ACTS Workshop, Nov. 18 2024

Elizabeth Berzin (Stanford University)

LDMX Overview

- Missing momentum search for thermal relic light DM
 - Broader physics impact: eN scattering, involves ulletmore complex final states
- Signal characteristics:
 - Typical benchmark: dark photon (A') kinetically mixing with SM photon
 - Dark matter production through dark bremsstrahlung (invisible decay)
 - A's carry most of the beam energy; only visible final state particle is a soft recoil electron
- Requires individual reconstruction of incident electrons, achieved with low-intensity beam (~1-4 electrons on target per event)
- Plan to accumulate 1e16 electrons on target at a beam energy of 8 GeV, using the LCLS II beam at SLAC.

Tracker Geometries

- **Tagger tracker:** reconstructs incoming electron \bullet momentum, and rejects off-energy electrons (low acceptance, high momentum resolution at the beam energy)
 - Consists of 7 double-strip layers, 46.02 mm x 94 mm \bullet active area, in large uniform B-field.

TABLE I: The layout and resolution of	of the tagging tracker.
---------------------------------------	-------------------------

Layer	1	2	3	4	5	6	7
z-position, relative to target (mm)	-607.5	-507.5	-407.5	-307.5	-207.5	-107.5	-7.5
Stereo Angle (mrad)	-100	100	-100	100	-100	100	-100
Bend plane (horizontal) resolution (μ m)	~ 6	~ 6	~ 6	~ 6	~ 6	~ 6	~ 6
Non-bend (vertical) resolution (μ m)	~ 60	~ 60	$\sim \! 60$	~ 60	$\sim \! 60$	$\sim \! 60$	$\sim \! 60$

- **Recoil tracker:** reconstructs recoil electron (high acceptance, good resolution at low momentum)
 - Consists of 4 double-strip layers + 2 axial-only layers for increased acceptance, in downstream fringe field.

Layer	1	2	3	4	5	6
z-position, relative to target (mm)	+7.5	+22.5	+37.5	+52.5	+90	+180
Stereo Angle (mrad)	100	-100	100	-100	-	-
Bend plane (horizontal) resolution (μ m)	≈6	≈ 6	≈ 6	≈ 6	≈ 6	≈ 6
Non-bend (vertical) resolution (μ m)	≈60	≈ 60	≈ 60	≈ 60	-	-

TABLE II: The layout and resolution of the recoil tracker.

Elizabeth Berzin

Overview of Tracking Approach

- Seeding: Initial track parameters estimated used a parabolic fit to sets of five hits.
- **Tracking:** CKF, GSF refitting with ACTS.
- Ambiguity Resolution: Greedy and score-based solvers adapted from ACTS.
- **Performance Requirements:** \bullet
 - 2.4 GeV fake rate < 1e-13 in tagger tracker
 - worst-case beam contamination of 1e-3 with electrons < 2.4 GeV
 - Fake rate for 8 GeV electrons < 1e-2 in recoil tracker
 - Recoil tracker assists ECal in identification of non-interacting electrons
 - Tagger-recoil Δp_T resolution < 4 MeV

• Most important benchmark for tagger: full rejection of off-energy beam electrons assuming

• p_T (momentum transverse to beam direction) limited by multiple scattering in the target

Off-Energy Beam Electrons

- Assuming worst-case 1e-3 beam contamination with 2.4 GeV electrons, tagger must have < 1e-13 mis-reconstruction rate.
- Most off-energy electrons will be bent out of tagger acceptance before reaching the target, but hard scatters may cause low-energy electron to mimic beam-energy electron trajectory.
- For 1e11 electron sample, no off-energy events reconstruct within 5% of beam energy.
 - Handles: electron position at the target, angle with respect to target surface.
- Work underway to demonstrate rejection power in higher statistics sample.

Tagger Resolution

- ~1% momentum resolution near beam energy.
- Position resolution at target in x,y of ~6 um, 60 um.
- Some asymmetry in momentum residual (improvements possible with GSF).

Full-Energy Beam Electrons

- Recoil tracker can assist with identification of non-interacting electrons.
- After selecting truth tracks with lacksquareenergy > 7.6 GeV at the ECal: fraction of events reconstructing < 2.4 GeV: ~1e-5

ACTS in LDMX

Recoil Resolution

- Recoil electron p_T resolution < 5 MeV.
 - Able to reconstruct p within $\sim 5\%$.
- Position resolution at target in x,y of ~7 um, 90 um.
- Position resolution at ECal in x,y of ~15 um, 430 um.

 10^{0}

ACTS in LDMX

p_T change across target

- Track p_T provides signal discrimination handle.

• Require p_T resolution across the target be limited by multiple scattering in target (4 MeV)

Recoil Tracking Efficiency

- Efficiency: Fraction of reconstructed tracks with truth hit fraction > 0.5, relative to all findable tracks
 - Findable track: > 7 hits
- > 90% efficiency for inclusive events and signal events with $m_{A'} \leq 0.1 \,\text{GeV}$, down to recoil electron energies of 50 MeV.
- Drop in efficiency at highest signal mass point, due to angular distribution.

Conclusions

- - Off-energy beam electron rejection in tagger.
 - Full-energy electron rejection in recoil.
 - Tagger/recoil momentum and position resolution.
 - Tagger/recoil efficiencies.
- Ongoing work:
 - Extension of off-energy beam electron rejection studies to 1e13 sample.
 - Improvements to momentum resolution through GSF implementation.
 - Interested in implementing more sophisticated ambiguity solving.

Usage of ACTS in LDMX has been successful in reaching key performance requirements:

Recoil Tracker Acceptance

- Acceptance shown for two selections:
 - Tight: hits in all layers
 - Loose: hits in first two layers and >= 5hits overall

ACTS in LDMX

GSF Refitting

Elizabeth Berzin

ACTS in LDMX