Vertexing

For ACTS Developers Workshop

Andreas Stefl ACTS Workshop — 19.11.2024

Reminder: Objective

e \ertexing is the process of finding the tracks e We distinguish between primary and
origins / interaction points and estimate their secondary vertexing
location

> Depending on the displacement of the vertex

e It does not rely on any physics other than relative to the beamspot

tracks ostensibly originating from a single o This correlates with the interaction being
point in space prompt or “delayed”, e.g. B meson decay

e This is done with the input of reconstructed, e \ertexing can be decomposed into a finding
fitted, and filtered tracks and fitting procedure

Primary Vertex

Pile-up Vertex
Andreas Stefl ACTS Workshop — 19.11.2024

Reminder: Performance Similar to tracking performance, these quantities can

be looked at over various other variables, for

example
Vertexing performance can be measured with
various quantities, for example e Pile-up, pile-up density, pile-up contamination
e Finding efficiency e Number of reconstructed tracks from truth

e Finding efficiency for hard-scatter vertex e Truth sum pT squared

Vertex efficiency for ttbar over PU

e Technical efficiency

N
o
Is]

o T -

—-== optimal

® without time
@ withtime

& gauss

® truth -
o Te .

o By trimming truth to reconstructible or
reconstructed particles

T
-
-
-

Reconstructed vertices
=
(=]
o

e Resolution and pulls of the location estimates

T
154 === optimal T

© without time ¢
101 o withtime
gauss

© truth

e Merging, splitting, and fake rates

Merged vertices
°

% e e @

e Track contamination by mis-association

4 H=== optima‘l { ! |
® without time ®
5| @ with time n
© gauss ° $
© truth o D
01 & L8 - 8 § i
0 25 50 75 100 125 15
Andreas Stefl ACTS Workshop — 19.11.2024 P 3
e

Split vertices

Vertexing with ACTS Core

Andreas Stefl ACTS Workshop — 19.11.2024

Reminder: Vertexing with ACTS

e \lertexing is a long standing feature in ACTS
e ACTS primary vertexing is already used in Atlas Run 3

e We have two primary vertex finding algorithms:
o lterative Vertex Finder (IVF) [3]
o Adaptive Multi Vertex Finder (AMVF) [3]

e There is no secondary vertex finding algorithm

e We have two general purpose fitting algorithms
o Full-Billoir [1]

o Kalman-based [2]

e Most of the vertexing components support time

Andreas Stefl ACTS Workshop — 19.11.2024 5
D

https://cds.cern.ch/record/2670380/files/ATL-PHYS-PUB-2019-015.pdf
https://cds.cern.ch/record/2670380/files/ATL-PHYS-PUB-2019-015.pdf
https://www.sciencedirect.com/science/article/pii/0168900292908593
https://www.sciencedirect.com/science/article/pii/0168900287908874

Components

Interfaces :

Primary vertex finder ' Vertex fitter

Primary vertex seeder

Andreas Stefl ACTS Workshop — 19.11.2024 6

Primary vertexing components

Examples
implementations

Concept

Core implementations

Andreas Stefl ACTS Workshop — 19.11.2024

Vertexing tools

Andreas Stefl ACTS Workshop — 19.11.2024

HelicalTracklLinearizer

e Implementation of the TrackLinearizer interface for helical and straight tracks
e Direct calculation of jacobians via analytical formulas

e Trajectory is decomposed in circular and linear parts
o Assumes XY is strictly the bending plane

e Was recently extended to 4D (credits PF, Felix)

Andreas Stefl ACTS Workshop — 19.11.2024 9
D

NumericalTrackLlinearizer

e Implementation of the TrackLinearizer interface w/o track shape constraints

e Developed by Felix to verify correct math and implementation of
HelicalTrackLinearizer

e Does something similar to RiddersPropagator, but with differently defined
global track parameters (x, y, z, time, phi, theta, g/p)
o Use Propagator for nominal and small initial parameter delta propagations

o Use difference quotient to get numerical derivatives

Andreas Stefl ACTS Workshop — 19.11.2024 10
D

ImpactPointEstimator

e \ersatile tool for vertexing algorithms
> Calculates smallest distance between track and vertex
> Estimation of impact parameters of track at vertex
> Track + vertex chi2 compatibility
e Quite math heavy but Felix wrote some nice derivations [5]

e Note: Some of this functionality assumes helical (or straight) tracks and uses
iterative procedures (Newton) to minimize distances

o Potentially some of this could be replaced by a Propagator with free track parameters and a
PointSurface

Andreas Stefl ACTS Workshop — 19.11.2024 11
D

https://github.com/acts-project/acts/files/12794276/Track_Linearization_and_3D_PCA.pdf

Vertex fitting

Andreas Stefl

ACTS Workshop — 19.11.2024

12

FullBilloirVertexFitter
e Chi2 minimization without the need of
inverting the full system matrix

e Fits vertex position and track
momentum simultaneously

e Implementedasaclass

/// @brief Fit method, fitting vertex for provided tracks with constraint

/77

/// @param paramVector Vector of track objects to fit vertex to

/// @param vertexingOptions Vertexing options

/// @param fieldCache The magnetic field cache

VO

/// @return Fitted vertex

Result<Vertex> fit(const std::vector<InputTrack>& paramVector,
const VertexingOptions& vertexingOptions,
MagneticFieldProvider::Cache& fieldCache) const;

Andreas Stefl ACTS Workshop — 19.11.2024 13

KalmanVertexUpdater

/// @brief Updates vertex with knowledge of new track
/// @note KalmanVertexUpdater updates the vertex when trk is added to the fit.
/// However, it does not add the track to the TrackAtVertex list. This to be

e Fits vertex with track and vice versa
/// done manually after calling the method.

iteratively 117

/17
. /// @param vtx Vertex to be updated
[Implemented aS free fU nCtIOHS /// @param trk Track to be used for updating the vertex
/// @param nDimVertex number of dimensions of the vertex. Can be 3 (if we only
/// fit its spatial coordinates) or 4 (if we also fit time).
void updateVertexWithTrack(Vertex& vtx, TrackAtVertex& trk,
unsigned int nDimVertex);

/// @brief Refits a single track with the knowledge of
/// the vertex it has originated from
/177
/// @param track Track to update
/// @param vtx Vertex to use for updating the track
/// @param nDimVertex number of dimensions of the vertex. Can be 3 (if we only
/// fit its spatial coordinates) or 4 (if we also fit time).
void updateTrackWithVertex(TrackAtVertex& track, const Vertex& vtx,
unsigned int nDimVertex);

Andreas Stefl ACTS Workshop — 19.11.2024 14
D

Primary vertex seeding

Andreas Stefl ACTS Workshop — 19.11.2024

15

TrackDensityVertexFinder

w/o time

e Analytical representation of track density using a —_l_

sum of gaussians over all tracks [3]

e Maximization yields vertex seed and is done via
Newton’s method

e Displaced tracks are implicitly dampened with
exponential of d0

e This algorithm does not support time as for now

o Should be straightforward to add but no one did it so far

e Potentially slow for a lot of tracks as all the
gaussians need to be evaluated for each iteration

w/ time

Andreas Stefl ACTS Workshop — 19.11.2024 16

https://cds.cern.ch/record/2670380/files/ATL-PHYS-PUB-2019-015.pdf

GridDensityVertexFinder

e [Essentially the same as TrackDensityVertexFinder
e Uses a dense grid to evaluate the gaussians for single tracks and all tracks
e Grids for each track can be cached to allow removal from global grid
e Maximum search is essentially an argmax on an array
e This algorithm does not support time for now
o Dense space+time grid would be very memory costly
Andreas Stefl ACTS Workshop — 19.11.2024 17

AdaptiveGridDensityVertexFinder

e FEssentially the same as GridDensityVertexFinder
e Uses a sparse grid instead of a dense grid

e Supports time (needs to be toggled in the config)

e Track fills grid depending on its d0 and time resolution

e Was significantly refactored and modified over the last year

Andreas Stefl ACTS Workshop — 19.11.2024 18
D

Primary vertex finding

Andreas Stefl ACTS Workshop — 19.11.2024

19

ITterativeVertexFinder

e Greedy vertex finder which selects
tracks from vertex seeds

e Removes the tracks from the seeding
pool after reconstructing a vertex
e Originally ported from Athena

o Implementation potentially drifted away
from original port

o Never fully validated after Athena
integration

Selected tracks

New vertex seed

Add tracks to fit due
to significance

Fit single vertex

Remove compatible tracks \
from seed pool Remove outliers

Andreas Stefl ACTS Workshop — 19.11.2024 20

https://cds.cern.ch/record/2670380/files/ATL-PHYS-PUB-2019-015.pdf

AdaptiveMultiVertexFinder

e Similar to IVF but a bit less greedy m
e \ertices can share tracks, fit takes Selected tracks Seed pool | L IR E R
Remove compatible tracks ;

that into account

e Seeding done via seeding track pool
but track selection done fromall waaa.es

from seed pool !
New vertex seed

Add tracks to fit due to signficance
within wide z window

tracks
.. Fit new vertex candidate along with
e Originally ported from Athena any linked previously fit vertices (fit
constrained to seed width)
o Fully validated after Athena integration
o Used in Run 3 Remove outliers, compare
against previously fit vertices
o Implementation potentially drifted away

Andreas Stefl

3]

from original port

ACTS Workshop — 19.11.2024 21

https://cds.cern.ch/record/2670380/files/ATL-PHYS-PUB-2019-015.pdf

Vertexing in ACTS Examples

Andreas Stefl ACTS Workshop — 19.11.2024

22

Vertexing in ACTS Examples

Input Vertexing Output

Bl

addVertexing ()

in Python wrapper

Andreas Stefl ACTS Workshop — 19.11.2024 23

https://github.com/acts-project/acts/blob/c164dc0ca5b7bcc2bf2aa735ad362c336d9bc1d3/Examples/Python/python/acts/examples/reconstruction.py#L2092

TruthVertexSeeder

e Uses truth vertex position as vertex seed
e Allows to factorize performance by providing optimal seeding

> TruthVertexFinder is the perfect finder and leads to optimal fitting
performance

A\

Especially with high pile-up, vertex finding is not a trivial task

> \ertex seeder can dominate the finding efficiency

e Note: Since IVF and AMVF are greedy, the order of provided seeds matters!

Andreas Stefl ACTS Workshop — 19.11.2024 24
D

VertexNTupleWriter

e [FormerVertexPerformanceWriter
e \Writes vertices, associated tracks, and matched truth to a ROOT TTree

e Was effectively rewritten over the last year

o Existing code became unmaintainable as writing, and track and vertex truth matching was done in
place with 5 levels of nested loops

e Does classification of clean, merged, split (inspired by ATLAS [3])

Andreas Stefl ACTS Workshop — 19.11.2024 25

https://cds.cern.ch/record/2670380/files/ATL-PHYS-PUB-2019-015.pdf

Summary

Andreas Stefl

ACTS Workshop — 19.11.2024

26

What changed?

Core Examples

e Correct time handling for linearization and e Truth Vertex EDM /10

fitters (credits PF, Felix) VertexNTuolelrit
° ertexNTupleWriter

e De-templating (credits Paul
P g) o Multiple iterations which resulted in a complete

o Concrete extrapolator interface rewrite

o Track EDM abstraction o Truth matching

o Vertex finder interface o Classification of clean, merged, split
e Split compilation units for Kalman vertex fitter e Truth seeding

(credits Paul)

Andreas Stefl ACTS Workshop — 19.11.2024 27
D

What is missing?

Essential Nice to have

e Secondary vertex finding e Drop LinIndices and use
RiddersPropagator for

e TrackDensityVertexFinder withtime
NumericalTrackLinearizer

e PointSurface instead of perigee
e Vertex fitter interface

e Decouple vertex finders from fitters

ACTS Workshop — 19.11.2024 28

Andreas Stefl
D

Recent studies

e ODD ACTS computing performance of e ODD ACTS physics performance of Vertex
Vertexing Finding with time by Cléo Nicollin [4] Finding / Fitting with time

@ Space (um): 15, Time (mm): 19 & Space (um): 45, Time (mm): 22

Gauss 20 Notime 20 Time Tfinding
(173 40
= 15 ii?; 15 15 Igi
S 10 10 gyt 3
> 1.0 \
5 5 S [= 2 \
0.5 55509 R——a covepstoresentTenes 25
w100 150 200 %100 150 200 %100 150 200 0 100 150 200 Vixl i peamine
[V
'% Gauss Notime Time
geo 80 80 I
= . .
Seo ; &6 P Fﬁﬂlﬁ ODD Simulation
S ﬁlﬂﬂﬂg ﬁ}ffﬁﬂ}ﬂ Iﬁﬂﬂ} 10u vertex
S a0 ﬁﬂﬂlﬂ 40 Iﬁlﬂﬁ-{ a0 {73t v
2 TR ® Time
o & --
E 100 150 200 100 150 200 100 150 200 S - $ NoTime
_32 Gauss Notime Time é 0.9 -
S o) P w ."
g 0.20 ™0 | 5 a0 | o ° %‘ & o 0.8
& U e °
£ 0.06
B o1 J“ 015 oM - 05. & 0.7
g e Cined 004l & o
= 100 150 200 100 150 200 100 150 200 0.6 1
-S Gauss Notime Time 0.5 oo
506 0.6 0.6 T
o o P
So. 4 4 | GOB00P0E0UEEE0CERTED =1
S 0.4|ecostsoosessosscosey| 04 |0os0%osscesecsssecss| 04 o 15 -e-
o2 0.2 0.2 o
50 5 ;
& 00 100 150 200 %100 150 200 %150 150 200 By y g y y '
U PU PU 0.0 0.2 0.4 0.6 0.8 A [r:."%]
Andreas Stefl ACTS Workshop — 19.11.2024 29

https://indico.cern.ch/event/1435014/contributions/6038249/attachments/2902452/5090667/Poster2024-Nicollin.pdf

Conclusion

e ACTS Vertexing is a matured component with a lot of features

e Still no secondary vertex finding but tools in place to achieve that

e Time is handled in almost all components

e Code seems overall well tested with unit tests and physmon in place

e Felix left a lot of good documentation behind which goes beyond code and
readthedocs [5] [6] [7]

e Note: Nobody in the ACTS community is actively working on vertexing / secondary
vertexing

Andreas Stefl ACTS Workshop — 19.11.2024 30
D

https://github.com/acts-project/acts/files/12794276/Track_Linearization_and_3D_PCA.pdf
https://acts.readthedocs.io/en/latest/white_papers/gaussian-track-densities.html
https://acts.readthedocs.io/en/latest/white_papers/billoir-covariances.html

Resources

1. P.Billoir, S. Qian, Fast vertex fitting with a local parametrization of tracks

R. Frihwirth, Application of Kalman filtering to track and vertex fitting

2
3. ATL-PHYS-PUB-2019-015
4

https://indico.cern.ch/event/1435014/contributions/6038249/attachments/290245
2/5090667/Poster2024-Nicollin.pdf

5. https://github.com/acts-project/acts/files/12794276/Track_Linearization_and_3D_P
CA.pdf

6. https://acts.readthedocs.io/en/latest/white_papers/gaussian-track-densities.html

7. https://acts.readthedocs.io/en/latest/white papers/billoir-covariances.html

Andreas Stefl ACTS Workshop — 19.11.2024 31
D

https://www.sciencedirect.com/science/article/pii/0168900292908593
https://www.sciencedirect.com/science/article/pii/0168900287908874
https://cds.cern.ch/record/2670380/files/ATL-PHYS-PUB-2019-015.pdf
https://indico.cern.ch/event/1435014/contributions/6038249/attachments/2902452/5090667/Poster2024-Nicollin.pdf
https://indico.cern.ch/event/1435014/contributions/6038249/attachments/2902452/5090667/Poster2024-Nicollin.pdf
https://github.com/acts-project/acts/files/12794276/Track_Linearization_and_3D_PCA.pdf
https://github.com/acts-project/acts/files/12794276/Track_Linearization_and_3D_PCA.pdf
https://acts.readthedocs.io/en/latest/white_papers/gaussian-track-densities.html
https://acts.readthedocs.io/en/latest/white_papers/billoir-covariances.html

Backup

Andreas Stefl

ACTS Workshop — 19.11.2024

32

Vertexing in ACTS Examples

e |VFis available via IterativeVertexFinderAlgorithm
o Not really configurable
o Seeder hardcoded to TrackDensityVertexFinder
e AMVF is available via AdaptiveMultiVertexFinderAlgorithm
o Fairly configurable at this point
o Seeder can be selected via enum
e TruthVertexFinder can be used with VertexFitterAlgorithm

o Fitter hardcoded to FullBilloirVertexFitter

@ TruthVertexSeeder can be used with AMVF

Andreas Stefl ACTS Workshop — 19.11.2024 33
D

Vertexing EDM

Andreas Stefl

ACTS Workshop — 19.11.2024

KZ

InputTrack

e Non-owning, type-erased bound track parameter box type
e Allows for using concrete types in Core algorithms
e |Implements operator==, operator<, std: :hash

e Extractor delegate gets BoundTrackParameters from InputTrack

Andreas Stefl ACTS Workshop — 19.11.2024 35
D

T ra C kAtve rteX /// Fitted perigee

BoundTrackParameters fittedParams;

/// Original input parameters

e Captures information about a track, RS ———
which was put on a vertex /17 Chi2 of track
double chi2Track = 0;
e Does not point to the vertex /77 Nunber degrees of freedon

/// Note: Can be different from integer value
/// since annealing can result in effective

. POintS to the Original traCk /// non-interger values

double ndf = 0;

/// Value of the compatibility of the track to the actual vertex, based

e Contains the eventual refitted track
/// on the estimation of the 3d distance between the track and the vertex
pa I’ameters at the Vertex double vertexCompatibility = 0;

/// Weight of track in fit
double trackWeight = 1;

/// The linearized state of the track at vertex
LinearizedTrack linearizedState;

/// Is already linearized
bool isLinearized = false;

Andreas Stefl ACTS Workshop — 19.11.2024 36
D

Vertex

e Captures all the information about a reconstructed vertex
o Position + covariance
o Chi2 + degrees of freedom
o Vector of TrackAtVertex

o Seed position

e This is primarily meant to capture the final output of the vertexing

® Note: This class is also used for vertex seeds and final vertices

Andreas Stefl ACTS Workshop — 19.11.2024 37
D

n 1]
L l n e a r l Z e dT r a C k /// @brief Constructor taking perigee parameters and covariance matrix

/// of track propagated to closest approach (PCA) of linearization point,
/// position and momentum Jacobian and const term.
/17
1 1 H 1 /// @param paramsAtPCA Parameters at point of closest approach
. Fltters Work Wlth a |Inear|zed traCk /// @param parCovarianceAtPCA Parameter covariance matrix at point of closest
/77 approach
mOdeI /// @param parWeightAtPCA The weight at the point of closest approach
/// @param linPoint Linearization point
/// @param posJacobian Position jacobian
H 1 H /// @param momJacobian Momentum jacobian
® Slmply a fl rSt Order taylor eXpanSIOn /// @param position Position at point of closest approach
/// @param momentum Momentum at point of closest approach

for the traCk pa rameter tra nsport /// @param constTerm Constant term in taylor expansion

LinearizedTrack(const BoundVector& paramsAtPCA,
between refe rence Surfa Ce and const BoundSquareMatrix& parCovarianceAtPCA,
const BoundSquareMatrix& parWeightAtPCA,
Y const Vector4& linPoint,
Ve rtex pOSItlon const ActsMatrix<eBoundSize, 4>& posJacobian,
const ActsMatrix<eBoundSize, 3>& momJacobian,
const Vector4& position, const Vector3& momentum,

[) Lineari 7 edT rack Ca ptu res this const BoundVector& constTerm)

: parametersAtPCA(paramsAtPCA),
ex p a n S i O n covarianceAtPCA(parCovarianceAtPCA),

weightAtPCA(parWeightAtPCA),
linearizationPoint(linPoint),
positionJacobian(posJacobian),
momentumJacobian(momJacobian),
positionAtPCA(position),
momentumAtPCA(momentum) ,
constantTerm(constTerm) {}

Andreas Stefl ACTS Workshop — 19.11.2024 38
D

LinIndices

/// Enum to access the components of a track parameter vector.
117
M M M M /// Here, we parametrize the track via a 4D point on the track, the momentum
e Parametrization for linearized tracks 111 angles of the particle st that point, snd a/p or 1p.
117
/// @note It would make sense to rename these parameters if they are used outside of track linearization.
/// @note This must be a regular “enum’ and not a scoped ‘enum class’ to allow

. NOte the diffe rence to Ou r usual /// implicit conversion to an integer. The enum value are thus visible directly

/// in “namespace Acts' and are prefixed to avoid naming collisions.

: . enum LinIndices : unsigned int {
B Ound I nd‘l Ce S a nd Fre e I ndl Ce S // Global spatial position of a point on the track, must be stored as one

// continuous block.
eLinPos® = @u,

© BoundIndices use local position and e ———
phl theta fOI’ dlreCtlon // Global time when part'icle is at the point

eLinTime = 3u,
// Angles of the particle momentum in the global frame at the point
eLinPhi = 4u,

0 Freelndices use global position and a clinThetn = eLinfhi + iu,
. . . // Global inverse-momentum-like parameter, i.e. gq/p or 1/p, at the point
Unlt VeCtOI’ fOI’ dII’eCtlon // The naming is inconsistent for the case of neutral track parameters where

// the value is interpreted as 1/p not as g/p. This is intentional to avoid
// having multiple aliases for the same element and for lack of an acceptable

e We somehow ended up with a third o

// Total number of components
o . el
parametrization! e o
N // Number of space-time components (3+1)

eLinPosSize = 4u,

// Number of momentum components
eLinMomSize = 3u,

4]

Andreas Stefl ACTS Workshop — 19.11.2024 39
D

Vertexing interfaces

Andreas Stefl ACTS Workshop — 19.11.2024

40

TracklLlnearizer

e Captures the creation of a
LinearizedTrack from a track
parameter at its reference surface
(beamline) and a linearization point

using TrackLinearizer = Acts::Delegate<Result<LinearizedTrack>(
const BoundTrackParameters& params, double linPointTime,
const Surface& perigeeSurface, const Acts::GeometryContext& gctx,
const Acts::MagneticFieldContext& mctx,
MagneticFieldProvider::Cache& fieldCache)>;

e We have two implementations for this

O HelicalTrackLinearizer

O NumericalTrackLinearizer

Andreas Stefl ACTS Workshop — 19.11.2024 41

IVertexFinder

/// Common interface for both vertex finders and vertex seed finders
class IVertexFinder {

public:
o /// Type-erased wrapper for concrete state objects
e Interface for vertex finders and seeder S KBS TUARYASS eI
o (Primary reason Why ﬁnder and Seeder use /// The main finder method that will return a set of found vertex candidates
/// @param trackVector The input track collection
the same EDM) /// @param vertexingOptions The vertexing options

/// @param state The state object (needs to be created via @c makeState)
/// @return The found vertex candidates

[Type'erased State a”OWS USing Virtual virtual Result<std::vector<Vertex>> find(
. . . . const std::vector<InputTrack>& trackVector,
|nher|tance over templat|ng Wh||e aISO const VertexingOptions& vertexingOptions, State& state) const = 0;
keeplng the usual Interface Convention /// Function to create a state object for this concrete vertex finder

/// @param mctx The magnetic field context

h d f’ /// @return The state object
(t rea 'Sa ety argument) virtual State makeState(const MagneticFieldContext& mctx) const = @;
/// For vertex finders that have an internal state of active tracks, this
o Note: Seeders usua“y Only retu rn one /// method instructs them to mark used tracks for removal
/// @param anyState The state object
i i i dTracks The tracks to b d
Vertex while finders will return all O Duaies emnnliinde Tes ke fule vamses

virtual void setTracksToRemove(
State& anyState, const std::vector<InputTrack>& removedTracks) const = 0;

/// Virtual destructor
virtual ~IVertexFinder() = default;

};

Andreas Stefl ACTS Workshop — 19.11.2024 42
D

