Extremal Higgs couplings

Mehmet Asım Gümüş, LAPTH Annecy CERN-Annecy-Geneva-EPFL (CAGE) Meeting

21.05.2024

Motivation

Analyticity (\mathcal{A} **), Unitarity (** \mathcal{U} **), Crossing Symmetry (** \mathcal{CS} **) of the** $2 \rightarrow 2$ **scattering amplitude** are very powerful general principles to constrain **low energy physics**.

 \triangleright Central object: 2 → 2 interacting scattering amplitude, no Lagrangians, no perturbation theory etc. *Input:* Particle spectrum of the theory. → Output: Bounds on low energy coefficients.

I will first try to convince you how the machinery works on a toy model.

Then we move to a more realistic model, a step towards Higgs sector in SM as an EFT.

Motivation

Toy model: Massive real scalar ϕ

with Z_2 symmetry (no cubic vertex)

Interacting part of the amplitude

 $S_{2\to 2} \equiv \langle P_3 P_4, out \mid P_1 P_2, in \rangle$ $S_{2\to 2} = \text{Id}_{2\to 2} + i \mathcal{M}_{2\to 2}$

Low energy expansion around $\bar{x} \equiv x - 4m^2/3$ to preserve CS $M(\bar{s}, \bar{t}, \bar{u}) = c_0 + c_2 (\bar{s}^2 + \bar{t}^2 + \bar{u}^2) + c_3 \bar{s} \bar{t} \bar{u} ...$ Notice that there is no dim-6 coefficient c_1 due to $(*)$.

Question : Can coefficients $\{c_0, c_2, ...\}$ attain any value? **Answer :** Let us consider few examples …

Mandelstam variables:

- $s = (p_1 + p_2)^2$ $t = (p_1 - p_3)^2$ $u = (p_1 - p_4)^2$
- $s + t + u = 4m^2$ $\bar{s} + \bar{t} + \bar{u} = 0$ *

Motivation - Example I

 \blacktriangleright Unitarity: $S^{\dagger}S =$ Id implies

$$
2 \operatorname{Im} M_{2 \to 2}(s, t) = \sum_{n \ge 2} \int d\text{LIPS}_{2 \to n} |M_{2 \to n}|^2
$$

\n
$$
\ge \int d\text{LIPS}_2 |M_{2 \to 2}|^2
$$

\n
$$
\ge 0
$$

"optical theorem"

 $dLIPS_n$: Lorentz invariant n-particle phase space

Analyticity: Cauchy's theorem $c_2 = \frac{1}{2\pi i} \oint dz \frac{M(z, 4m/3)}{(z - 4m^2/3)^3}$ and blow up the contour 1 $\frac{1}{2\pi i}\oint dz$ $M(z, 4m^2/3)$ $(z-4m^2/3)^3$

$$
c_2 = \frac{1}{\pi} \int_{4m^2}^{\infty} \frac{dz}{(z - 4m^2/3)^3} \underbrace{\text{Im } M(z, 4m^2/3)}_{\text{positive}} \ge 0
$$

 \Rightarrow Positivity bounds on some $\{c_i\}$ & ratios of $\{c_i\}$.

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi '06]

…. [Bellazzini, Elias Miró, Rattazzi, Riembau, Riva '20] [Caron-Huot, Van Duong '20] [Tolley, Wang, Zhou '20] …

Motivation - Example II

Partial wave expansion:

 $M(s,t) = \sum_{\ell=0}^{\infty} 16\pi (2\ell+1) f_{\ell}(s) P_{\ell}(\cos\theta)$ Im $M(s, t) = \sum_{\ell=0}^{\infty} 16\pi (2\ell+1)$ Im $f_{\ell}(s) P_{\ell}(\cos \theta)$

Partial wave unitarity circle – for physical $s \geq 4m^2$: $2 \text{ Im} f_{\ell}(s) \ge \rho^2(s) \cdot |f_{\ell}(s)|^2 \qquad \Rightarrow \qquad 2/\rho^2 \ge \text{ Im} f_{\ell}(s) \ge 0$

$$
\blacktriangleright \text{ Upper bound on } c_2 \propto \int dz \, \Sigma_{\ell} \, \frac{\text{Im} f_{\ell}(z)}{(z - 4m^2/3)^3} \leq \int dz \, \Sigma_{\ell} \, \frac{2/\rho^2(z)}{(z - 4m^2/3)^3}
$$

+ crossing symmetry $M(s,t) = M(t,s) = M(s, 4m^2 - s - t)$, one can show that $0 \le c_2 \Lambda^2 \le O(1) \cdot (4\pi)^2$ in an EFT approximation.

 $\rho^2(s) \equiv \sqrt{s - 4m^2}/\sqrt{s}$ two-body phase space factor

Motivation - Example III

What about c_0 ? It is *non-dispersive*, i.e.

Blowing up
$$
M(s) = \frac{1}{2\pi i} \oint dz \frac{M(z)}{(z-s)}
$$
 around $z = s$ gives $M(s) = c_{\infty} + \frac{1}{\pi} \int_{\text{cuts}} dz \frac{\text{Im } M(z)}{(z-s)}$

 $\Rightarrow c_0 = M(s = 4m^2/3)$ gets contribution from both { Im $M(s)$, c_{∞} }

 Alternative way to write – choosing a different subtraction constant. Blowing up $M(s) = \frac{(s - s_0)^2}{2} \oint \frac{dz M(z)}{(z - s)(z - s_0)^2}$ gives $(s - s_0)^2$ $\frac{1}{2\pi i}$ \oint $dz M(z)$ $(z - s)(z - s_0)^2$ $M(s) - M(s_0)$ $\frac{s - s_0}{s - s_0^2} =$ 1 π \vert cuts $\frac{dz}{z}$ $Im M(z)$ $(z - s)(z - s_0)^2$

 \Rightarrow We traded c_{∞} for another unknown $M(s_0)$.

Projecting onto spin-zero (Roy equation)

$$
\frac{c_0}{16\pi} = \underbrace{\text{Re } f_0(s)}_{\text{bounded by}}
$$
\n
$$
\frac{1}{\pi} p. v. \int_{4m^2}^{\infty} dz \Sigma_{\ell=0}^{\infty} \text{ker}_{0,\ell}(s, z) \underbrace{\text{Im } f_{\ell}(z)}_{\text{bounded by}}
$$
\n
$$
\text{bounded by}
$$
\n
$$
\text{unitarity circle!}
$$

Motivation - Space of low energy coefficients

- \blacktriangleright We learnt that **the answer:** No, $\{c_i\}$ cannot take arbitrary values!
- What are the allowed values then?

We can use **the tool:** Numerical primal/dual S-matrix bootstrap

to study a single coefficient

 -8.02 . . $< c_0 \cdot (32\pi) < 2.6613$.

or a multi-dimensional system

 $(c_0, c_2) = F[Re f_0(s), Im f_\ell(s)]$ with F a linear functional.

[Elias Miró, Guerrieri, MAG '22] [Chen, Fitzpatrick, Karateev '22] [Tourkine, Zhiboedov '23]

Interlude: S-matrix Bootstrap

Interlude – Numerical S-matrix Bootstrap

Idea: Parametrize the amplitude in a basis of functions that makes manifest a subset of $\{A, U, CS\}$.

Partial wave expansion $M = \sum_{\ell} f_{\ell}(s)$ diagonalizes \mathcal{U} , but { $\mathcal{A}, \mathcal{CS}$ } mixes them.

 ρ -expansion manifestly solves for { $\mathcal{A}, \mathcal{CS}$ }, but $\mathcal U$ is non-trivial. [Paulos, Penedones, Toledo, van Rees, Vieira, Homrich '16 – '19]

$$
M = \sum_{a,b,c} \alpha_{(abc)} \rho(s)^a \rho(t)^b \rho(u)^c \quad \text{with } \rho(s) = \frac{2 - \sqrt{4m^2 - s}}{2 + \sqrt{4m^2 - s}}
$$

Look for numerical solutions to the missing subset

In case of u , by using semi-definite linear programming.

$$
\begin{pmatrix} 1 - (\rho^2/2) \operatorname{Im} f_{\ell} & \rho \operatorname{Re} f_{\ell} \\ \rho \operatorname{Re} f_{\ell} & 2 \operatorname{Im} f_{\ell} \end{pmatrix} \ge 0
$$

Optimize for the desired objectives $\{c_i\}$, giving us

```
the bounds c_i^{min/max},
the extremal solution M^{min/max}(s, t, u).
```


Interlude – Numerical S-matrix Bootstrap

An optimization problem P with the objective $\mathcal O$ over the set of admissible $M(s,t)$.

P admits two approaches.

Primal approach:

Construct valid set of solutions and search for its max/min. ("filling inside").

Dual approach:

Construct a dual problem \overline{P} with the dual objective $\overline{O} > O$.

Solving it "rules out" solutions.

Continuing

Motivation – Example IV

- ▶ S-matrix Bootstrap hinted at optimal constraints on low energy parameters. Can we make use of it for potential BSM applications?
- ▶ Consider the Higgs sector of the SM
	- in custodial symmetric limit $SO(4) \simeq SU(2)_L \times SU(2)_R$
	- **assume** $g_{SM} \ll g_{BSM}$
- A Lagrangian description of this limit

$$
\mathcal{L}=\frac{1}{2}\left(\partial\vec{\phi}\right)^2-\frac{m^2}{2}\vec{\phi}^2-\frac{\lambda}{8}\vec{\phi}^4-\frac{g_H}{4}\vec{\phi}^2\big(\partial\vec{\phi}\big)^2+ \cdots
$$

Leading dim-6 deviation from the SM Lagrangian:

$$
\vec{\phi}^2\big(\partial\vec{\phi}\big)^2 \sim \partial_\mu\big(H^\dagger H\big)\partial^\mu\big(H^\dagger H\big) \equiv \mathcal{O}_H
$$

Example IV

Next model: Massive real $O(n)$ scalars $\phi^{a \in \{1...n\}}$

▶ Two-to-two amplitude

 $\mathbf{M}_{ab}^{cd} = M(s|t, u) \, \delta_{ab} \delta^{cd} + M(t|u, s) \delta^c_a \delta^d_b + M(u|s, t) \delta^d_a \delta^c_b$

 $M(s|t, u)$ is symmetric only in $t \leftrightarrow u$.

Low energy expansion

$$
\frac{M(s|t,u)}{(4\pi)^2} = c_{\lambda} + c_{H}\bar{s} + c_{2}(\bar{t}^2 + \bar{u}^2) + c'_{2}\bar{s}^2 + O(\bar{s}^4, \bar{t}^4, \bar{u}^4)
$$

Notice that there is now a dim-6 coefficient $c_H!$

▶ We study the bounds on the non-dispersive coeff.s (cL,cH)

$$
c_{\lambda} 2\pi = \text{Re} f_0^{(sym)}(s) - \frac{1}{\pi} \int_{4m^2}^{\infty} dz \, \Sigma_{\ell, \text{rep}} K_{1,\ell}^{(sym, rep)}(s, z) \, \text{Im} \, f_{\ell}^{(rep)}(z)
$$

$$
c_H \frac{\pi}{3} (s - 4) = \text{Re} \, f_1^{(anti)}(s) - \frac{1}{\pi} \int_{4m^2}^{\infty} dz \, \Sigma_{\ell, \text{rep}} L_{1,\ell}^{(anti, rep)}(s, z) \, \text{Im} \, f_{\ell}^{(rep)}(z)
$$

Mandelstam variables:

$$
s = (p_1 + p_2)^2
$$

\n
$$
t = (p_1 - p_3)^2
$$

\n
$$
u = (p_1 - p_4)^2
$$

 $s + t + u = 4m^2$ $\bar{s} + \bar{t} + \bar{u} = 0$ *

Example IV

Next model: Massive real $O(n)$ scalars $\phi^{a \in \{1...n\}}$

Nonperturbative two-sided (dual) bound:

 $-0.46 < c_H \cdot m^2 < 1.07$

- The boundary is strongly coupled.
	- \triangleright We detect various threshold singularities in each section of $A - B - C - D$.
	- \blacktriangleright We observe $c_{\lambda} \sim O(1)$ and $c_{H} \sim O(1)$ but, typically in an EFT, we expect $c_{\lambda} \sim O(1)$ and $c_H \sim O(1) \cdot m^2/\Lambda^2$

Weakly coupled EFTs near the origin.

Example IV

A simple UV completion confirms this insight:

$$
\mathcal{L}=\frac{1}{2}\left(\partial\vec{\phi}\right)^2-\frac{1}{2}m^2\vec{\phi}^2-\frac{\lambda}{8}\left(\vec{\phi}\cdot\vec{\phi}\right)^2+\frac{1}{2}(\partial\sigma)^2-\frac{1}{2}M^2\sigma^2-g\;\sigma\left(\vec{\phi}\cdot\vec{\phi}\right)
$$

If we compute two-to-two scattering for ϕ^a and expand for small energies

- \blacktriangleright c_H w.r.t. c_{λ} is either coupling (λ) supressed or scale (m^2/M^2) suppressed.
- Let us zoom further in the origin to locate EFT-like amplitudes.

Example IV – EFT approximation

Study the 3d-system $\{c_{\lambda}, c_{H}, c_{2} \ge 0\}$

Notice the agreement of one-loop $\vec{\phi}^4$ amplitude (red) with the nonperturbative boundary.

How can we isolate EFTs in the vast space of strongly coupled amplitudes?

- Introduce the two scales m^2 and Λ^2 and the scale separation $m^2/\Lambda^2 \ll 1$ through the discontinuity $Im f_{\ell}(s)$ Λ^2 $4m^2$ \boldsymbol{D} the IR cut is set to zero
- We call this limit "exact UV domination"
- It is possible to refine it by fixing Im $f_{\ell}^{IR}(s)$ to some desired profile obtained from experiments.

Example IV – EFT approximation

- We dial up $\Lambda^2 \in [4m^2, 64m^2]$ and discover a scaling limit where $-0.31 < c_H \cdot \Lambda^2 < 0.35$
- Global fits from experiments report: $|c_H \cdot \Lambda^2| < O(1) \cdot 1 \text{ TeV}$

Conclusions

Numerical S-matrix bootstrap allows us to study the space of theories with high precision, given a set of very general assumptions, such as unitarity, analyticity, and crossing symmetry.

Check out other 4d examples, such as fluxtubes [1906.08098], neutral Goldstones [2310.06027] etc.

Theoretical constraints can be useful / complementary to experimental ones (see bounds on $c_H \cdot \Lambda^2$)

Some future outlook:

- Add other particles in the spectrum (transverse + longitudinal modes of heavy gauge bosons)
- Further modelling of the IR data the more constraints in the input, the stricter the bounds we get.
- Adding inelasticity (particle production) would lead to tighter constraints.

Thank you!

Dual for O(n) amplitudes

▶ We dualize the problem by means of a Lagrangian:

 $\mathcal{L}(\mathcal{P}, \mathcal{D}) = c_H[f_\ell] + w \cdot \text{Roy eq.} [f_\ell] + \lambda \cdot \text{unitarity}[f_\ell] + v \cdot \text{crossing}[f_\ell]$

 $\mathcal{P} \equiv \{f_\ell(s)\}\$ are primal variables, and $\mathcal{D} \equiv \{w, \lambda, v\}$ are Lagrange multipliers.

Integrating out P, gives the dual functional $d(D) \equiv \max$ \mathcal{P} $\mathcal{L}(\mathcal{P}, \mathcal{D}).$

- For **all** choices of $\{w, \lambda, v\}$: $d(D) \ge c_i$
- \blacktriangleright To do the optimal choice:

Nonlinear \rightarrow Semidefinite linear conditions \rightarrow SDPB.

Duality gap in O(n)

Regge Physics of O(1)

\blacktriangleright Higher spin resonances.

 π phase rotations in each $S_{\ell}(s)$.

They come in ~ linear Regge trajectories + align with asymptotic growth $M(s,t) \sim \beta(t) s^{\alpha(t)}$.

Analyticity

- **Lehmann ellipses (small/large) for** $\sum_{\ell} a_{\ell} P_{\ell}(z)$
	- For the amplitude, $z_{small} = 1 + 8m^2/(s 4m^2)$
	- For its discontinuity, $z_{large} = 2z_{small}^2 1 = 1 + 32m^2/(s 4m^2)^2$
- \blacktriangleright Ellipses shrink to 1 for large s.
- ▶ Martin's extension using unitarity + N-subtracted dispersion relations.
	- Analytic region for $|t| < 4m^2$ independent of s.
	- + elastic unitarity:
	- Double subtracted dispersion relation holds for any real $-28m^2 < t < 4m^2$.
- Dual approach is limited by $\Lambda_c^2 = 12m^2$ for fixed-t dispersion relations.