Demonstrator Magnetic Lattice

Discuss Three Lattice Baselines

- Looking at solenoid fields
 - Targeting on-axis field of the form $Bz = b_0 \sin(2 \pi z/L) + b_1 \sin(4 \pi z/L)$
- 2022-11-01-release
 - $L = 1.0, b_0 = 7.0, b_1 = 1.0$
 - Design presented at NuFact22
 - Coils not terribly realistic
 - Baseline lattice to get things going

2024-03-01-prerelease

- $L = 1.0, b_0 = 7.0, b_1 = 1.0$
- Aim to make less unrealistic coils
- 2024-03-28-prerelease
 - L = 0.8, $b_0 = 7.0/0.8$, $b_1 = 1.0/0.8$
 - Following consideration of RF: require odd number of RF cavities
 - Make the lattice shorter suitable for 3 RF cavities
- Only considering solenoids in this talk (no RF, dipoles, wedge)

Linear optics (1)

- Linear optics solution for the 2024-03-01 and 2022-11-01 ideal field
 - Nb calculated by integrating transfer matrix from z→ z+dz and juggling to find the transverse beta

3

International

Linear optics (2)

- Linear optics solution for the 2020-03-28 ideal field
 - Should be identical except β and σ (x) scales by 0.8

 $\int B^2(z) dz = 31.25 \text{ T}^2 \text{ m}$ 80 7.5 5.0 60 -2.5 B²_Z [T²] B_z [T] 0.0 40 -2.520 --5.0 -7.5 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 z [m] z [m] 0.08 0.16 0.24 0.32 0 0.4 0.8 0.8 0.0200 0.19 GeV/c σx 0.19 GeV/c B 0.7 σx 0.2 GeV/c 0.7 B 0.2 GeV/c 0.0175 σ_x 0.21 GeV/c R. 0.21 GeV/c 0.6 0.6 0.0150 1 0.5 0.5 0.0125 [Ξ] 0.4 0.0100 Ĕ β [m] 0.4 0.3 0.3 0.0075 -1 0.2 0.2 0.0050 -2 0.1 0.1 0.0025 -3 0.0 0.0 0.0000 0.1 0.3 0.4 0.5 0.0 0.0 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 p_z [GeV/c] z [m]

 $L = 0.8; b_0 = 0; b_1 = 8.75; b_2 = 1.25; b_3 = 0; b_4 = 0; b_5 = 0$

Solenoid 2024-03-01

- Scan length
- Scan inner radius
- Allow r_{outer}, z_{max} and current density to vary
- At each scan point minimise Sum[B_{test} B_{desired}]², calculated at 100 points
- Not checked stresses/stored energy

Geometry 2024-03-01

Coil fit quality 2024-03-01

- Show a badly-fitted field (left)
- Show the 2024-03-01 coil (right)

Coil fit quality 2024-03-28

 \bigcirc

Geometry 2024-03-28

0.20

length [m]

0.15

0.05

0.10

0.25

0.30

0.35

Field on-axis

тЭ

Parameters

G4BL – Field

Implement solenoid fields in G4BL

Tracking – Linear optics

- Track particles having small deviations through the solenoids
- Find dx_{out}/dx_{in}, dpx_{out}/dx_{in}, etc (Jacobian)
- Juggle to get transfer matrix and one-cell periodic beta

Tracking – Tune

 X_0

ilities Council

- Move particles off the axis
- Calculate tune (FFT)
 - Ps: I may have a factor 2 error I calculate tune for every other cell
- 2024-03-01 seems better behaved
 - Better fit to the reference field

- Look at number of cells survived
 - 2022-11-01 performance significantly worse
 - Why?

2024-03-28 linear optics

 $L = 0.8; b_0 = 0; b_1 = 8.75; b_2 = 1.25; b_3 = 0; b_4 = 0; b_5 = 0$ $\int B^2(z) dz = 31.25 \text{ T}^2 \text{ m}$

- Momentum dependence does not change
- Fields scale by 1/0.8
- Lengths scale by 0.8

2024-03-28 g4bl vs optics

- Consider now 2024-03-28
- Field is higher and more bucked
 - Current density is more squeezed
 - Coil geometry is more constrained

International UON Collider ¨aboration

2024-03-28 g4bl vs optics

- Momentum dependence does not change
- Fields scale by 1/0.8
- Lengths scale by 0.8
 - Acceptance and emittance scales as a length*momentum
 - Beta scales as a length

2024-03-28 g4bl vs tune

- Terrible tracking performance!
- Terrible survival rate
- Poor Dynamic Aperture
- What is driving Dynamic Aperture?

Discussion

- There seems to be a loss mechanism that is not exposed by linear optics calculation
- I note that lattices with fields that are slightly less well fitted appear to perform worse
- If losses are attributed to resonance behaviour at high amplitude there are two ingredients
 - Amplitude dependent tune depression
 - Width of the resonance
 - Can higher harmonics of the B_z excite a wider resonance?
- Or is there another loss mechanism altogether?

