Demonstrator Magnetic Lattice

Rutherford Appleton Laboratory

Discuss Three Lattice Baselines

- Looking at solenoid fields
- Targeting on-axis field of the form

$$
B z=b_{0} \sin (2 \pi z / L)+b_{1} \sin (4 \pi z / L)
$$

- 2022-11-01-release
- $\mathrm{L}=1.0, \mathrm{~b}_{0}=7.0, \mathrm{~b}_{1}=1.0$
- Design presented at NuFact22
- Coils not terribly realistic
- Baseline lattice to get things going
- 2024-03-01-prerelease
- $L=1.0, b_{0}=7.0, b_{1}=1.0$
- Aim to make less unrealistic coils
- 2024-03-28-prerelease
- $\mathrm{L}=0.8, \mathrm{~b}_{0}=7.0 / 0.8, \mathrm{~b}_{1}=1.0 / 0.8$
- Following consideration of RF: require odd number of RF cavities
- Make the lattice shorter suitable for 3 RF cavities
- Only considering solenoids in this talk (no RF, dipoles, wedge)

Linear optics (1)

- Linear optics solution for the 2024-03-01 and 2022-11-01 ideal field
- Nb calculated by integrating transfer matrix from $z \rightarrow z+d z$ and juggling to find the transverse beta
$L=1 ; b_{0}=0 ; b_{1}=7 ; b_{2}=1 ; b_{3}=0 ; b_{4}=0 ; b_{5}=0$
$\int B^{2}(z) d z=25 \mathrm{~T}^{2} \mathrm{~m}$

Linear optics (2)

Linear optics solution for the 2020-03-28 ideal field

- Should be identical except β and $\sigma(x)$ scales by 0.8
$L=0.8 ; b_{0}=0 ; b_{1}=8.75 ; b_{2}=1.25 ; b_{3}=0 ; b_{4}=0 ; b_{5}=0$
$\int B^{2}(z) d z=31.25 \mathrm{~T}^{2} \mathrm{~m}$

Solenoid 2024-03-01

- Scan length
- Scan inner radius
- Allow $r_{\text {outer }} Z_{\text {max }}$ and current density to vary
- At each scan point minimise $S u m\left[B_{\text {test }}-B_{\text {desired }}\right]^{2}$, calculated at 100 points
- Not checked stresses/stored energy

Geometry 2024-03-01

- International IUON Collider ollaboration

Coil fit quality 2024-03-01

- Show a badly-fitted field (left)
- Show the 2024-03-01 coil (right)

Coil fit quality 2024-03-28

Geometry 2024-03-28

minimum coil $z[m]$

Field on-axis

כוכו

- J

Parameters

2022-11-01-release
R inner
R outer
Z min
Z max
Length
Current density
2024-03-01-prerelease
R inner
R outer
Z min
Z max
Length
Current density
2024-03-28-prerelease
R inner
R outer
Z min
Z max
Length
Current density

0.4 m	Non-physical
0.5 m	Nonrent
0.05 m	current
0.15 m	
0.1 m	
$3003.45 \mathrm{~A} / \mathrm{mm} 2$	

$$
\begin{gathered}
0.25 \mathrm{~m} \\
0.575 \mathrm{~m} \\
0.1155 \mathrm{~m} \\
0.2155 \mathrm{~m} \\
0.1 \mathrm{~m} \\
264.5 \mathrm{~A} / \mathrm{mm} 2
\end{gathered}
$$

G4BL - Field

2022-11-01
Max Bz: 7.197 T

2024-03-01

- Implement solenoid fields in G4BL

Tracking - Linear optics

- Track particles having small deviations through the solenoids
- Find $d x_{\text {out }} / d x_{\text {in }}, \mathrm{dpx}_{\text {out }} / d x_{\text {in }}$, etc (Jacobian)
- Juggle to get transfer matrix and one-cell periodic beta

Tracking - Tune

- Move particles off the axis
- Calculate tune (FFT)
- Ps: I may have a factor 2 error - I calculate tune for every other cell
- 2024-03-01 seems better behaved - Better fit to the reference field

Tracking - Tune

2022-11-01

2024-03-01

- Look at number of cells survived
- 2022-11-01 performance significantly worse
- Why?

2024-03-28 linear optics

- Momentum dependence does not change
- Fields scale by $1 / 0.8$
- Lengths scale by 0.8

2024-03-28 g4bl vs optics

- Consider now 2024-03-28
- Field is higher and more bucked
- Current density is more squeezed
- Coil geometry is more constrained

2024-03-28 g4bl vs optics

- Momentum dependence does not change
- Fields scale by $1 / 0.8$
- Lengths scale by 0.8
- Acceptance and emittance scales as a length*momentum
- Beta scales as a length

2024-03-28 g4bl vs tune

- Terrible tracking performance!
- Terrible survival rate
- Poor Dynamic Aperture
- What is driving Dynamic Aperture?

Discussion

- There seems to be a loss mechanism that is not exposed by linear optics calculation
- I note that lattices with fields that are slightly less well fitted appear to perform worse
- If losses are attributed to resonance behaviour at high amplitude there are two ingredients
- Amplitude dependent tune depression
- Width of the resonance
- Can higher harmonics of the B_{z} excite a wider resonance?
- Or is there another loss mechanism altogether?

