

ACTS Geometry Evolution

A. Salzburger (CERN)

From las

History

- ▶ Geometry model of ACTS stems from ATLAS Trk::TrackingGeome
 - Conceptual building blocks

TrackingVolume Layer Quite some overlap between those

Surface

- detray GPU R&D geometry: re-implemented w/o layer concept
 - huge simplification in navigation code
 - can we do this also for ACTS/Core?

4

New Acts:: Detector model - glossary

This geometry is currently still under the Experimental namespace

Acts::Surface	Acts::Surface	Surface objects are unchanged, allows client code to be untouched
Acts::Layer		Layer objects do not exist anymore, they are represented by volumes
Acts::TrackingVolume	Acts::Experimental:: DetectorVolume	Double serving of volumes as containers or navigation volumes omitted
Acts::BoundarySurfaceT <acts::trackingvolume></acts::trackingvolume>	Acts::Experimental:: Portal	Portal objects are not templated anymore, they are holder classes of surfaces and volume switches
Acts::TrackingGeometry	Acts::Experimental:: Detector	Portal objects the top level entry point that will guide into the root volumes

Acts::Detector building process

From last workshop, 2023

Translation of objects from geometry model,

from one source, but not necessarily

e.g. DD4hep

Logic of how to build/group e.g. DD4hep

Detector Blueprint

Instruction set how to build the detector

Blueprint to be written to .json

/

Blueprint visualisation

Blueprint is an instruction graph

- Added functionality to visualize before building, in order to spot problems

non-coloured nodes are virtual containers

From last workshop, 200

ODD building blueprint from DD4hep:

Resulting ODD detector

In the meantime: Generation2 MS support

In the meantime: material mapping

- Geant4
- ACTS

Example material mapping (Navigation-less mapping)

In the meantime: detray conversion

A lot of work went into conversion to detray

- First via the json I/O
- Then via direct translation with new Plugins/Detray

New validation framework to test navigation Geant4 - ACTS - detray deployed*

^{*} this will work also on Generation3 geometry

In the meantime

This geometry is still under the Experimental namespace (and will never leave it)

- ✓ works without layers
- √ has simpler navigation
- ✓ Demonstrated for ODD & telescope like detector
- √ Supported MS like geometries
- ✓ Material mapping works
- √ Translates into detray

So why Generation 3?

In the meantime

This geometry is still under the Experimental namespace (and will never leave it)

- √ works without layers ... cool
- √ has simpler navigation ... cool
- ✓ Demonstrated for ODD & telescope like detector ... cool
- ✓ Supported MS like geometries ... cool
- ✓ Material mapping works ... cool
- √ Translates into detray ... but is quite complicated and brittle
- Building infrastructure is still to complicated (with many layers)
- Renames/changes the entire geometry setup

Hence, Generation3

Moving to Generation3 and removing Generation1/2 code will result in a big code cleanup

✓ this is a conservative estimate (navigator code unchanged, plugins not removed)

✓ Generation1 code has shown very high code complexity, should also improve here

More cleanups

BinUtility vs. Axis vs. ProtoBinning

refactor!: Remove BinningType #3826 <>Code ▼ Signaft asalzburger wants to merge 18 commits into acts-project:main from asalzburger:refactor-remove-BinningType Conversation (5) **-** Commits (18) F Checks (30) ± Files changed (324) **+4,500 −4,350** asalzburger commented 2 weeks ago • edited ▼ (Member) **(3)** Reviewers Suggestions This PR removes BinningType and puts everything onto one set of Axis definitions, which are in a new file: paulgessinger Request AxisDefinitions.hpp (AJPfleger Request After this massive change, only there enums remain: andiwand Request • AxisType as of Equidistant and Variable **(3) Assignees** • AxisBoundaryType as of Open , Bound and Closed No one—assign yourself • AxisDirection which replaces the former BinningValue enum Changes many many files, and potentially introduces a schema evolution for material files and digitisation files, because **(3)** Labels AxisBoundaryType has an offset of 1 with respect to BinninOption Component - Core Will need some adaption to client code, I will create a cheat sheet. Component - Documentation Component - Examples Component - Fatras --- END COMMIT MESSAGE ---Component - Plugins | Seeding Track Finding Any further description goes here, @-mentions are ok here! **Projects**

Detailed geometry model,

e.g. DD4hep, TGeo, GeoModel, etc.

ACTS geometry model with built-in navigation


```
/// @class DetectorElementBase
///
/// This is the default base class for all tracking detector elements
/// with read-out relevant information. It provides the minimal interface
/// for the Acts proxy mechanism for surfaces, i.e. surfaces in the
/// Tracking geometry representing actual detection devices
///
class DetectorElementBase {
  public:
    DetectorElementBase() = default;
    virtual ~DetectorElementBase() = default;

/// Return the transform for the Element proxy mechanism
///
/// @param gctx The current geometry context object, e.g. alignment
    virtual const Transform3& transform(const GeometryContext& gctx) const = 0;
```

Alignment:

aligned position can not be generated on the fly

Wire chambers:

surfaces need to be precomputed

Preformance

No copy/allocation needed

This PR tests how much performance loss we would experience when changing the return object of Surface objects from const Transform& transform(const GeometryContext& gctx) const; to Transform transform(const GeometryContext& gctx) const; This change would allow us to create surfaces on the fly, (or at least their transforms) for e.g. Drift straws, etc. Initial tests - running the propagation test only, which is relatively highly effected by this - shows. **Propagation test** without this change 09:57:30 Sequencer Average time per event: 19.184849 ms/event INFO with this change Average time per event: 20.279401 ms/event 09:56:55 INFO Sequencer It indicates a 5% penalty in this workflow.

From last

Truth Track	ing			N, 2023	
14:07:33	Sequencer	INFO	Average time per event: 44.465655 ms/event		
vs.					
14:07:42	Sequencer	INFO	Average time per event: 45.216276 ms/event		
So, closer to 2 % effect there, already interesting, I will do a full chain run as well.					

- Next steps:

Test with ODD full chain example and then we should decide on it in a future developers meeting.