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 Analyticity (𝒜), Unitarity (𝒰), Crossing Symmetry (𝒞𝒮) of the 2 → 2 scattering amplitude

 are very powerful general principles to constrain low energy physics.

 Central object: 2 → 2 interacting scattering amplitude, no Lagrangians, no perturbation theory etc.

 Input: Particle spectrum of the theory.  →  Output: Bounds on low energy coefficients.

 I will first try to convince you how the machinery works on a toy model.

 Then we move to a more realistic model, a step towards Higgs sector in SM as an EFT.

Motivation



Toy model:  Massive real scalar 𝜙 

    with 𝑍2 symmetry (no cubic vertex)

 Interacting part of the amplitude 

 Low energy expansion around ҧ𝑥 ≡ 𝑥 − 4𝑚2/3 to preserve 𝒞𝒮

 Question : Can coefficients {𝑐0, 𝑐2, … } attain any value?

      Answer : Let us consider few examples …

Motivation

𝒮2→2 ≡  𝑃3 𝑃4, 𝑜𝑢𝑡 𝑃1 𝑃2, 𝑖𝑛 ⟩ 𝒮2→2 = Id2→2 + 𝑖 ℳ2→2

𝑠 = 𝑝1 + 𝑝2
2

𝑡 = 𝑝1 − 𝑝3
2

𝑢 = 𝑝1 − 𝑝4
2

𝑀 ҧ𝑠, ҧ𝑡, ത𝑢 = 𝑐0 + 𝑐2 ҧ𝑠2 + ҧ𝑡2 + ത𝑢2 + 𝑐3 ҧ𝑠 ҧ𝑡 ത𝑢 …

Mandelstam variables:

𝑠 + 𝑡 + 𝑢 = 4𝑚2

ҧ𝑠 + ҧ𝑡 + ത𝑢 = 0

Notice that there is no dim-6 coefficient 𝑐1 due to (∗). 

∗



 Unitarity: 𝒮†𝒮 = Id implies

 Analyticity: Cauchy’s theorem      and blow up the contour

⇒  Positivity bounds on some {𝑐𝑖} & ratios of {𝑐𝑖}.

Motivation - Example I

2 Im 𝑀2→2 𝑠, 𝑡 = σ𝑛≥2 ∫ 𝑑LIPS2→𝑛 𝑀2→𝑛
2

𝑐2 =
1

𝜋
න

4𝑚2

∞ 𝑑𝑧

(𝑧 − 4𝑚2/3)3 Im 𝑀 𝑧, 4𝑚2/3
positive

≥ 0

≥  ∫ 𝑑LIPS2 𝑀2→2
2

≥ 0

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi ’06]

….

[Bellazzini, Elias Miró, Rattazzi, Riembau, Riva ‘20]

[Caron-Huot, Van Duong ’20]

[Tolley, Wang, Zhou ’20]

…

“optical theorem”

𝑑LIPS𝑛  : Lorentz invariant 

n-particle phase space

𝑐2 =
1

2𝜋𝑖
ර 𝑑𝑧

𝑀 𝑧, 4𝑚2/3

(𝑧 − 4𝑚2/3)3



 Partial wave expansion:

 Partial wave unitarity circle – for physical 𝑠 ≥ 4𝑚2:

 Upper bound on 𝑐2 ∝ ∫ 𝑑𝑧 Σℓ
Im𝑓ℓ 𝑧

𝑧−4𝑚2/3 3 ≤ ∫ 𝑑𝑧 Σℓ
2/𝜌2(𝑧)

𝑧−4𝑚2/3 3

+ crossing symmetry 𝑀 𝑠, 𝑡 = 𝑀 𝑡, 𝑠 = 𝑀 𝑠, 4𝑚2 − 𝑠 − 𝑡 , 

one can show that 0 ≤ 𝑐2 Λ2 ≤ 𝑂 1 ⋅ 4𝜋 2 in an EFT approximation.

Motivation - Example II

𝑀 𝑠, 𝑡 = σℓ=0
∞  16𝜋 (2ℓ+1) 𝑓ℓ 𝑠  𝑃ℓ(cos 𝜃) 

2 Im𝑓ℓ 𝑠 ≥ 𝜌2 𝑠 ⋅ 𝑓ℓ 𝑠 2 ⇒ 2/𝜌2 ≥ Im𝑓ℓ 𝑠 ≥ 0
𝜌2 𝑠 ≡ 𝑠 − 4𝑚2/ 𝑠 

two-body phase space factor

[Caron-Huot, Van Duong ’20]

Im 𝑀 𝑠, 𝑡 = σℓ=0
∞  16𝜋 (2ℓ+1) Im𝑓ℓ 𝑠  𝑃ℓ(cos 𝜃) 



 What about 𝑐0? It is non-dispersive, i.e.

 Blowing up      around 𝑧 = 𝑠   gives 

  ⇒ c0 = 𝑀 𝑠 = 4𝑚2/3  gets contribution from both { Im𝑀 𝑠 , 𝑐∞}

 Alternative way to write – choosing a different subtraction constant.

 Blowing up        gives

⇒ We traded 𝑐∞ for another unknown 𝑀(𝑠0).

 Projecting onto spin-zero (Roy equation)

Motivation - Example III

𝑀 𝑠 = 𝑐∞ +
1

𝜋
 න

cuts

𝑑𝑧
Im 𝑀 𝑧

(𝑧 − 𝑠)
𝑀(𝑠) =

1

2𝜋𝑖
ර 𝑑𝑧

𝑀 𝑧

(𝑧 − 𝑠)

𝑀 𝑠 =
𝑠 − 𝑠0

2

2𝜋𝑖
ර

𝑑𝑧 𝑀 𝑧

𝑧 − 𝑠 𝑧 − 𝑠0
2

𝑀 𝑠 − 𝑀(𝑠0)

𝑠 − 𝑠0
2

=
1

𝜋
න

cuts

𝑑𝑧
Im 𝑀 𝑧

𝑧 − 𝑠 𝑧 − 𝑠0
2

𝑐0

16𝜋
= Re 𝑓0 𝑠 −

1

𝜋
 𝑝. 𝑣. න

4𝑚2

∞

𝑑𝑧 Σℓ=0
∞  ker0,ℓ 𝑠, 𝑧 Im 𝑓ℓ 𝑧

bounded by 
unitarity circle!

bounded by 
unitarity circle!



 We learnt that the answer: No, 𝑐𝑖  cannot take arbitrary values!

 What are the allowed values then? 

We can use the tool: Numerical primal/dual S-matrix bootstrap

 to study a single coefficient

 −8.02. . < 𝑐0 ⋅ (32𝜋) < 2.6613. .

 or a multi-dimensional system

  (𝑐0, 𝑐2)  =  𝐹[Re𝑓0(𝑠), Im𝑓ℓ(𝑠)]

 with 𝐹 a linear functional.

Motivation - Space of low energy coefficients

allowed

excluded

[Elias Miró, Guerrieri, MAG ’22]

[Chen, Fitzpatrick, Karateev ’22]

[Tourkine, Zhiboedov ‘23]



Interlude: S-matrix Bootstrap



Interlude – Numerical S-matrix Bootstrap

Idea: Parametrize the amplitude in a basis of functions that makes manifest a subset of 𝒜, 𝒰, 𝒞𝒮 .

 Partial wave expansion M = σℓ 𝑓ℓ 𝑠  diagonalizes 𝒰, but {𝒜, 𝒞𝒮} mixes them.

 𝜌-expansion manifestly solves for {𝒜, 𝒞𝒮}, but 𝒰 is non-trivial.

  𝑀 = σ𝑎,𝑏,𝑐 𝛼 𝑎𝑏𝑐 𝜌 𝑠 𝑎𝜌 𝑡 𝑏𝜌 𝑢 𝑐 with 𝜌 𝑠 =
2− 4𝑚2−𝑠

2+ 4𝑚2−𝑠

Look for numerical solutions to the missing subset 

In case of 𝒰, by using semi-definite linear programming.

Optimize for the desired objectives 𝑐𝑖 , giving us

 the bounds 𝑐𝑖
𝑚𝑖𝑛/𝑚𝑎𝑥

,

 the extremal solution 𝑀𝑚𝑖𝑛/𝑚𝑎𝑥(𝑠, 𝑡, 𝑢).

[Paulos, Penedones, Toledo, van Rees, Vieira, Homrich ’16 – ‘19] 

1 − (𝜌2/2) Im𝑓ℓ 𝜌 Re 𝑓ℓ

𝜌 Re 𝑓ℓ 2 Im 𝑓ℓ
≽ 0



Interlude – Numerical S-matrix Bootstrap

 An optimization problem 𝑃 with the objective 𝒪 over the set of admissible 𝑀(𝑠, 𝑡).

 

 𝑃 admits two approaches.

 Primal approach: 

 Construct valid set of solutions and search for its max/min. (“filling inside”).

 Dual approach: 

 Construct a dual problem ത𝑃 with the dual objective ത𝒪 > 𝒪. 

 Solving it “rules out” solutions.  

      analyticity

𝒪 = max
{𝑀(𝑠,𝑡)}

±𝑐𝑖 subject to unitarity: 2 Im 𝑀 ≥ ∫ 𝑀 2

       crossing:  𝑀 𝑠, 𝑡 = 𝑀 𝑡, 𝑠 = 𝑀(𝑠, 𝑢)  
 



Continuing



 S-matrix Bootstrap hinted at optimal constraints on low energy parameters. 

 Can we make use of it for potential BSM applications?

 Consider the Higgs sector of the SM

 in custodial symmetric limit 𝑆𝑂 4 ≃ 𝑆𝑈 2 𝐿 × 𝑆𝑈 2 𝑅

 assume 𝑔𝑆𝑀 ≪ 𝑔𝐵𝑆𝑀 

 A Lagrangian description of this limit

 Leading dim-6 deviation from the SM Lagrangian:

 

Motivation – Example IV

𝜙2 𝜕𝜙
2

∼ 𝜕𝜇 𝐻†𝐻 𝜕𝜇 𝐻†𝐻 ≡ 𝒪𝐻

ℒ =
1

2
𝜕𝜙

2
−

𝑚2

2
𝜙2 −

𝜆

8
𝜙4 −

𝑔𝐻

4
𝜙2 𝜕𝜙

2
+ ⋯



Next model:  Massive real 𝑂(𝑛) scalars 𝜙𝑎∈{1…𝑛} 

 Two-to-two amplitude 

 Low energy expansion

 We study the bounds on the non-dispersive coeff.s (cL,cH)

Example IV

𝑠 = 𝑝1 + 𝑝2
2

𝑡 = 𝑝1 − 𝑝3
2

𝑢 = 𝑝1 − 𝑝4
2

𝑀 𝑠|𝑡, 𝑢

4𝜋 2
 =  𝑐𝜆 + 𝑐𝐻 ҧ𝑠 + 𝑐2 ҧ𝑡2 + ത𝑢2 + 𝑐2

′  ҧ𝑠2 + 𝑂( ҧ𝑠4, ҧ𝑡4, ത𝑢4)

Mandelstam variables:

𝑠 + 𝑡 + 𝑢 = 4𝑚2

ҧ𝑠 + ҧ𝑡 + ത𝑢 = 0

Notice that there is now a dim-6 coefficient 𝑐𝐻!

∗

𝐌𝑎𝑏
𝑐𝑑 = 𝑀 𝑠 𝑡, 𝑢  𝛿𝑎𝑏𝛿𝑐𝑑 + 𝑀 𝑡 𝑢, 𝑠 𝛿𝑎

𝑐𝛿𝑏
𝑑 + 𝑀 𝑢 𝑠, 𝑡 𝛿𝑎

𝑑𝛿𝑏
𝑐

𝑀(𝑠|𝑡, 𝑢) is symmetric only in 𝑡 𝑢.

𝑐𝐻

𝜋

3
(𝑠 − 4) = Re 𝑓1

(𝑎𝑛𝑡𝑖)
𝑠 −

1

𝜋
න

4𝑚2

∞

𝑑𝑧 Σℓ,rep L1,ℓ
(𝑎𝑛𝑡𝑖,𝑟𝑒𝑝)

𝑠, 𝑧  Im 𝑓ℓ
𝑟𝑒𝑝

𝑧

𝑐𝜆 2𝜋 = Re 𝑓0
(𝑠𝑦𝑚)

𝑠 −
1

𝜋
න

4𝑚2

∞

𝑑𝑧 Σℓ,rep K1,ℓ
(𝑠𝑦𝑚,𝑟𝑒𝑝)

𝑠, 𝑧  Im 𝑓ℓ
𝑟𝑒𝑝

𝑧



Next model:  Massive real 𝑂(𝑛) scalars 𝜙𝑎∈{1…𝑛} 

Example IV

 Nonperturbative two-sided (dual) bound:

−0.46 < 𝑐𝐻 ⋅ 𝑚2 < 1.07

 The boundary is strongly coupled.

 We detect various threshold singularities 

in each section of 𝐴 − 𝐵 − 𝐶 − 𝐷.

 We observe 𝑐𝜆 ~ 𝑂(1) and 𝑐𝐻  ~ 𝑂(1)

but, typically in an EFT, we expect

𝑐𝜆 ~ 𝑂(1) and 𝑐𝐻  ~ 𝑂 1 ⋅ 𝑚2/Λ2

 

 Weakly coupled EFTs near the origin.



A simple UV completion confirms this insight:

 If we compute two-to-two scattering for 𝜙𝑎 and expand for small energies

      = −𝜆 +
𝜆2

16𝜋2

3 𝑛+2

16
3 2 tan−1 1

2
− 2  ҧ𝑠 + ⋯

     

      =
𝑔2

𝑀2−4𝑚2/3
+

𝑔2

𝑀2−4𝑚2/3 2 ҧ𝑠 +
𝑔2

𝑀2−4𝑚2/3 3 ҧ𝑠2 + ⋯

 𝑐𝐻 w.r.t. 𝑐𝜆 is either coupling (𝜆) supressed or scale (𝑚2/𝑀2) suppressed.

 Let us zoom further in the origin to locate EFT-like amplitudes.

Example IV

ℒ =
1

2
𝜕𝜙

2
−

1

2
𝑚2𝜙2 −

𝜆

8
𝜙 ⋅ 𝜙

2
+

1

2
𝜕𝜎 2 −

1

2
𝑀2𝜎2 − 𝑔 𝜎 (𝜙 ⋅ 𝜙)



Study the 3d-system {𝑐𝜆, 𝑐𝐻 , 𝑐2 ≥ 0}

Notice the agreement of one-loop 𝜙4 amplitude (red)

with the nonperturbative boundary.

Example IV – EFT approximation

How can we isolate EFTs in the vast space 

of strongly coupled amplitudes?

• Introduce the two scales 𝑚2 and Λ2

and the scale separation 𝑚2/Λ2 ≪ 1 

through the discontinuity 𝐼𝑚 𝑓ℓ(𝑠) 

• We call this limit “exact UV domination”

• It is possible to refine it by fixing 

Im𝑓ℓ
𝐼𝑅(𝑠) to some desired profile 

obtained from experiments.

the IR cut is set to zero



Example IV – EFT approximation

 We dial up Λ2 ∈ 4𝑚2, 64𝑚2  and discover a scaling limit where −0.31 < 𝑐𝐻 ⋅ Λ2 < 0.35

 Global fits from experiments report:  𝑐𝐻 ⋅ Λ2 < 𝑂 1 ⋅ 1 𝑇𝑒𝑉 

 

0.35

−0.31



 Numerical S-matrix bootstrap allows us to study the space of theories with high precision, given a set of 

very general assumptions, such as unitarity, analyticity, and crossing symmetry.

     Check out other 4d examples, such as fluxtubes [1906.08098], neutral Goldstones [2310.06027] etc.

 Theoretical constraints can be useful / complementary to experimental ones (see bounds on 𝑐𝐻 ⋅ Λ2)

Some future outlook:

 Add other particles in the spectrum (transverse + longitudinal modes of heavy gauge bosons)

 Further modelling of the IR data – the more constraints in the input, the stricter the bounds we get.

 Adding inelasticity (particle production) would lead to tighter constraints.

Conclusions



Thank you!



Dual for O(n) amplitudes

 We dualize the problem by means of a Lagrangian:

 𝒫 ≡ 𝑓ℓ 𝑠  are primal variables, and 𝒟 ≡ {𝑤, 𝜆, 𝑣} are Lagrange multipliers.

 Integrating out 𝒫, gives the dual functional d(𝒟) ≡ max
𝒫

ℒ(𝒫, 𝒟).

 For all choices of 𝑤, 𝜆, 𝑣 :

 To do the optimal choice:

 Nonlinear → Semidefinite linear conditions → SDPB.

ℒ 𝒫, 𝒟 = 𝑐𝐻 𝑓ℓ + 𝑤 ⋅ Roy eq. 𝑓ℓ + 𝜆 ⋅ unitarity 𝑓ℓ + 𝜈 ⋅ crossing[𝑓ℓ]

d(𝒟) ≥ 𝑐𝑖



Duality gap in O(n)



Regge Physics of O(1)

 Higher spin resonances.

 𝜋 phase rotations in each 𝑆ℓ(𝑠).

 They come in ~ linear Regge trajectories + align with asymptotic growth 𝑀 𝑠, 𝑡 ∼ 𝛽 𝑡 𝑠𝛼(𝑡).



Analyticity

 Lehmann ellipses (small/large) for σℓ 𝑎ℓ 𝑃ℓ(𝑧)

 For the amplitude, 𝑧𝑠𝑚𝑎𝑙𝑙 = 1 + 8𝑚2/(𝑠 − 4𝑚2)

 For its discontinuity, 𝑧𝑙𝑎𝑟𝑔𝑒 = 2𝑧𝑠𝑚𝑎𝑙𝑙
2 − 1 = 1 + 32𝑚2/ 𝑠 − 4𝑚2 2

 Ellipses shrink to 1 for large s.

 Martin’s extension using unitarity + N-subtracted dispersion relations.

 Analytic region for |𝑡| < 4𝑚2 independent of s.

+ elastic unitarity:

 Double subtracted dispersion relation holds for any real −28𝑚2 < 𝑡 < 4𝑚2.

 Dual approach is limited by Λ𝑐
2 = 12𝑚2 for fixed-t dispersion relations.
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