied. 
For the DeepAK8-DDT algorithm, the 
nominal working point, DeepAK8-DDT > 0, is 
also displayed. As shown in the lower left 
plot, for DeepAK8-DDT, mass decorrelation 
is achieved only for the designed nominal 
working point, while large modification of 
the mSD distribution is observed for 
significantly different selections. Therefore, 
these selections are shown for illustration 
purposes only and should not be used for 
physics analyses. 
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Figure 4. The shape of the mSD distribution 
for background QCD jets with 500 < pT < 1000 
GeV, inclusively and after successively tighter 
selections by the DeepAK8 (upper left), 
DeepAK8-MD (upper right), DeepAK8-
DDT(5%) (lower left) and the ParticleNet-MD 
(lower right) algorithms for Higgs boson 
(H→bb) identification. The selections 
correspond to background efficiencies of 5%, 
1% and 0.5%, defined with the jet mass 
selection 90 < mSD < 140 GeV also applied. 
For the DeepAK8-DDT algorithm, the 
nominal working point, DeepAK8-DDT > 0, is 
also displayed. As shown in the lower left 
plot, for DeepAK8-DDT, mass decorrelation 
is achieved only for the designed nominal 
working point, while large modification of 
the mSD distribution is observed for 
significantly different selections. Therefore, 
these selections are shown for illustration 
purposes only and should not be used for 
physics analyses. 
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Figure 4. The shape of the mSD distribution 
for background QCD jets with 500 < pT < 1000 
GeV, inclusively and after successively tighter 
selections by the DeepAK8 (upper left), 
DeepAK8-MD (upper right), DeepAK8-
DDT(5%) (lower left) and the ParticleNet-MD 
(lower right) algorithms for Higgs boson 
(H→bb) identification. The selections 
correspond to background efficiencies of 5%, 
1% and 0.5%, defined with the jet mass 
selection 90 < mSD < 140 GeV also applied. 
For the DeepAK8-DDT algorithm, the 
nominal working point, DeepAK8-DDT > 0, is 
also displayed. As shown in the lower left 
plot, for DeepAK8-DDT, mass decorrelation 
is achieved only for the designed nominal 
working point, while large modification of 
the mSD distribution is observed for 
significantly different selections. Therefore, 
these selections are shown for illustration 
purposes only and should not be used for 
physics analyses. 
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DeepAK8
Mass-Decorrelated

DeepAK8-MassDecorrelated version (DeepAK8-MD)
• Use adversarial training 

1) Add a mass prediction network to predict jet mass.
2) Accuracy of prediction included in the loss function.
3) Minimizing joint loss prevent mass correlation while improving 

classification accuracy.
• Signal/background samples reweighted to a flat (pT, 

mass) distribution.

arXiv:1611.01046
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DEEPAK8-MD
The nominal version of DeepAK8 shows significantly improved performance, but 
also features strong “mass sculpting” 

i.e., jet mass shape of the background becomes similar to that of the signal after 
selection with the tagger 

Mass-decorrelated tagger: “DeepAK8-MD” 

mitigate mass sculpting using “adversarial training” [arXiv: 1611.01046] 

added a mass prediction network to predict the jet mass from the learned features 

higher mass prediction accuracy -> stronger correlation w/ the jet mass 

accuracy of the mass prediction included in the loss function as a penalty 

minimizing the joint loss -> improving classification accuracy while preventing 
mass correlation 

in addition: signal/background samples reweighted to a ~flat (pT, mSD) distribution 
to aid the training 

significantly reduced mass sculpting yet still strong performance

8

H→bb tagging
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CMS [JINST 15 (2020) P06005]

https://arxiv.org/abs/1611.01046
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Figure from CMS News

Pile-up Jet 
Suppression

Quark vs Gluon
Discrimination

2 Forward Jets

https://cms.cern/news/search-rare-production-vector-boson-pairs
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Constituent-level 
pileup mitigation

JINST 15 (2020) P09018
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Figure by Andrea Malara

https://cms-results.web.cern.ch/cms-results/public-results/publications/JME-18-001/


Quark-Gluon Jet Tagging 27
CMS-PAS-JME-16-003
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