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 Analyticity (𝒜), Unitarity (𝒰), Crossing Symmetry (𝒞𝒮) of the 2 → 2 scattering amplitude

 are very powerful general principles to constrain low energy physics.

 Central object: 2 → 2 interacting scattering amplitude, no Lagrangians, no perturbation theory etc.

 Input: Particle spectrum of the theory.  →  Output: Bounds on low energy coefficients.

 I will first try to convince you how the machinery works on a toy model.

 Then we move to a more realistic model, a step towards Higgs sector in SM as an EFT.

Motivation



Toy model:  Massive real scalar 𝜙 

    with 𝑍2 symmetry (no cubic vertex)

 Interacting part of the amplitude 

 Low energy expansion around ҧ𝑥 ≡ 𝑥 − 4𝑚2/3 to preserve 𝒞𝒮

 Question : Can coefficients {𝑐0, 𝑐2, … } attain any value?

      Answer : Let us consider few examples …

Motivation

𝒮2→2 ≡  𝑃3 𝑃4, 𝑜𝑢𝑡 𝑃1 𝑃2, 𝑖𝑛 ⟩ 𝒮2→2 = Id2→2 + 𝑖 ℳ2→2

𝑠 = 𝑝1 + 𝑝2
2

𝑡 = 𝑝1 − 𝑝3
2

𝑢 = 𝑝1 − 𝑝4
2

𝑀 ҧ𝑠, ҧ𝑡, ത𝑢 = 𝑐0 + 𝑐2 ҧ𝑠2 + ҧ𝑡2 + ത𝑢2 + 𝑐3 ҧ𝑠 ҧ𝑡 ത𝑢 …

Mandelstam variables:

𝑠 + 𝑡 + 𝑢 = 4𝑚2

ҧ𝑠 + ҧ𝑡 + ത𝑢 = 0

Notice that there is no dim-6 coefficient 𝑐1 due to (∗). 

∗



 Unitarity: 𝒮†𝒮 = Id implies

 Analyticity: Cauchy’s theorem      and blow up the contour

⇒  Positivity bounds on some {𝑐𝑖} & ratios of {𝑐𝑖}.

Motivation - Example I

2 Im 𝑀2→2 𝑠, 𝑡 = σ𝑛≥2 ∫ 𝑑LIPS2→𝑛 𝑀2→𝑛
2

𝑐2 =
1

𝜋
න

4𝑚2

∞ 𝑑𝑧

(𝑧 − 4𝑚2/3)3 Im 𝑀 𝑧, 4𝑚2/3
positive

≥ 0

≥  ∫ 𝑑LIPS2 𝑀2→2
2

≥ 0

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi ’06]

….

[Bellazzini, Elias Miró, Rattazzi, Riembau, Riva ‘20]

[Caron-Huot, Van Duong ’20]

[Tolley, Wang, Zhou ’20]

…

“optical theorem”

𝑑LIPS𝑛  : Lorentz invariant 

n-particle phase space

𝑐2 =
1

2𝜋𝑖
ර 𝑑𝑧

𝑀 𝑧, 4𝑚2/3

(𝑧 − 4𝑚2/3)3



 Partial wave expansion:

 Partial wave unitarity circle – for physical 𝑠 ≥ 4𝑚2:

 Upper bound on 𝑐2 ∝ ∫ 𝑑𝑧 Σℓ
Im𝑓ℓ 𝑧

𝑧−4𝑚2/3 3 ≤ ∫ 𝑑𝑧 Σℓ
2/𝜌2(𝑧)

𝑧−4𝑚2/3 3

+ crossing symmetry 𝑀 𝑠, 𝑡 = 𝑀 𝑡, 𝑠 = 𝑀 𝑠, 4𝑚2 − 𝑠 − 𝑡 , 

one can show that 0 ≤ 𝑐2 Λ2 ≤ 𝑂 1 ⋅ 4𝜋 2 in an EFT approximation.

Motivation - Example II

𝑀 𝑠, 𝑡 = σℓ=0
∞  16𝜋 (2ℓ+1) 𝑓ℓ 𝑠  𝑃ℓ(cos 𝜃) 

2 Im𝑓ℓ 𝑠 ≥ 𝜌2 𝑠 ⋅ 𝑓ℓ 𝑠 2 ⇒ 2/𝜌2 ≥ Im𝑓ℓ 𝑠 ≥ 0
𝜌2 𝑠 ≡ 𝑠 − 4𝑚2/ 𝑠 

two-body phase space factor

[Caron-Huot, Van Duong ’20]

Im 𝑀 𝑠, 𝑡 = σℓ=0
∞  16𝜋 (2ℓ+1) Im𝑓ℓ 𝑠  𝑃ℓ(cos 𝜃) 



 What about 𝑐0? It is non-dispersive, i.e.

 Blowing up      around 𝑧 = 𝑠   gives 

  ⇒ c0 = 𝑀 𝑠 = 4𝑚2/3  gets contribution from both { Im𝑀 𝑠 , 𝑐∞}

 Alternative way to write – choosing a different subtraction constant.

 Blowing up        gives

⇒ We traded 𝑐∞ for another unknown 𝑀(𝑠0).

 Projecting onto spin-zero (Roy equation)

Motivation - Example III

𝑀 𝑠 = 𝑐∞ +
1

𝜋
 න

cuts

𝑑𝑧
Im 𝑀 𝑧

(𝑧 − 𝑠)
𝑀(𝑠) =

1

2𝜋𝑖
ර 𝑑𝑧

𝑀 𝑧

(𝑧 − 𝑠)

𝑀 𝑠 =
𝑠 − 𝑠0

2

2𝜋𝑖
ර

𝑑𝑧 𝑀 𝑧

𝑧 − 𝑠 𝑧 − 𝑠0
2

𝑀 𝑠 − 𝑀(𝑠0)

𝑠 − 𝑠0
2

=
1

𝜋
න

cuts

𝑑𝑧
Im 𝑀 𝑧

𝑧 − 𝑠 𝑧 − 𝑠0
2

𝑐0

16𝜋
= Re 𝑓0 𝑠 −

1

𝜋
 𝑝. 𝑣. න

4𝑚2

∞

𝑑𝑧 Σℓ=0
∞  ker0,ℓ 𝑠, 𝑧 Im 𝑓ℓ 𝑧

bounded by 
unitarity circle!

bounded by 
unitarity circle!



 We learnt that the answer: No, 𝑐𝑖  cannot take arbitrary values!

 What are the allowed values then? 

We can use the tool: Numerical primal/dual S-matrix bootstrap

 to study a single coefficient

 −8.02. . < 𝑐0 ⋅ (32𝜋) < 2.6613. .

 or a multi-dimensional system

  (𝑐0, 𝑐2)  =  𝐹[Re𝑓0(𝑠), Im𝑓ℓ(𝑠)]

 with 𝐹 a linear functional.

Motivation - Space of low energy coefficients

allowed

excluded

[Elias Miró, Guerrieri, MAG ’22]

[Chen, Fitzpatrick, Karateev ’22]

[Tourkine, Zhiboedov ‘23]



Interlude: S-matrix Bootstrap



Interlude – Numerical S-matrix Bootstrap

Idea: Parametrize the amplitude in a basis of functions that makes manifest a subset of 𝒜, 𝒰, 𝒞𝒮 .

 Partial wave expansion M = σℓ 𝑓ℓ 𝑠  diagonalizes 𝒰, but {𝒜, 𝒞𝒮} mixes them.

 𝜌-expansion manifestly solves for {𝒜, 𝒞𝒮}, but 𝒰 is non-trivial.

  𝑀 = σ𝑎,𝑏,𝑐 𝛼 𝑎𝑏𝑐 𝜌 𝑠 𝑎𝜌 𝑡 𝑏𝜌 𝑢 𝑐 with 𝜌 𝑠 =
2− 4𝑚2−𝑠

2+ 4𝑚2−𝑠

Look for numerical solutions to the missing subset 

In case of 𝒰, by using semi-definite linear programming.

Optimize for the desired objectives 𝑐𝑖 , giving us

 the bounds 𝑐𝑖
𝑚𝑖𝑛/𝑚𝑎𝑥

,

 the extremal solution 𝑀𝑚𝑖𝑛/𝑚𝑎𝑥(𝑠, 𝑡, 𝑢).

[Paulos, Penedones, Toledo, van Rees, Vieira, Homrich ’16 – ‘19] 

1 − (𝜌2/2) Im𝑓ℓ 𝜌 Re 𝑓ℓ

𝜌 Re 𝑓ℓ 2 Im 𝑓ℓ
≽ 0



Interlude – Numerical S-matrix Bootstrap

 An optimization problem 𝑃 with the objective 𝒪 over the set of admissible 𝑀(𝑠, 𝑡).

 

 𝑃 admits two approaches.

 Primal approach: 

 Construct valid set of solutions and search for its max/min. (“filling inside”).

 Dual approach: 

 Construct a dual problem ത𝑃 with the dual objective ത𝒪 > 𝒪. 

 Solving it “rules out” solutions.  

      analyticity

𝒪 = max
{𝑀(𝑠,𝑡)}

±𝑐𝑖 subject to unitarity: 2 Im 𝑀 ≥ ∫ 𝑀 2

       crossing:  𝑀 𝑠, 𝑡 = 𝑀 𝑡, 𝑠 = 𝑀(𝑠, 𝑢)  
 



Continuing



 S-matrix Bootstrap hinted at optimal constraints on low energy parameters. 

 Can we make use of it for potential BSM applications?

 Consider the Higgs sector of the SM

 in custodial symmetric limit 𝑆𝑂 4 ≃ 𝑆𝑈 2 𝐿 × 𝑆𝑈 2 𝑅

 assume 𝑔𝑆𝑀 ≪ 𝑔𝐵𝑆𝑀 

 A Lagrangian description of this limit

 Leading dim-6 deviation from the SM Lagrangian:

 

Motivation – Example IV

𝜙2 𝜕𝜙
2

∼ 𝜕𝜇 𝐻†𝐻 𝜕𝜇 𝐻†𝐻 ≡ 𝒪𝐻

ℒ =
1

2
𝜕𝜙

2
−

𝑚2

2
𝜙2 −

𝜆

8
𝜙4 −

𝑔𝐻

4
𝜙2 𝜕𝜙

2
+ ⋯



Next model:  Massive real 𝑂(𝑛) scalars 𝜙𝑎∈{1…𝑛} 

 Two-to-two amplitude 

 Low energy expansion

 We study the bounds on the non-dispersive coeff.s (cL,cH)

Example IV

𝑠 = 𝑝1 + 𝑝2
2

𝑡 = 𝑝1 − 𝑝3
2

𝑢 = 𝑝1 − 𝑝4
2

𝑀 𝑠|𝑡, 𝑢

4𝜋 2
 =  𝑐𝜆 + 𝑐𝐻 ҧ𝑠 + 𝑐2 ҧ𝑡2 + ത𝑢2 + 𝑐2

′  ҧ𝑠2 + 𝑂( ҧ𝑠4, ҧ𝑡4, ത𝑢4)

Mandelstam variables:

𝑠 + 𝑡 + 𝑢 = 4𝑚2

ҧ𝑠 + ҧ𝑡 + ത𝑢 = 0

Notice that there is now a dim-6 coefficient 𝑐𝐻!

∗

𝐌𝑎𝑏
𝑐𝑑 = 𝑀 𝑠 𝑡, 𝑢  𝛿𝑎𝑏𝛿𝑐𝑑 + 𝑀 𝑡 𝑢, 𝑠 𝛿𝑎

𝑐𝛿𝑏
𝑑 + 𝑀 𝑢 𝑠, 𝑡 𝛿𝑎

𝑑𝛿𝑏
𝑐

𝑀(𝑠|𝑡, 𝑢) is symmetric only in 𝑡 𝑢.

𝑐𝐻

𝜋

3
(𝑠 − 4) = Re 𝑓1

(𝑎𝑛𝑡𝑖)
𝑠 −

1

𝜋
න

4𝑚2

∞

𝑑𝑧 Σℓ,rep L1,ℓ
(𝑎𝑛𝑡𝑖,𝑟𝑒𝑝)

𝑠, 𝑧  Im 𝑓ℓ
𝑟𝑒𝑝

𝑧

𝑐𝜆 2𝜋 = Re 𝑓0
(𝑠𝑦𝑚)

𝑠 −
1

𝜋
න

4𝑚2

∞

𝑑𝑧 Σℓ,rep K1,ℓ
(𝑠𝑦𝑚,𝑟𝑒𝑝)

𝑠, 𝑧  Im 𝑓ℓ
𝑟𝑒𝑝

𝑧



Next model:  Massive real 𝑂(𝑛) scalars 𝜙𝑎∈{1…𝑛} 

Example IV

 Nonperturbative two-sided (dual) bound:

−0.46 < 𝑐𝐻 ⋅ 𝑚2 < 1.07

 The boundary is strongly coupled.

 We detect various threshold singularities 

in each section of 𝐴 − 𝐵 − 𝐶 − 𝐷.

 We observe 𝑐𝜆 ~ 𝑂(1) and 𝑐𝐻  ~ 𝑂(1)

but, typically in an EFT, we expect

𝑐𝜆 ~ 𝑂(1) and 𝑐𝐻  ~ 𝑂 1 ⋅ 𝑚2/Λ2

 

 Weakly coupled EFTs near the origin.



A simple UV completion confirms this insight:

 If we compute two-to-two scattering for 𝜙𝑎 and expand for small energies

      = −𝜆 +
𝜆2

16𝜋2

3 𝑛+2

16
3 2 tan−1 1

2
− 2  ҧ𝑠 + ⋯

     

      =
𝑔2

𝑀2−4𝑚2/3
+

𝑔2

𝑀2−4𝑚2/3 2 ҧ𝑠 +
𝑔2

𝑀2−4𝑚2/3 3 ҧ𝑠2 + ⋯

 𝑐𝐻 w.r.t. 𝑐𝜆 is either coupling (𝜆) supressed or scale (𝑚2/𝑀2) suppressed.

 Let us zoom further in the origin to locate EFT-like amplitudes.

Example IV

ℒ =
1

2
𝜕𝜙

2
−

1

2
𝑚2𝜙2 −

𝜆

8
𝜙 ⋅ 𝜙

2
+

1

2
𝜕𝜎 2 −

1

2
𝑀2𝜎2 − 𝑔 𝜎 (𝜙 ⋅ 𝜙)



Study the 3d-system {𝑐𝜆, 𝑐𝐻 , 𝑐2 ≥ 0}

Notice the agreement of one-loop 𝜙4 amplitude (red)

with the nonperturbative boundary.

Example IV – EFT approximation

How can we isolate EFTs in the vast space 

of strongly coupled amplitudes?

• Introduce the two scales 𝑚2 and Λ2

and the scale separation 𝑚2/Λ2 ≪ 1 

through the discontinuity 𝐼𝑚 𝑓ℓ(𝑠) 

• We call this limit “exact UV domination”

• It is possible to refine it by fixing 

Im𝑓ℓ
𝐼𝑅(𝑠) to some desired profile 

obtained from experiments.

the IR cut is set to zero



Example IV – EFT approximation

 We dial up Λ2 ∈ 4𝑚2, 64𝑚2  and discover a scaling limit where −0.31 < 𝑐𝐻 ⋅ Λ2 < 0.35

 Global fits from experiments report:  𝑐𝐻 ⋅ Λ2 < 𝑂 1 ⋅ 1 𝑇𝑒𝑉 

 

0.35

−0.31



 Numerical S-matrix bootstrap allows us to study the space of theories with high precision, given a set of 

very general assumptions, such as unitarity, analyticity, and crossing symmetry.

     Check out other 4d examples, such as fluxtubes [1906.08098], neutral Goldstones [2310.06027] etc.

 Theoretical constraints can be useful / complementary to experimental ones (see bounds on 𝑐𝐻 ⋅ Λ2)

Some future outlook:

 Add other particles in the spectrum (transverse + longitudinal modes of heavy gauge bosons)

 Further modelling of the IR data – the more constraints in the input, the stricter the bounds we get.

 Adding inelasticity (particle production) would lead to tighter constraints.

Conclusions



Thank you!



Dual for O(n) amplitudes

 We dualize the problem by means of a Lagrangian:

 𝒫 ≡ 𝑓ℓ 𝑠  are primal variables, and 𝒟 ≡ {𝑤, 𝜆, 𝑣} are Lagrange multipliers.

 Integrating out 𝒫, gives the dual functional d(𝒟) ≡ max
𝒫

ℒ(𝒫, 𝒟).

 For all choices of 𝑤, 𝜆, 𝑣 :

 To do the optimal choice:

 Nonlinear → Semidefinite linear conditions → SDPB.

ℒ 𝒫, 𝒟 = 𝑐𝐻 𝑓ℓ + 𝑤 ⋅ Roy eq. 𝑓ℓ + 𝜆 ⋅ unitarity 𝑓ℓ + 𝜈 ⋅ crossing[𝑓ℓ]

d(𝒟) ≥ 𝑐𝑖



Duality gap in O(n)



Regge Physics of O(1)

 Higher spin resonances.

 𝜋 phase rotations in each 𝑆ℓ(𝑠).

 They come in ~ linear Regge trajectories + align with asymptotic growth 𝑀 𝑠, 𝑡 ∼ 𝛽 𝑡 𝑠𝛼(𝑡).



Analyticity

 Lehmann ellipses (small/large) for σℓ 𝑎ℓ 𝑃ℓ(𝑧)

 For the amplitude, 𝑧𝑠𝑚𝑎𝑙𝑙 = 1 + 8𝑚2/(𝑠 − 4𝑚2)

 For its discontinuity, 𝑧𝑙𝑎𝑟𝑔𝑒 = 2𝑧𝑠𝑚𝑎𝑙𝑙
2 − 1 = 1 + 32𝑚2/ 𝑠 − 4𝑚2 2

 Ellipses shrink to 1 for large s.

 Martin’s extension using unitarity + N-subtracted dispersion relations.

 Analytic region for |𝑡| < 4𝑚2 independent of s.

+ elastic unitarity:

 Double subtracted dispersion relation holds for any real −28𝑚2 < 𝑡 < 4𝑚2.

 Dual approach is limited by Λ𝑐
2 = 12𝑚2 for fixed-t dispersion relations.
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