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U LDM : Ultra-Light Dark Matter
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We can treat both in a similar way! o = _ga778ﬂa F

One need only modify Maxwell’'s equations. L, 9 A, 1/
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Low mass and requiring to be DM leads to high occupation number,

which allows us to use a classical treatment.

V-D=p+ per, —0:D+V xXH =J + Jeg,
V-B=0, 0:B+V xE=0.



Typically, resonant conversions are used to overcome the small couplings.




PrOp. : Use the ionosphere!

We have a natural resonator we can explolt.

F, layer

F, layer

Created by ionising UV & X-ray radiation. E layer

lonosphere D layer
(60 — 400 Km)

Stratosphere

Troposphere

Been known about for donkey’s years.

(1839 ) ~ Gauss postulates existence.

Sourced from: https://rifat-cou.medium.com/sky-wave-propagation-3bd094c73241

(1901) ~ Marconi transatlantic radio signal
(E-layer).
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1D cavity

We can treat the ionosphere and Earth system as a driven cavity
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1D cavity

Little to no scale separation in this problem ...

The characteristic scale of variation of the plasma is comparable to the
dB wavelength of the DM, almost everywhere ...
—1

2
0 log w3 > H ~ un

0z

Means that a numeric solution is the best way forward



EM energy density
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Noise

ITU provides us with estimates for
Oour noise
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Frequency (Hz)

A : atmospheric noise, value exceeded 0.5% of time

B : atmospheric noise, value exceeded 99.5% of time

C: man-made noise, quiet receiving site

D: galactic noise

E : median business area man-made noise ITU-R (2016)

minimum noise level expected
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Noise

ITU provides us with estimates for
Oour noise

10°K < T, <10°K

MY

We can map from temperature to a
noise PSD using:

S, (v) ~ %7# VT, (1)

Mmoo QW >

Frequency (Hz)

: atmospheric noise, value exceeded 0.5% of time

: atmospheric noise, value exceeded 99.5% of time
: man-made noise, quiet receiving site

: galactic noise

: median business area man-made noise

minimum noise level expected

ITU-R (2016)

10



Anten na : Electrically short dipole antenna

We model a prospective antenna and read-out as a simple RLC-circuit

w? h?

(w2 — w2)® + w2 A2

SE ((,U)

Ra+ Ry,

Ay =
g L
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Anten na : Electrically short dipole antenna

We model a prospective antenna and read-out as a simple RLC-circuit

w? h?
Fr = /dw = - ~SE (Ld)
Ry L? |(w? —wj)” 4+ w? Av?
W2 = 1 Ay — Ra+ Ry
0 CAL UV — T
1/2
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Projections : axions
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Conclusions

We propose a new, competitive (and cheap) way to probe axion and DP parameter
space
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Thanks for listening!
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