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Motivation

» Analyticity (A), Unitarity (U), Crossing Symmetry (CS) of the 2 — 2 scattering amplitude

are very powerful general principles to constrain low energy physics.

» Central object: 2 — 2 interacting scattering amplitude, no Lagrangians, no perturbation theory etc.

Input: Particle spectrum of the theory. - Output: Bounds on low energy coefficients.

» | will first try to convince you how the machinery works on a toy model.

Then we move to a more realistic model, a step towards Higgs sector in SM as an EFT.



Motivation

Toy model: Massive real scalar ¢
with Z, symmetry (no cubic vertex)

» Interacting part of the amplitude
Sy2 = (P3 Py, out | Py Py, in) Synp = 1dyy + M5,
» Low energy expansion around ¥ = x — 4m? /3 to preserve CS

M(5,t, 1) = cog + ¢, (5% + t2 + U?) + c5 St ...

Notice that there is no dim-6 coefficient c¢; due to (x).

» Question: Can coefficients {cy, c,, ... } attain any value?

Answer : Let us consider few examples ...

Mandelstam variables:

s = (p1 + p2)?
t = (p1 — p3)°
u = (p1 — pa)?

S+ t+u=4m?
S+t+u=0"*



Motivation - Example I

» Unitarity: STS = Id implies

21m My_,(s,t) = Ypsp | dLIPS,_,, My y|? “optical theorem”

> deIPSZ|M2_>2|2 dLIPS,, : Lorentz invariant
n-particle phase space
=0

» Analyticity: Cauchy’s theorem ¢, = and blow up the contour

2
1 jéd M(z,4m*=/3)

omi ] &7 (z —4m?/3)3
1foo dz Im M(z,4m?/3) > 0
C, = — m M(z,4m >
“om 4m? (z - 4m2/3)3 positive -

= Positivity bounds on some {c;} & ratios of {c;}.

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi '06]
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[Bellazzini, Elias Mir6, Rattazzi, Riembau, Riva 20]
[Caron-Huot, Van Duong ’20]
[Tolley, Wang, Zhou ’20]
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Motivation - Example II

» Partial wave expansion:
M(s,t) = Yoz 161 (2¢4+1) f;(s) Pp(cos )
Im M(s,t) = X, 16m (2¢+1) Imf,(s) Py(cos 6)

» Partial wave unitarity circle — for physical s > 4m?:

21mf, (s) = p%(s) - Ife(s)1? = 2/p*=1Imfy(s) 20

2
Imfe(z) _ [dz %, (ZZ/P (2)

» Upper bound on ¢, x [dzZ, Gmamz 3y = a2/

+ crossing symmetry M(s,t) = M(t,s) = M(s,4m? —s — t),

one can show that 0 < ¢, A*> < 0(1) - (4)? in an EFT approximation.

[Caron-Huot, Van Duong °20]
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Motivation - Example III

» What about c,? It is non-dispersive, i.e.

_ 1 M(2) : B 1 Im M(z)
Blowing up M(s) = P 7= around z=s gives M(s) = c, +— jwts P
= ¢, = M(s = 4m?/3) gets contribution from both { ImM(s), ¢}
» Alternative way to write — choosing a different subtraction constant.
: _ (s —50)? dz M(z) : M(s) — M(sy) 1 Im M(z)
Blowing up m(s) = - CEBTCETNE gives G5 - ;jcms dz =5 —s)?

= We traded c,, for another unknown M (sy).

Tim
p
» Projecting onto spin-zero (Roy equation) 2/¢"
Co 1 @ w
Ten = Re fo(s) — - p. . Lmz dz 2,2, kerg ,(s,z) Im f,(2)
bounded by bounded by . )
unitarity circle! unitarity circle! _.1_/';1, 1/ 31
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Motivation - Space of low energy coefficients

» We learnt that the answer: No, {c;} cannot take arbitrary values!

» What are the allowed values then?

We can use the tool: Numerical primal/dual S-matrix bootstrap
to study a single coefficient
—8.02..< ¢y - (321) < 2.6613..

or a multi-dimensional system

(co,c2) = F[Refy(s), Imf,(s)]
with F a linear functional.
[Elias Mir6, Guerrieri, MAG "22]

[Chen, Fitzpatrick, Karateev '22]
[Tourkine, Zhiboedov ‘23]




Interlude: S-matrix Bootstrap



Interlude — Numerical S-matrix Bootstrap

ldea: Parametrize the amplitude in a basis of functions that makes manifest a subset of {4, U, CS}.

» Partial wave expansion M = )}, f,(s) diagonalizes U, but {4, CS} mixes them.

» p-expansion manifestly solves for {A, CS}, but U is non-trivial.

[Paulos, Penedones, Toledo, van Rees, Vieira, Homrich 16 — ‘19]

: 2—/am2—s
M = Yabc X abeyP()*p()Pp)° with p(s) = 2=

Look for numerical solutions to the missing subset

In case of U, by using semi-definite linear programming.

(1 — (p*/2) Imfy pRe fe) - 0
p Re f; 2Imf;) ~

Optimize for the desired objectives {c;}, giving us

min/max

the bounds c; ,

the extremal solution M™"/Max (g t ).
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Interlude — Numerical S-matrix Bootstrap

» An optimization problem P with the objective O over the set of admissible M (s, t).

analyticity

O = max_=c¢; subjectto unitarity: 2ImM > [ |M|?
{M(s,0)} _
crossing: M(s,t) = M(t,s) = M(s,u)

» P admits two approaches.

Primal approach:

Construct valid set of solutions and search for its max/min. (*filling inside”).
Dual approach:

Construct a dual problem P with the dual objective 0 > 0.

Solving it “rules out” solutions.
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Continuing



Motivation — Example IV

» S-matrix Bootstrap hinted at optimal constraints on low energy parameters.

Can we make use of it for potential BSM applications?

» Consider the Higgs sector of the SM
» in custodial symmetric limit SO(4) = SU(2); X SU(2)x

» assume Ism K 9IBsm

» A Lagrangian description of this limit
1, o2 M2, Ao, Gy -, 2
— A2 a4 I D
L=2(0¢) —— % —5d* =T 9% (9¢) +
Leading dim-6 deviation from the SM Lagrangian:

$2(04)" ~ 9, (HtH)o*(HTH) = 0,



Example IV

Next model: Massive real 0(n) scalars ¢ €11

» Two-to-two amplitude

MSE = M(s|t,u) 8,,0% + M(t|u,s)8568 + M(uls, t)5255

a

M(s|t,u) is symmetric only in t & u.
» Low energy expansion

M(s|t,u)
(4m)?

Notice that there is now a dim-6 coefficient cy!

= 3 + cyS + c,(E% + U?) + ¢5 52 + 054, 4, uh)

» We study the bounds on the non-dispersive coeff.s (cL,cH)

co

1
c; 2m = Re fo(sy ™(s) — = dz Zprep KS’ ™R (s, z) Im f{,(rep) (2)

4m?2
(0e]

T ; 1 ;
Cy 3 (s —4) = Re fl(antl) (s) — - dz %y rep L(lclzgztl,rep) (s,2) Im f;}(rep) (2)

4m?

(/] I
1 R

Mandelstam variables:

s = (p1 + po)?
t = (p1 — p3)°
u = (p1 — pa)?

S+ t+u=4m?
S+t+u=0"*



Example IV

Next model: Massive real 0(n) scalars ¢l » Nonperturbative two-sided (dual) bound:

mcy

\ —0.46 < ¢y - m? < 1.07

» The boundary is strongly coupled.

» We detect various threshold singularities
in each sectionof A— B —C —D.

» We observe c; ~0(1) and cy ~ 0(1)
but, typically in an EFT, we expect

¢, ~0(1) and cy ~ 0(1) - m?/A?

» Weakly coupled EFTs near the origin.




Example IV

A simple UV completion confirms this insight:

£=2(06)" —5mig? —5(3- ) + 5@0) —3M20% g0 G- )

» If we compute two-to-two scattering for ¢¢ and expand for small energies

p” #° . 22 (3(n+2)
>O< = -1+ = ( T (3\/— tan™ \/—_ — 2))
b fZ‘)d

¢
¢’ p°
6 — g g S g S2 4 ...
"~ M2%2-4m2/3 t (M2-4m?2/3)2 5+ (M2-4m?2/3)3 t
¢ !

» ¢y W.I.t. ¢y is either coupling (1) supressed or scale (m?/M?) suppressed.

» Let us zoom further in the origin to locate EFT-like amplitudes.



Example IV — EFT approximation

Study the 3d-system {c;, cy, c, = 0}

Q ~0.05
000 _ rr—

0.0003 f LLLR R RN A
0.0002

C

©0.0001 E

0.0000 &<

Notice the agreement of one-loop ci_b)‘* amplitude (red)

with the nonperturbative boundary.

How can we isolate EFTs in the vast space
of strongly coupled amplitudes?

« Introduce the two scales m? and A?
and the scale separation m?/A? «< 1

through the discontinuity Im f,(s)
S

—4 } W
0 b T A*

the IR cut is set to zero

 We call this limit “exact UV domination’

« Itis possible to refine it by fixing
Imf;(s) to some desired profile
obtained from experiments.



Example IV — EFT approximation

» We dial up A? € [4m?, 64m?] and discover a scaling limit where —0.31 < ¢y - A*> < 0.35

» Global fits from experiments report: | cy - A% | < 0(1) -1 TeV

31—
: max cy A
2

0.35 1L
O.

" T -

—0.31 1L

: min ¢y A

0.0 0.2 0.4 0.6



Conclusions

» Numerical S-matrix bootstrap allows us to study the space of theories with high precision, given a set of
very general assumptions, such as unitarity, analyticity, and crossing symmetry.

Check out other 4d examples, such as fluxtubes [1906.08098], neutral Goldstones [2310.06027] etc.

» Theoretical constraints can be useful / complementary to experimental ones (see bounds on cy - A?)

Some future outlook:
» Add other particles in the spectrum (transverse + longitudinal modes of heavy gauge bosons)
» Further modelling of the IR data — the more constraints in the input, the stricter the bounds we get.

» Adding inelasticity (particle production) would lead to tighter constraints.



Thank you!



Dual for O(n) amplitudes

» We dualize the problem by means of a Lagrangian:
L(P,D) = cylfe] + w-Royeq.[fp] + A - unitarity|f,] + v - crossing[f,]

P = {f,(s)} are primal variables, and D = {w, 4, v} are Lagrange multipliers.

» Integrating out P, gives the dual functional d(D) = mjng(SD,D).

» For all choices of {w,4,v}: d(D) = ¢;

» To do the optimal choice:

Nonlinear - Semidefinite linear conditions —» SDPB.



Duality gap in O(n)

-1.0

cn/(32m) A
1.5k
' excluded
1.0F
0.5:—
/(32 )
1 [ | L 1 ] [ | 1 )
~25 5 _15 L. ~0.5 0.5 1.
~0.5F
excluded




Regge Physics of O(1)

» Higher spin resonances.
m phase rotations in each S,(s).

They come in ~ linear Regge trajectories + align with asymptotic growth M(s,t) ~ £(t)s*®.

BC section, nmax=14




Analyticity

» Lehmann ellipses (small/large) for )., a, Py(2)
» For the amplitude, zg,,q; = 1 + 8m?/(s — 4m?)

» For its discontinuity, zygrge = 2Znau — 1 = 1+ 32m?/(s — 4m?)?
» Ellipses shrink to 1 for large s.
» Martin’s extension using unitarity + N-subtracted dispersion relations.
» Analytic region for |t| < 4m? independent of s.
+ elastic unitarity:

» Double subtracted dispersion relation holds for any real —28m? < t < 4m?.

» Dual approach is limited by A2 = 12m? for fixed-t dispersion relations.
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