EDM4hep Meeting

EDM4hep.jl
Update

Pere Mato/CERN
26 March 2024

https://github.com/peremato/EDM4hep.jl

https://github.com/peremato/EDM4hep.jl

Motivation for EDM4hep.jl - Reminder

“ Generate Julia ‘friendly’ structures for the EDM4hep data model

* As friendly as the Python bindings but with C++ performance

“ Be able to read event data files in ROOT format (TTree & RNTuple) written by
C++ programs from Julia (using the UnROOT.jl package)

“ Development of data analysis functionality

* Later, be able also to write RNTuple files from Julia
« Either with UnROQT.l (Julia native) or wrapping ROOT (GSOC project)

Implementing EDM4hep in Julia is a pre-requisite for introducing the Julia
language in Simulation and Reconstruction workflows

PODIO Generation

“ Written small Julia script to generate
Julia structs from YAML file

* Added a ObjectID to each object to
control its registration state

* Relations implemented with ObjectID
and Relation structs with just indices

(isbits() = POD)

+ Two files: genComponents. jl,
genDatatypes. jl generated that
can be complemented with utility
methods

struct MCParticle

Description: The Monte Carlo particle — based on the lcio::MCParticle.

Author: F.Gaede, DESY
struct MCParticle <: POD
index::0bjectID{MCParticle}
#———Data Members
PDG::Int32
generatorStatus::Int32
simulatorStatus::Int32
charge::Float32
time::Float32
mass::Floatb64d
vertex::Vector3d
endpoint::Vector3d
momentum: :Vector3f
momentumAtEndpoint::Vector3f
spin::Vector3f
colorFlow::Vector2i

HHFHHFHHFHRHFHRHFHRHTE H

#-———0neToManyRelations

parents::Relation{MCParticle,1} #

daughters::Relation{MCParticle, 2}
end

ObjectID of itself

PDG code of the particle
status of the particle as defined by the ...

status of the particle from the simulation ...

particle charge

creation time of the particle in [ns] wrt.
mass of the particle in [GeV]

production vertex of the particle in [mm].
endpoint of the particle in [mm]

particle 3-momentum at the production vertex..
particle 3-momentum at the endpoint in [GeV]
spin (helicity) vector of the particle.
color flow as defined by the generator

The parents of this particle.
The daughters this particle.

struct SimTrackerHit

Description: Simulated tracker hit
Author: F.Gaede, DESY

struct SimTrackerHit <: POD
index::0bjectID{SimTrackerHit}
#-——Data Members
cellID::UInt64
EDep::Float32
time::Float32
pathLength::Float32
quality::Int32
position::Vector3d
momentum: :Vector3f
#-——0neToOneRelations

HHEHHFHHFH H

ObjectID of itself

ID of the sensor that created this hit
energy deposited in the hit [GeV].
proper time of the hit in the lab frame in ...
path length of the particle in the sensiti ...
quality bit flag.

the hit position in [mm].
the 3-momentum of the particle at the hits ...

mcparticle_idx::0bjectID{MCParticle} # MCParticle that caused the hit.

end

ROOT 170

* Using UnROOT.jl package - a really great package!

“ Supports (transparently) TTree and RNTuple formats and several
versions of PODIO storage (versions 16.x and 17.x)

* data files consist exclusively of ‘collections-of-datatypes’ (e.g.
ReconstructedParticles, Vertices, etc.)

* The goal is to obtain a StructArray{DataType} of each collection
for each event

* The exercise consists in mapping the schema in the ROOT file to the actual
Julia datatype (using the Julia introspection or generated code)

Creating SoAs from EDM4hep types

* UnROQT.jl provides the leaves

arrays (in a lazy manner) and they are (SimTrackertit #

“mapped” to form SoA of a DataType

“ Opens the possibility of schema
evolution

« filling empty attributes, type change, re-
shaping, etc.

using StructArrays
Create a struct array
hits = StructArray{SimTrackerHit}(Tuple(<TLeaf>...))

Access elements
println(hits[1]) # Output: SimTrackerHit(....)

an 4 h 4)
)))
C SimTrackerHit #2)
(" SimTrackerHit #3 o
i C
E(t
n © .
d X Z X Z i
. y y e lm
X o
D
(" SimTrackerHit #N)
_/ A
o WY Y,
position momentum

50A provides an Ergonomic and Efficient interface

“ Storage in memory consists of a
set of column arrays

“ very fast access by column

* Materialize, when requested,
object instances (usually on the
stack) to be able to call user
object methods (multiple
dispatch)

* to achieve a user friendly access

julia> mcps = <get all MCParticle collection>

julia> typeof(mcps[1])
MCParticle

julia> typeof(mcps.charge)
SubArray{Float32, 1, Vector{Float32},
Tuple{UnitRange{Int64}}, true}

julia> length(mcps.charge)
211

julia> mcps[1:2].momentum
2—element StructArray(::Vector{Float32}, ::Vector{Float32},
: :Vector{Float32}) with eltype Vector3f:
(0.5000167,0.0,50.0)
(0.5000167,0.0,-50.0)

julia> sum(mcps[1:2].momentum)
(1.0000334,0.0,0.0)

Reading from a ROOT (1Tree) Fil

MCParticle
MCParticle
MCParticle
MCParticle
MCParticle
MCParticle
MCParticle
MCParticle
MCParticle

MCParticle
MCParticle
MCParticle
MCParticle
MCParticle
MCParticle

#65
#65
#65
#65
#6060
#6060
#6060
#49
#49
#49
#27
#27
#27
#95
#95

wilit
wit
wit
wilit
wit
wit
wilit
wit
wit

_— e ed e) D D D

)

wlt
wit
wit
wit
wit

D D D B D S)

name
name
name
name
name
name
name
name
name

name
name
nName
name
name
Nname

Hit #1 1is related to
vsing EDMdhes H}t #g 1s re%ateg to
using EDM4hep.RootIO H}t . P ared 22

Hit #4 1s related to

Hit #5 1s related to
cd(@__DIR_) Hit #6 is related to

o o . Hit #7 1s related to
f = "ttbar_edm4hep_digi.root Hit #8 is related to
reader = RootIO0.Reader(f) :it ziglisriéigigdtgo
events = RootIO0.get(reader, "events") Hit #11 is related to

B _ Hit #12 1is related to

evt = events[1]; Hit #13 is related to
hits = RootIO.get(reader, evt, "InnerTrackerBarrelCollection") :ii ﬁ%g iz E:%:E:g Eg
mcps = RootIO.get(reader, evt, "MCParticle")
for hit in hits

end

#———Loop over events

for

end

println("Hit $(hit.index) is related to MCParticle $(hit.mcparticle.index) with name $(hit.mcparticle.name)")

(n,e) in enumerate(events)
ps = RootIO.get(reader, e, "MCParticle")

println("Event #$(n) has $(length(ps)) MCParticles with a charge sum of $(sum(ps.charge))")

~ 1500 times faster than Python

What is currently supported?

« EDM4hep files can be local or remote (e.g. root:/ /eospublic.cern.ch/...)
Single or multiple files
* Sequential and multi-threaded access

« EDM4hep version 1 will be supported after release

TTree RNTuple (rc2)

podio v0.16

podio v0.17

Mula-threaded Analysis

* Developed mini framework
to ensure thread safety

The user defines a data
structure and an analysis
function

Each thread works on a subset

of events using its own copy of
the data

At the end, the results are
‘'summed’ automatically

mutable struct MyData <:
df::DataFrame
pevts::Int64
sevts::Int64
MyData() = new(DataFrame(..

AbstractAnalysisData

.), 0, 0)

end

function myanalysis!(data:
for evt 1n events
data.pevts += 1
uIDs = RootIO.get(reader, evt,
length(pIDs) < 2 && continue

:MyData, reader, events)

count process events
"Muon_objIdx")# get the ids of muons
skip i1f less than 2

recps = RootIO.get(reader, evt, "ReconstructedParticles")
muons = recps[pIDs] # use the ids to subset
sel_muons = filter(x —> p:(x) > 10GeV, muons) # select the Pt of muons

zed_leptonic = resonanceBuilder(91GeV, sel_muons)
zed _leptonic_recoil = recoilBuilder(240GeV, zed_leptonic)
if length(zed_ leptonlc) == 1 # filter exactly one Z

Zcand_m = zed_leptonic[1].mass
Zcand_recoil m = zed_leptonic_recoil[1].mass
Zcand_qg = zed_leptonic[1].charge

1T 80GeV <= annd —m <= 100GeV
push!(data.df, (Zcand_m, Zcand_recoil m,
data.sevts += 1
end
end
end
return data
end

select on mass Z
Zcand_q))
count selected events

events = RootIO.get(reader,
mydata = MyData()
do_analysis!(mydata, myanalysis!,

“events")

reader, events; mt=true) 9

Performance

* Sequential performance is pretty good compared
to FCCAnalyses framework (Python+C++) with
(higgs /mH-recoil/ mumu example)

¢ using lcgapp-centos8-physical.cern.ch

* ~21000 events/s compared with ~9500 events/s

* MT scalability is not great

« peak is reached with 8 cores

16
12

— |deal

measured

2= 16

10

https://github.com/HEP-FCC/FCCAnalyses/tree/b408bdc20de60cecb6d8fee2e6c3fe7ca680e5bc/examples/FCCee/higgs/mH-recoil

Status

Package EDM4hep.jl is registered and ready for use!

Install]ulia curl —fsSL https://install.julialang.org | sh

Install EDM4hep julia -e ‘import Pkg; Pkg.add(“EDM4hep”)’

julia> file

julia> using EDM4hep
julia> using EDM4hep.RootIO

"root://eospublic.cern.ch//eos/experiment/fcc/ee/generation/DelphesEvents/winter2023/IDEA/

p8_ee 77 ecm240/events_000189367.root"
julia> reader

= RootIO.Reader(file)

Attribute Value
File Name(s) root://eospublic.cern.ch//eos/experiment/fcc/ee/generation/DelphesEvents/winter202....
of events 100000
I0 Format TTree

PODIO version 0.16.2
ROOT version 6.26.6

julia> evt

julia> events = RootIO.get(reader, "events");

events[1];

julia> recps = RootIO.get(reader, evt, "ReconstructedParticles");
julia> recps.energy[1:5]
5-element Vector{Float32}:

iHl

https://github.com/peremato/EDM4hep.jl

