
EDM4hep Meeting

EDM4hep.jl
Update

Pere Mato/CERN
26 March 2024

https://github.com/peremato/EDM4hep.jl

https://github.com/peremato/EDM4hep.jl

Motivation for EDM4hep.jl - Reminder
❖ Generate Julia ‘friendly’ structures for the EDM4hep data model

❖ As friendly as the Python bindings but with C++ performance

❖ Be able to read event data files in ROOT format (TTree & RNTuple) written by
C++ programs from Julia (using the UnROOT.jl package)
❖ Development of data analysis functionality

❖ Later, be able also to write RNTuple files from Julia
❖ Either with UnROOT.jl (Julia native) or wrapping ROOT (GSOC project)

Implementing EDM4hep in Julia is a pre-requisite for introducing the Julia
language in Simulation and Reconstruction workflows

2

PODIO Generation
❖ Written small Julia script to generate

Julia structs from YAML file
❖ Added a ObjectID to each object to

control its registration state

❖ Relations implemented with ObjectID
and Relation structs with just indices
(isbits() = POD)

❖ Two files: genComponents.jl,
genDatatypes.jl generated that
can be complemented with utility
methods

3

"""
struct MCParticle

 Description: The Monte Carlo particle - based on the lcio::MCParticle.
 Author: F.Gaede, DESY
"""
struct MCParticle <: POD
 index::ObjectID{MCParticle} # ObjectID of itself
 #---Data Members
 PDG::Int32 # PDG code of the particle
 generatorStatus::Int32 # status of the particle as defined by the ...
 simulatorStatus::Int32 # status of the particle from the simulation ...
 charge::Float32 # particle charge
 time::Float32 # creation time of the particle in [ns] wrt. ...
 mass::Float64 # mass of the particle in [GeV]
 vertex::Vector3d # production vertex of the particle in [mm].
 endpoint::Vector3d # endpoint of the particle in [mm]
 momentum::Vector3f # particle 3-momentum at the production vertex..
 momentumAtEndpoint::Vector3f # particle 3-momentum at the endpoint in [GeV]
 spin::Vector3f # spin (helicity) vector of the particle.
 colorFlow::Vector2i # color flow as defined by the generator

 #---OneToManyRelations
 parents::Relation{MCParticle,1} # The parents of this particle.
 daughters::Relation{MCParticle,2} # The daughters this particle.
end

"""
struct SimTrackerHit

 Description: Simulated tracker hit
 Author: F.Gaede, DESY
"""
struct SimTrackerHit <: POD
 index::ObjectID{SimTrackerHit} # ObjectID of itself
 #---Data Members
 cellID::UInt64 # ID of the sensor that created this hit
 EDep::Float32 # energy deposited in the hit [GeV].
 time::Float32 # proper time of the hit in the lab frame in ...
 pathLength::Float32 # path length of the particle in the sensiti ...
 quality::Int32 # quality bit flag.
 position::Vector3d # the hit position in [mm].
 momentum::Vector3f # the 3-momentum of the particle at the hits ...
 #---OneToOneRelations
 mcparticle_idx::ObjectID{MCParticle} # MCParticle that caused the hit.
end

ROOT I/O
❖ Using UnROOT.jl package - a really great package!

❖ Supports (transparently) TTree and RNTuple formats and several
versions of PODIO storage (versions 16.x and 17.x)
❖ data files consist exclusively of ‘collections-of-datatypes’ (e.g.

ReconstructedParticles, Vertices, etc.)

❖ The goal is to obtain a StructArray{DataType} of each collection
for each event
❖ The exercise consists in mapping the schema in the ROOT file to the actual

Julia datatype (using the Julia introspection or generated code)
4

Creating SoAs from EDM4hep types
❖ UnROOT.jl provides the leaves

arrays (in a lazy manner) and they are
“mapped” to form SoA of a DataType

❖ Opens the possibility of schema
evolution
❖ filling empty attributes, type change, re-

shaping, etc.

5

using StructArrays

Create a struct array
hits = StructArray{SimTrackerHit}(Tuple(<TLeaf>...))

Access elements
println(hits[1]) # Output: SimTrackerHit(....)

x y z

i
n
d
e
x

c
e
l
l
I
D

E
d
e
p

t
i

m
e

x y z

position momentum

SimTrackerHit #1

SimTrackerHit #2

SimTrackerHit #N

...

.

.

.

SimTrackerHit #3

SoA provides an Ergonomic and Efficient interface
❖ Storage in memory consists of a

set of column arrays
❖ very fast access by column

❖ Materialize, when requested,
object instances (usually on the
stack) to be able to call user
object methods (multiple
dispatch)
❖ to achieve a user friendly access

6

julia> mcps = <get all MCParticle collection>

julia> typeof(mcps[1])
MCParticle

julia> typeof(mcps.charge)
SubArray{Float32, 1, Vector{Float32},
Tuple{UnitRange{Int64}}, true}

julia> length(mcps.charge)
211

julia> mcps[1:2].momentum
2-element StructArray(::Vector{Float32}, ::Vector{Float32},
::Vector{Float32}) with eltype Vector3f:
 (0.5000167,0.0,50.0)
 (0.5000167,0.0,-50.0)

julia> sum(mcps[1:2].momentum)
(1.0000334,0.0,0.0)

Reading from a ROOT (TTree) File

7

using EDM4hep
using EDM4hep.RootIO

cd(@__DIR__)

f = "ttbar_edm4hep_digi.root"

reader = RootIO.Reader(f)
events = RootIO.get(reader, "events")

evt = events[1];

hits = RootIO.get(reader, evt, "InnerTrackerBarrelCollection")
mcps = RootIO.get(reader, evt, "MCParticle")

for hit in hits
 println("Hit $(hit.index) is related to MCParticle $(hit.mcparticle.index) with name $(hit.mcparticle.name)")
end

#---Loop over events---
for (n,e) in enumerate(events)
 ps = RootIO.get(reader, e, "MCParticle")
 println("Event #$(n) has $(length(ps)) MCParticles with a charge sum of $(sum(ps.charge))")
end

Hit #1 is related to MCParticle #65 with name pi+
Hit #2 is related to MCParticle #65 with name pi+
Hit #3 is related to MCParticle #65 with name pi+
Hit #4 is related to MCParticle #65 with name pi+
Hit #5 is related to MCParticle #66 with name pi-
Hit #6 is related to MCParticle #66 with name pi-
Hit #7 is related to MCParticle #66 with name pi-
Hit #8 is related to MCParticle #49 with name pi+
Hit #9 is related to MCParticle #49 with name pi+
Hit #10 is related to MCParticle #49 with name pi+
Hit #11 is related to MCParticle #27 with name K-
Hit #12 is related to MCParticle #27 with name K-
Hit #13 is related to MCParticle #27 with name K-
Hit #14 is related to MCParticle #95 with name e-
Hit #15 is related to MCParticle #95 with name e-
...

~ 1500 times faster than Python

What is currently supported?
❖ EDM4hep files can be local or remote (e.g. root://eospublic.cern.ch/...)

❖ Single or multiple files

❖ Sequential and multi-threaded access

❖ EDM4hep version 1 will be supported after release

8

TTree RNTuple (rc2)

podio v0.16 X -

podio v0.17 X X

Multi-threaded Analysis
❖ Developed mini framework

to ensure thread safety
❖ The user defines a data

structure and an analysis
function

❖ Each thread works on a subset
of events using its own copy of
the data

❖ At the end, the results are
‘summed’ automatically

9

mutable struct MyData <: AbstractAnalysisData
 df::DataFrame
 pevts::Int64
 sevts::Int64
 MyData() = new(DataFrame(...), 0, 0)
end

function myanalysis!(data::MyData, reader, events)
 for evt in events
 data.pevts += 1 # count process events
 μIDs = RootIO.get(reader, evt, "Muon_objIdx")# get the ids of muons
 length(μIDs) < 2 && continue # skip if less than 2

 recps = RootIO.get(reader, evt, "ReconstructedParticles")
 muons = recps[μIDs] # use the ids to subset

 sel_muons = filter(x -> pₜ(x) > 10GeV, muons) # select the Pt of muons
 zed_leptonic = resonanceBuilder(91GeV, sel_muons)
 zed_leptonic_recoil = recoilBuilder(240GeV, zed_leptonic)
 if length(zed_leptonic) == 1 # filter exactly one Z
 Zcand_m = zed_leptonic[1].mass
 Zcand_recoil_m = zed_leptonic_recoil[1].mass
 Zcand_q = zed_leptonic[1].charge
 if 80GeV <= Zcand_m <= 100GeV # select on mass Z
 push!(data.df, (Zcand_m, Zcand_recoil_m, Zcand_q))
 data.sevts += 1 # count selected events
 end
 end
 end
 return data
end

events = RootIO.get(reader, “events")
mydata = MyData()
do_analysis!(mydata, myanalysis!, reader, events; mt=true)

Performance

❖ Sequential performance is pretty good compared
to FCCAnalyses framework (Python+C++) with
(higgs/mH-recoil/mumu example)
❖ using lcgapp-centos8-physical.cern.ch

❖ ~21000 events/s compared with ~9500 events/s

❖ MT scalability is not great
❖ peak is reached with 8 cores

10

0

4

8

12

16

1 4 8 12 16

ideal measured

https://github.com/HEP-FCC/FCCAnalyses/tree/b408bdc20de60cecb6d8fee2e6c3fe7ca680e5bc/examples/FCCee/higgs/mH-recoil

Status
❖ Package EDM4hep.jl is registered and ready for use!

❖ Install Julia

❖ Install EDM4hep

11

julia> using EDM4hep
julia> using EDM4hep.RootIO
julia> file = "root://eospublic.cern.ch//eos/experiment/fcc/ee/generation/DelphesEvents/winter2023/IDEA/
p8_ee_ZZ_ecm240/events_000189367.root"
julia> reader = RootIO.Reader(file)
┌───────────────┬──┐
│ Attribute │ Value │
├───────────────┼──┤
│ File Name(s) │ root://eospublic.cern.ch//eos/experiment/fcc/ee/generation/DelphesEvents/winter202.... │
│ # of events │ 100000
│ IO Format │ TTree │
│ PODIO version │ 0.16.2 │
│ ROOT version │ 6.26.6 │
└───────────────┴──
julia> events = RootIO.get(reader, "events");
julia> evt = events[1];
julia> recps = RootIO.get(reader, evt, "ReconstructedParticles");
julia> recps.energy[1:5]
5-element Vector{Float32}:

curl -fsSL https://install.julialang.org | sh

julia -e ‘import Pkg; Pkg.add(“EDM4hep”)’

https://github.com/peremato/EDM4hep.jl

