Tetraquarks at large N: an explicit construction

Majid Ekhterachian (EPFL)

3rd CERN-Annecy-Geneva-EPFL (CAGE) BSM Workshop May 2024

In collaboration with:

Héloïse Allaman, Filippo Nardi, Riccardo Rattazzi & Stefan Stelzl

Introduction

Increasing experimental evidence for states with four valence quarks

• First candidate: X(3872), possibly a $c\bar{c}q\bar{q}$ state

Belle 2003

- Several more candidates since then
- More recently first state with two heavy quark rather than with heavy $Q\bar{Q}$ pair: $T_{cc}^+(3875)$ ($cc\bar{u}\bar{d}$)

LHCb 2021

Introduction

Closeness to threshold

- All candidates systematically within ${\sim}10~{\rm MeV}$ of the corresponding two-meson thresholds
- Some much closer:

X(3872) within ~ 120 keV of $D_0 \overline{D}^{*0}$ *T*⁺_{*cc*}(3875) within 400 keV of $D_0 {D^{*}}^{+}$

- Competing explanations as compact tetraquark states of hadronic molecules
- Binding energy of ~ Λ_{QCD} expected for compact tetraquarks and ~ $\frac{\Lambda^2_{QCD}}{M}$ for the molecule , both need tuning

Introduction- Tetraquarks at large N

Debate on the existence of narrow tetraquark states for large N

 Argument for non-existence originally given by Witten and presented by Coleman:

Large N two-point functions of tetraquark operators dominated by disconnected diagrams, propagation of free mesons only

- Later Weinberg points out a loophole in the argument: Tetraquarks may still appear as narrow resonances/poles in the connected diagrams even if subleading in 1/N.
- Still does not conclude that narrow tetraquark states must exist in the large N limit.

Witten 1979 Coleman 1985

Weinberg 2013

Expansion parameters

- This work: explicitly construct the possible tetraquark states in a theoretically controlled regime
- Expansion parameters:
 - ≻ 1/N
 - $\geq \alpha$ (for heavy quark masses, $m \gg \Lambda_{QCD}$)
 - > m/M ratio of quark masses

Outline

- Hamiltonian
- Born-Oppenheimer approximation
- Two types of $QQ\bar{q}\bar{q}$ tetraquarks
- Real-world QCD tetraquarks

The single-gluon-exchange Hamiltonian

$$H = \sum_{i} m_{i} + \sum_{i} \frac{p_{i}^{2}}{2m_{i}} + \sum_{i < j} \alpha_{s}(r_{ij}) \frac{T_{(i)}^{a} T_{(j)}^{a}}{r_{ij}} \qquad r_{ij} \ll \Lambda_{\text{QCD}}^{-1}$$

• SU(N) –singlet subspace of $qq\bar{q}\bar{q}$ system is 2 dimensional:

2 ways to contract SU(N) indices:

 $q_{(1)}^{i}q_{(2)}^{j} \overline{q}_{i}^{(3)} \overline{q}_{j}^{(4)} \qquad q_{(1)}^{i}q_{(2)}^{j} \overline{q}_{j}^{(3)} \overline{q}_{i}^{(4)}$

Choice of basis

SU(N) –singlet subspace of $qq\bar{q}\bar{q}$ system 2 dimensional

• Symmetric-Antisymmetric: $q^i q^j$ in the color-symmetric or colorantisymmetric representation and $\overline{q}_i \overline{q}_j$ in the corresponding conjugate representation

• Singlet-Adjoint:
$$q_{(1)}^{i} \bar{q}_{i}^{(3)} q_{(2)}^{j} \bar{q}_{j}^{(4)}$$
 (13)(24)-singlet
 $q_{(1)}^{i} T^{a}_{\ i}^{k} \bar{q}_{i}^{(3)} q_{(2)}^{j} T^{a}_{\ j}^{l} \bar{q}_{i}^{(4)}$ (13)(24)-Adjoint

The single-gluon-exchange Hamiltonian

In the Symmetric-Asymmetric basis:

$$\begin{split} V_{SS} &= -\frac{\alpha}{2} \left(\frac{1}{r_{1\bar{3}}} + \frac{1}{r_{1\bar{4}}} + \frac{1}{r_{2\bar{3}}} + \frac{1}{r_{2\bar{4}}} \right) \\ &= \left| + \frac{\alpha}{2N} \left(\frac{2}{r_{12}} \right) + \frac{2}{r_{\bar{3}\bar{4}}} - \frac{1}{r_{1\bar{3}}} - \frac{1}{r_{1\bar{4}}} - \frac{1}{r_{2\bar{3}}} - \frac{1}{r_{2\bar{4}}} \right) + \mathcal{O}\left(\frac{1}{N^2} \right), \\ V_{SA} &= V_{AS} = -\frac{\alpha}{2} \left(\frac{1}{r_{1\bar{3}}} + \frac{1}{r_{2\bar{4}}} - \frac{1}{r_{1\bar{4}}} - \frac{1}{r_{2\bar{3}}} \right) + \mathcal{O}\left(\frac{1}{N^2} \right), \\ V_{AA} &= -\frac{\alpha}{2} \left(\frac{1}{r_{1\bar{3}}} + \frac{1}{r_{1\bar{4}}} + \frac{1}{r_{2\bar{3}}} + \frac{1}{r_{2\bar{4}}} \right) \\ &= \left| -\frac{\alpha}{2N} \left(\frac{2}{r_{12}} \right) + \frac{2}{r_{\bar{3}\bar{4}}} - \frac{1}{r_{1\bar{3}}} - \frac{1}{r_{1\bar{4}}} - \frac{1}{r_{2\bar{3}}} - \frac{1}{r_{2\bar{4}}} \right) + \mathcal{O}\left(\frac{1}{N^2} \right). \end{split}$$

The single-gluon-exchange Hamiltonian

• A change of basis that diagonalizes the potential at leading order in N: $\Psi_{+} = \frac{1}{\sqrt{2}}(\Psi_{S} + \Psi_{A}), \qquad \Psi_{-} = \frac{1}{\sqrt{2}}(\Psi_{S} - \Psi_{A}).$

• Potential:

$$V_{++} = -\frac{\alpha}{r_{1\bar{3}}} - \frac{\alpha}{r_{2\bar{4}}} + \mathcal{O}\left(\frac{1}{N^2}\right),$$

$$V_{+-} = V_{-+} = \frac{\alpha}{2N} \left(\frac{2}{r_{12}} + \frac{2}{r_{\bar{3}\bar{4}}} - \frac{1}{r_{1\bar{3}}} - \frac{1}{r_{1\bar{4}}} - \frac{1}{r_{2\bar{3}}} - \frac{1}{r_{2\bar{4}}}\right) + \mathcal{O}\left(\frac{1}{N^2}\right),$$

$$V_{--} = -\frac{\alpha}{r_{1\bar{4}}} - \frac{\alpha}{r_{2\bar{3}}} + \mathcal{O}\left(\frac{1}{N^2}\right).$$

• For $N \to \infty$: $\Psi_+ \to (1\bar{3})_{\text{singlet}}(2\bar{4})_{\text{singlet}},$ $\Psi_- \to (1\bar{4})_{\text{singlet}}(2\bar{3})_{\text{singlet}},$

Leading order in 1/N: free mesons

- Potential: $V = -\alpha \begin{pmatrix} \frac{1}{r_{13}} + \frac{1}{r_{24}} & 0 \\ 0 & \frac{1}{r_{14}} + \frac{1}{r_{22}} \end{pmatrix} + \mathcal{O}\left(\frac{1}{N}\right)$
- Exactly solvable, two decoupled "Hydrogen atom" problems in each sector

sector + : $(1\overline{3})$ $(2\overline{4})$ mesons sector - : $(1\overline{4})$ $(2\overline{3})$ mesons

Subleading in 1/N

- To include the effect of subleading in $\,$ 1/N interactions, we allow also for a hierarchy of masses m/M << 1

$$H = \frac{P_i^2}{2M_i} + \frac{p_i^2}{2m_i} - \alpha \begin{pmatrix} \frac{1}{r_{13}} + \frac{1}{r_{24}} & 0\\ 0 & \frac{1}{r_{14}} + \frac{1}{r_{23}} \end{pmatrix} + \frac{\alpha}{2N} \sigma_1 \left(\frac{2}{r_{12}} + \frac{2}{r_{34}} - \frac{1}{r_{13}} - \frac{1}{r_{23}} - \frac{1}{r_{24}} \right) + \mathcal{O}\left(\frac{1}{N^2}\right)$$

Leading in 1/N and m/M

• For $\frac{m}{M} \ll \frac{1}{N}$: include first the 1/N terms and then consider the $\frac{1}{M}$ suppressed kinetic terms (Born-Oppenheimer approximation)

Born-Oppenheimer approximation

The mass hierarchy leads to separation of scales, simplifying the problem:

- General Gamma Provide A and a straight of the st
- Solve the reduced problem for the light particles as a function of heavy particle coordinates
- └→ Consider the kinetic terms of heavy particles with the BO potential and solve the effective problem for the heavy coordinates

 $H = \frac{P_i^2}{2M_i} + \frac{p_i^2}{2m_i} + V(\{r\}, \{R\})$ $H_{\rm red} = \frac{p_i^2}{2m_i} + V(\{r\}; \{R\})$ $V_{\rm BO}(\{R\}) = E_{\rm red}(\{R\})$ $H_{\rm eff} = \frac{P_i^2}{2M_i} + V_{\rm BO}(\{R\})$

Born-Oppenheimer for $QQ\bar{q}\bar{q}$ tetraquarks

• First ignore Kinetic terms of heavy quarks

• Solve the problem of light quarks

At leading order in 1/N: two decoupled system of mesons

(Hydrogen atoms)

Born-Oppenheimer for $QQ\bar{q}\bar{q}$ tetraquarks

• Free mesons at leading order in 1/N - two set of states:

sector + : $(1\overline{3})$ $(2\overline{4})$ mesons sector - : $(1\overline{4})$ $(2\overline{3})$ mesons

• Considering only ground states for now

➤Two-fold degenerate at leading order in 1/N

• Subleading 1/N interaction breaks the degeneracy and

provides a BO potential

$$V = -\alpha \begin{pmatrix} \frac{1}{r_{13}} + \frac{1}{r_{24}} & 0\\ 0 & \frac{1}{r_{14}} + \frac{1}{r_{23}} \end{pmatrix} + \mathcal{O}\left(\frac{1}{N}\right)$$

$$E_0 = -\mathcal{E}_3 - \mathcal{E}_4$$
$$= -\frac{1}{2}m_3\alpha^2 - \frac{1}{2}m_4\alpha^2$$

The Born Oppenheimer potential

 $\frac{1}{N}\Delta(R) = {}_{+}\langle (1\bar{3}) (2\bar{4}) | V | (1\bar{4}) (2\bar{3}) \rangle_{-}$ $E(R) = E_{0} \pm \frac{1}{N}\Delta(R)$ $V_{B0} = \pm \frac{1}{N}\Delta(R)$ • For $\frac{m_{4}}{m_{3}} \ll 1$: $V_{B0} = \pm \frac{2}{N}\mathcal{E}_{3} e^{-\frac{R}{a_{3}}} \left(\frac{a_{3}}{R} - \frac{2}{3}\frac{R}{a_{3}}}{R}\right)$

• Type-I: *R* << *a*₃

• Type-II: $R \sim a_3$

• Type-I: $R \ll a_3$

• Type-I: *R* ≪ *a*₃

• Type-II: $R \sim a_3$

Condition for formation of bound states

• Type-I: $R \ll a_3 \Rightarrow \frac{1}{M(\alpha/N)} \ll \frac{1}{m\alpha}$ $\Rightarrow \frac{m}{M} \ll \frac{1}{N}$

 R/a_3

• Type-II:
$$\Delta R \ll a_3 \Rightarrow \frac{1}{(M k)^{1/4}} \ll a_3 \quad k \sim \frac{\mathcal{E}_3}{N a_3^2} \sim \frac{m}{N a_3^4}$$

 $\Rightarrow \frac{m}{M} \ll \frac{1}{N}$

4

• Type-I: $R \ll a_3$

• Type-II: $R \sim a_3$

Type-I

• In the limit of $R \rightarrow 0$, the heavy quarks in the color-antisymmetric state

- Can consider as a compact heavy diquark forming a bound state with light (anti)quarks
- For SU(3): A "baryon" with the diquark (in color 3) instead of one of the quarks
 [Manohar & Wise 1993]

Closeness to the threshold and tuning-Type II states

• Consider a potential $V(X) = V_0 e^{-X} \left(\frac{1}{X} - \epsilon X\right)$

$$V_{min} \sim V_0 e^{-\mathcal{O}\left(\frac{1}{\sqrt{\epsilon}}\right)}$$
 $(\epsilon \ll 1)$

•
$$V_{BO} = \pm \frac{2}{N} \mathcal{E}_3 \, \mathrm{e}^{-\frac{\mathrm{R}}{\mathrm{a}_3}} \left(\frac{\mathrm{a}_3}{\mathrm{R}} - \frac{2}{3} \frac{\mathrm{R}}{\mathrm{a}_3} \right) \qquad V_{min} \sim \frac{\mathcal{E}_3}{N} \, \mathrm{e}^{-2.07} \sim \frac{0.1}{N} \, \mathcal{E}_3$$

Closeness to the threshold and tuning Type II states

•
$$V_{BO} = \pm \frac{2}{N} \mathcal{E}_3 \, \mathrm{e}^{-\frac{\mathrm{R}}{\mathrm{a}_3}} \left(\frac{\mathrm{a}_3}{\mathrm{R}} - \frac{2}{3} \frac{\mathrm{R}}{\mathrm{a}_3} \right) \qquad V_{min} \sim \frac{\mathcal{E}_3}{N} \, \mathrm{e}^{-2.07} \sim \frac{0.1}{N} \, \mathcal{E}_3$$

- Close to threshold by 1/N and the exponentially suppressed overlap
- For N = 3, a binding energy of $E_{\text{binding}} \sim 10^{-3} \mathcal{E}_3$ needs tuning m_3/M_2 only to within $\sim 20\%$ of the critical ratio

Closeness to the threshold and tuning Type I states

•
$$E_{\text{binding}} \sim \frac{1}{N^2} M \alpha^2$$

• Generally independent of \mathcal{E}_3 , but for $\frac{1}{N^2} \ll \frac{m}{M} \ll \frac{1}{N}$:

$$\frac{E_{\rm binding}}{\varepsilon_3} \sim \frac{M}{mN^2} \ll 1$$

Parametrically close to threshold compared to the binding energy of mesons

Beyond Born-Oppenheimer

$$H = \frac{P_i^2}{2M_i} + \frac{p_i^2}{2m_i} - \alpha \begin{pmatrix} \frac{1}{r_{13}} + \frac{1}{r_{24}} & 0\\ 0 & \frac{1}{r_{14}} + \frac{1}{r_{23}} \end{pmatrix} + \frac{\alpha}{2N}\sigma_1 \left(\frac{2}{r_{12}} + \frac{2}{r_{34}} - \frac{1}{r_{13}} - \frac{1}{r_{23}} - \frac{1}{r_{24}} \right) + \mathcal{O}\left(\frac{1}{N^2}\right)$$

- If $\frac{m}{M} \gg \frac{1}{N}$ the B.O. approximation does not apply
- But can include the heavy quark kinetic terms first: free mesons
- With a variational argument can show that the 1/N suppressed terms are too small to lead to bound states of mesons below the two-meson threshold

Real-world tetraquarks: Lessons and speculations

All-heavy tetraquarks

- States of tt $\bar{q}\bar{q}'$ would exist and be stable within QCD itself but t decays due to weak interactions with a decay width larger than Λ_{QCD} ($\Gamma_t = 1.4 \text{ GeV}$)
- $bb\bar{c}\bar{c}$ tetraquarks? $\frac{m_b}{Nm_c}$ close to 1
- If we extrapolate our leading order results, need:

$$\gg \frac{m_b}{Nm_c} > 4.8$$
 for existence of type-I states

$$\gg \frac{m_b}{Nm_c} > 3$$
 for existence of type-II states

bbcc states not expected, but this is near the regime of validity of approximations, conclusion can change

Tetraquarks with one light (anti-)quark

- Our analysis is valid also if one of the (anti)quarks is lighter than Λ_{QCD}
- Critical $\frac{m_b}{Nm_c}$ for $bb\bar{c}\bar{q}$ states with q=u,d,s expected to be lower than for $bb\bar{c}\bar{c}$:
- If we extrapolate our leading order results, need:

$$\gg \frac{m_b}{Nm_c} > 3.4$$
 for existence of type-I states

 $\gg \frac{m_b}{Nm_c} > 1.8$ for existence of type-II states

• $bb\bar{c}\bar{q}$ states more likely than $bb\bar{c}\bar{c}$ states, but can't draw any robust conclusions

Doubly heavy tetraquarks

- In the heavy quark limit the existence of type-I states only relies on the short distance QQ interaction
- Parametric condition for existence of type-I states below two meson threshold becomes $M \gg N \Lambda_{\rm QCD}$
- This limit for SU(3) studied also using heavy quark-diquark symmetry and HQET
 - > Symmetry relates $QQ\bar{q}\bar{q}$ states to $Q\bar{q}\bar{q}$ baryons

 \blacktriangleright Expansion in control for bb $\bar{q}\bar{q}$ states: predicts a QCD-stable T_{bb} ground state

 \succ Have been also applied for T_{cc} : predictions don't match the observed state

(and likely not in control)

Savage & Wise 1990 Hu & Mehen 2006

Mehen 2017 Eichten & Quigg 2017 Braaten, He & Mohapatra 2020

An & Wise 2018

- Lattice QCD can compute the B.O. potential
- Other lattice methods also developed for studying doubly heavy tetraquarks
- Increasing agreement on existence of QCD-stable T_{bb} states

[arXiv: 2312.17060]

- Lattice QCD can compute the B.O. potential
- Other lattice methods also developed for studying doubly heavy tetraquarks
- Increasing agreement on existence of QCDstable T_{bb} states
- Less clear for T_{bc} states

[arXiv: 2312.17060]

- Lattice QCD can compute the B.O. potential
- Other lattice methods also developed for studying doubly heavy tetraquarks
- Increasing agreement on existence of QCDstable T_{bb} states
- Less clear for *T_{bc}* states

[arXiv: 2404.08109]

- Lattice QCD can compute the B.O. potential
- Other lattice methods also developed for studying doubly heavy tetraquarks
- Increasing agreement on existence of QCDstable T_{bb} states
- Less clear for *T_{bc}* states:
- Question: are there any type-II states in the heavy quark limit?

[arXiv: 2404.08109]

Summary and conclusions

- Stable $QQ\bar{q}\bar{q}$ tetraquarks exist in large N QCD for a hierarchy of masses larger than N
- Free meson pairs at leading order, but 1/N correction provides Born-Oppenheimer potential

Two types of tetraquarks

- Type-I states: QQ pair distance much smaller than $Q\overline{q}$ meson size
 - > Continuously connected to states with a color-antisymmetric diquark core as M/m increases

 \succ Exist also if the lighter quarks are below the confinement scale for $M \gg N \Lambda_{
m QCD}$

• Type-II states: QQ pair localized at a distance comparable to $Q\overline{q}$ meson size

 \succ Closeness to threshold by 1/N as well by an exponential wavefunction-overlap suppression

Thank you!

Extra Slides

The Born Oppenheimer potential

Excited states

Higher order α corrections-diagrammatic representation

• Representation of states

• With the diagrammatic representation chosen for the states, problem can be mapped to the usual diagrammatic of mesons at large N

• Leading diagrams of diagonal elements

Higher order corrections in α

- Higher order corrections in α don't change the picture, only refine it
- The leading 1/N interactions to arbitrary order in α lead only to free mesons
- The possibility of formation of tetraquarks only considering subleading 1/N interactions