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If you are reading this as a web page: have fun! If you are reading this as a PDF:
please visit

https://www.hep.uniovi.es/vischia/persistent/2024-06-
03to07_MachinelLearningAtDataScienceSchoollGFAE_vischia_1.html

to get the version with working animations
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Image from 10.1103/PhysRevSTAB.16.054801

Complex accelerators
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Existing CERN accelerator complex with Large Hadron Collider (LHC), Super Proton Synchrotron (SPS), Proton
Synchrotron (PS), Antiproton Decelerator (AD), Low Energy lon Ring (LEIR), Linear Accelerators (LINAC), CLIC
Test Facility (CTF3), CERN to Gran Sasso (CNGS), Isotopes Separation on Line (ISOLDE), and neutrons Time

of Flight (n-ToF).
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https://doi.org/10.1103/PhysRevSTAB.16.054801

Complex phenomena

Sketch of a proton—proton collision
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Complex Experiments
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What we measure...

™

March 30, 2010 7 TeV!
JATLAS

A EXPERIMENT

W-pv candidate in
7 TeV collisions

These are the particles that hit the detector

Pictorial representations by


http://home.thep.lu.se/~torbjorn/talks/desy16a.pdf
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Complex Data




Likelihood and information

e Datasample X ps

L(X;0)

= P(X10)|x

obs

e The Likelihood Principle: The likelihood function L(Z; 6) contains all the
information available in the data sample relevant for the estimation of 6

o ¥ Bayesian statistics

o X Frequentist statistics

1(6) = —B| ( fplnL(X; e))zwm}
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Typical analysis pipeline

z ~ f(z)
Multidimensional

stochastic variable
(often latent variables)

z~p (z |ZL‘ ’ 9)
Sensor readouts

\

\

Y
¢(9) = R[2,6,v(0)]
- =) 8 = A[C(G)]

Low-dim summary
for inference

High-level features
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https://arxiv.org/abs/2203.13818

We like low-dim summaries
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e Discard uninteresting regions ¢ Physical observable for inference
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https://doi.org/10.1007/JHEP11%282018%29185

Quantum mechanics and
probability

e Quantum mechanical amplitudes as probabilities

e Random numbers as a proxy for quantum mechanical choices

Pictorial representations by Torbjérn Sjostrand Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 11/ 82


http://home.thep.lu.se/~torbjorn/talks/desy16a.pdf

Efficiently sample from models
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Normalization ;.é\/; r%%lgge protons and that formalism, describes ex .perime’ntal
factor the physics process  efficiencies

Sketch of a proton—proton collision
at high energies

e Difficult integration

e Matrix element computed
perturbatively

o NLO (1st-order) solved in most
processes

o NNLO current challenge

e Costly MonteCarlo simulators

o Hundreds-dimensional phase space
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Generators as vehicles of ideology

e Study complex multiparticle physics (both experimentally and theoretically)

e Flexibility in physical quantities that can be addressed
o Predict event rates and topologies (estimate feasibility)
o Simulate possible backgrounds (devise analysis strategies)
o Study detector requirements (can optimize detector/trigger design)

o Study detector imperfections (evaluate acceptance corrections)

Notsure il shoulil he
uncomiortable withhow nice itieels
when scientifigifiindings supportmy

IS iniaccord withgseientific iindings
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http://www.quickmeme.com/p/3w4kt0/page/3
http://home.thep.lu.se/~torbjorn/talks/desy16a.pdf

Monte Carlo simulations

e \We want to generate events as they are in Nature
o average and fluctuations

o random choices
O final state — O hard process -Ptot, hard process—; final state
where Ptot = PresPISRPFSRPMPIPremnants Phadronizationpdecays
and P; = [[; Pij = I1; 11 Pije = -

e For eachevent, (9(10) random choices (flavour, mass, momentum, spin,

lifetime, ...)

e Typical LHC event: ~ 100 charged particles and ~ 200 neutral particles

e Several thousand choices
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Likelihood intractability in HEP

aa) — /dzp(a:,z]é’) — /dsz 1[0 sz Z10. = )

e No access to the likelihood, or latent variables
o Matrix element
o Parton shower

o Detector simulation
e Can always generate Monte Carlo samples from z ~ p(z|6)

e Histograms are likelihood-free!!!

o Count events, assume Poisson per bin, global likelihood as product
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Brain activity...

INPUT ) BRAIN = OUTPUT

Image from zomato Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 16/ 82


https://www.zomato.com/blog/elements-of-scalable-machine-learning

...approximated...

INPUT ® BRAIN — OQUTPUT

Image from zomato, elaborated with image from pixabay Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 17 / 82


https://www.zomato.com/blog/elements-of-scalable-machine-learning
https://pixabay.com/vectors/bloc-notes-pencil-rings-1300653/

...using computers

INPUT ) BRAIN = OUTPUT

Image from zomato, elaborated with image from twinkl Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 18 /82


https://www.zomato.com/blog/elements-of-scalable-machine-learning
https://www.twinkl.com.pa/teaching-wiki/computer

Understanding Data

Vast amounts of data are being generated in many fields, and the statistician's job is
to make sense of it all: to extract important patterns and trends, and understand
"what the data says.” We call thislearning from data.

(Hastie, Tibshirani, Friedman, Springer 2017)
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Functions Describe the World

¢ Interpolation

Image by Victor Lavrenko Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 20/ 82



Sometimes too well

e Generalization

.

Image by Victor Lavrenko Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 21/ 82



Think in Millions of Dimensions

Image from scientiamo

10 PPI

bile.com

20 PPI

2,54 cm
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https://www.scientiamobile.com/what-is-pixel-density/

Easy or difficult?

Image by Pietro Vischia



Easy or difficult?

Panache

Image from indiatimes.com Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 24/ 82



Mapping Improves Understanding

Tabula Rogeriana by Al Idrisi (1154) 1929 reproduction Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 25/ 82


https://en.wikipedia.org/wiki/Tabula_Rogeriana#/media/File:Tabula_Rogeriana_1929_copy_by_Konrad_Miller.jpg

Representations Make Tasks Easier

Default Representation
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Deep Neural
Network

"Good" Semantic Representation

Animation and picture from FastForward Labs


https://blog.fastforwardlabs.com/2020/11/15/representation-learning-101-for-software-engineers.html

Learn Representations

o Like AdS/CFT, but actually demonstrated &
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https://www.deeplearningbook.org/

Learning from data:

the mathematical formalism

following Joan Bruna's formalization, see e.g. arXiv:1712.04741 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 28 /82


https://arxiv.org/abs/1712.04741

Learn in different ways

Machine Learning

Supervised Learning Unsupervised Learning Reinforcement Learning

Image by Renu Khandelwal Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 29/ 82


https://arshren.medium.com/supervised-unsupervised-and-reinforcement-learning-245b59709f68

Input space

e X':ahigh-dimensional input space

o The challenges come from the high dimensionality!

e |f all dimensions are real-valued, R4

o For square images of side v/d, spaceis ¥ = R% andd ~ 0(10%)

Image from scientiamobile.com

10 PPI

2,54 cm

20 PPI
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https://www.scientiamobile.com/what-is-pixel-density/

Data probability distribution

e 1:unknown data probability distribution

o We can sample from it to obtain an arbitrary amount of data points

o We are not allowed to use any analytic information about it in our computations

If you are interested, lecture on generators in the master's Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 31/ 82


https://www.hep.uniovi.es/vischia/persistent/2023-03-28_GeneratorsAtFPFE_2023_vischia.html

The target function

e f*: X — IR, unknown target function
o In case of multidimensional output to a vector of dimension k, f* : X — R¥

o Some loose assumptions (e.g. square-integrable with respect to the v measure, i.e. finite
moments, bounded...)
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The loss functional
. Llf| =E[i(f(2), f*(@))]

o The metric that tells us how good our predictions are

e The function l(-, ) is a given expression, e.g. regression loss, logistic loss, etc

o Inthis lecture, typically it is the L% norm: || f — f* 220 )
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Loss function comes from inference

e Decision-theoretic approach (C.P. Robert, "The Bayesian Choice")
o AX':observation space
o O: parameter space
o D:decision (action) space
e Statistical inference take a decisiond € D related to parameter @ € © based

on observationz € X, under f(x|0)

o Typically, d consists in estimating h(6) accurately

U(@, d) — "39,0[ U(’P)
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Learning goal

e Goal: predict \fstar from a finite i.i.d. sample of points sampled from v

*
o Sample {zi, f*(@i)}iq,. o Ti ~ V
o For each of the points x;, we know the value of the unknown function (our true labels)
o We want to interpolate for any arbitrary x inbetween the labelled ;...

o ..in million of dimensions!

1 0 ]

0 0 1
t t

0
0o o "
Of 0 g
¢ 0
0

= -1} *
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The space of possible solutions

e The space of possible functional solutions is vast: 7 C {f X — R}
(hypothesis class)

e We need a notion of complexity to "organize" the space

e v(f),f € F:complexity of f

o |t canfor example be the norm, i.e. we can augment the space F with the norm
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Organizing the space

e When the complexity is defined via the norm, J is highly organized: Banach
space!

o The simplest function according to the norm criterion is the 0 function

o If we increase the complexity by increasing the norm, we obtain convex balls
{feFy(f) <o}y =F

o Convex minimization is considerably easier than non-convex minimization

J

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 37 / 82



Empirical Risk Minimization

e For each element of F, a measure of how well it's interpolating the data

e Empiricalrisk: L(f) = £ S°0 | | f(z:) — £* ()]
o | - |isthe empirical loss. If it's the norm, then ZAL(f) is the empirical Mean Square Error

o If you find an analogy with least squares method, it's because for one variable it's exactly
that!

Complete
Statistical
Theory of Learning

Vapnik's image from youtube


https://www.youtube.com/watch?app=desktop&v=Ow25mjFjSmg

Formalizing the minimization of a
functional in a given space}

e Constraint form: min L(f).
=

o Not trivial

e Penalized form: min L(f) + Ay(f).
fic

o More typical

o \isthe price to pay for more complex solutions. Depends on the complexity measure
e Interpolant form: rfnljrrl v(f)st. L(f) =0 = f(z;) = (=) Vi
€

o In ML, most of the times there is no noise, so f(a:z) is exactly the value we expect there (i.e.
we really know that x; is of a given class, without any uncertainty)
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Are the three forms equivalent?

e The interpolant form exploits the no-noise assumption ( "give me the least
complex elements in F that interpolates")

e These forms are not completely equivalent. The penalized form to be solved
requires averaging a full set of penalized forms, so it's not completely
equivalent

e Thereis certainly an implicit correspondence between § and A

o (thelarger )\, the smaller § and viceversa)

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 40/ 82



The Fundamental Theorem of
Machine Learning

e We want to relate the result of the empirical risk minimization (ERM) with the
prediction

o Let'suse the constraint form

e Let's assume we have solved the ERM at a precision € (we are e-away from...).
We then have f € F? suchthat L(f) < € + min ;¢ zs R

e How good is Aa predicting 777 In other words, what's the true loss?
H di t predict *?In oth ds, what's the true loss?

o Canuse the triangular inequality
L(f) - }Ieljer(f) = fig; L(f) — }Ieljst(f) Approximation error

(how appropriate is my measure of complexity)

W90 s | B ) Statistical error
feF?

(having the empirical loss instead of the true loss)

+€ Optimization error
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The Error Market

e The minimization is regulated by the parameter ¢ (the size of the ball in the
space of functions)
e Changing 0 results in a tradeoff between the different errors
o Very small d makes the statistical error blow up

e We are better at doing convex optimization (easier to find minimum), but even
then the optimization error € will not be negligible

o €:how much are ou willing to spend in resources to minimize i}(f)
o We kind of control it!
o If the other errors are smaller than €, then it makes sense to spend resources to decrease it

o Otherwise, don't bother

Bottou and Bousquet, 2008, Shalev-Shwartz, Ben-David Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 42/ 82


https://leon.bottou.org/papers/bottou-bousquet-2008
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/

The big questions

e Approximation: we want to design "good" spaces JF to approximate f* in high-
dimension

o Rather profound problem, on which we still struggle

e Optimization: how to design algorithms to solve the ERM in general
o We essentally have ONE answer

o Gradient Descent!
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The Curse of Dimensionality

e How many samples do we need to estimate f*, depending on assumptions on
its regularity?

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 44/ 82



The Curse of Dimensionality

e How many samples do we need to estimate f*, depending on assumptions on

its regularity?

o f* constant — need only 1 sample

o f*linear — need d samples
jonalsis F = { f : R? — R; —a b e R
5 SrmsaiiipeiEEse s = o (IR SR i) == .0 > b e
(isomorphic)
o It's essentially like solving a system of linear equations for the linear form < x1, 0* >
o dequations, d degrees of freedom

e Thereasonwhy it's so easy is that linear functions are regular at a global level

o Knowing the function locally tells us automatically the properties everywhere
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Locally linear functions

e Assume f* locally linear, i.e. f* is Lipschitz
o |f*(z) — f*(y)| < Bllz -yl
o Lip(f*) = inf {B;|f*(z) — f*(y)| < Bllz — y| is true}
o Lip(f*)isameasure of smoothness

e Space of functionals that are Lipschitz: 7 = {f :R% 5 R; fis Lipschitz}

e We want a normed space to parameterize complexity, so we convert to a
Banach space

o Y(f) := maz(Lip(f),[f|)

o The parameterization of complexity is the Lipschitz constant
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Formalization of the prediction
problem

e Ve > 0,find f € Fsuchthat||f — f*|| < efromniid.samples

o n:sample complexity, "how many more samples to | need to make the error a given amount of
times smaller"

e If f*is Lipschitz, it can be demonstrated that n ~ e ¢

o Upper bound: approximate f with its value in the closest of the sampled data points, find out

expected error ~ 62, upper bound is exponential

o Lower bound: maximum discrepancy (the worst case scenario): unless you sample
exponential number of data points, knowing f(acz) for all of them doesn't let youwell

approximate outside
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PAC learning

DEFINITION 3.1 (PAC Learnability) A hypothesis class H is PAC learnable
if there exist a function ms : (0,1)> — N and a learning algorithm with the
following property: For every ¢, € (0,1), for every distribution D over X, and
for every labeling function f : X — {0,1}, if the realizable assumption holds
with respect to H,D, f, then when running the learning algorithm on m >
my (€,0) i.i.d. examples generated by D and labeled by f, the algorithm returns
a hypothesis h such that, with probability of at least 1 — ¢ (over the choice of
the examples), Lp 5)(h) < e.

e ¢ ("approximately correct"): how far from optimality the model is
e 0 ("probably"): how likely the model is to meet the accuracy requirement

e My determines sample complexity (how many examples to guarantee PAC?)

COROLLARY 3.2 FEuvery finite hypothesis class is PAC learnable with sample
complexity

: mau(e,) < [

Images from Shalev-Shwartz and Ben-David (2014 Cambridge University Press)

os(14/9)]
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Enough of the math?

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 49 / 82



What's the best function

To describe the data points? To separate into two classes?
(regression) (classification)

A X O
1t 000 - : XX gOOO
. X, | % Q OO

| 0 © | x OX XO
: X 000 .
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1 | XX X
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What's the best function

To describe the data points? To separate into two classes?
(regression) (classification)

Image by Victor Lavrenko Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 51/ 82



What's the best function

To describe the data points? To separate into two classes?
(regression) (classification)
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What's the best function

To describe the data points?
(regression)

I
p—
-

M =9

To separate into two classes?
(classification)

Image by Victor Lavrenko
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Avoid overtraining
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Training a model

Use the
o training
Azlzl:;:a:éon » network
P (e.g. for
inference)
Validation
and
sometimes
Test optimization
>
sample of the
trained
network
Dataset
Training
sample

Parameterization

Illustration P. Vischia, 10.5281/zenodo0.6373441 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 55/ 82


https://zenodo.org/doi/10.5281/zenodo.6373441

Data preparation: MinMax scaling

(x — min(z))

k_

~ abs(maz(z) — min(z))
z=kx* (Max — Min) + Min

e Very sensitive to outliers (it scales them linearly)

e Scale to different variance and different mean

y

Data after min-max scaling
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https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Data preparation: standardization

(z — mean(z))

= var(z)

e Direct comparison between weights assigned to different features

e Easier, more effective numerical minimization, but still sensitive to outliers

e Scale to same variance and same mean (can also scale to same variance but
different meanz = —%—)

Data after standard scaling
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https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Data preparation: normalisation

e Normalize each data point to have unit norm

e Useful if using dot-product or other kernels to quantify similarity

Data after sample-wise L2 normalizing
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https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html

Data preparation: PCA

¢ Principal Component Analysis

o Find iteratively the direction (linear combination of features) explaining the most variance

¢ Principal components are the
eigenvectors of the data
covariance matrix

o Can be found by Singular Value
Decomposition (SVD)

e Somehow analogous to finding
axes of ellipsoid

o Features with different units —
arbitrariety (scale them first)

e Canretain afew dimensions:
dimensionality reduction

o Dropdirections least explaining the
variance

Image by Nicoguaro on Wikipedia
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https://en.wikipedia.org/wiki/File:GaussianScatterPCA.svg

Data preparation: missing values

e LHC dataareof extremely good quality (unlike e.g. medlcme social sciences)

o Use proxy feature (pT of the two b jets — pT of the two jets with highest b-tagging
discriminator, in a region without b jets)

o Use average over other data points (pT of the third jet — **mean of the third jet pT for data
points that have it, if some data points don't have three jets)
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https://www.pinterest.com/pin/bob-kelso-gifs--42502790222796560/

Data preparation: feature encoding

Tomorrow, tomorrow!

You'reonlya ii?u away!

¥ MakeAGIF.com

Gif from pinterest


https://www.pinterest.com/pin/tomorrow-annie-gif-tomorrow-annie-youre-ony-a-day-away-discover-share-gifs-in-2023--381117187233166801/

Class weights vs event weights

Tomorrow, tomorrow!

You'reonlya ii?u away!

¥ MakeAGIF.com
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https://www.pinterest.com/pin/tomorrow-annie-gif-tomorrow-annie-youre-ony-a-day-away-discover-share-gifs-in-2023--381117187233166801/

Support Vector Machines (Vapnik)

e Similar to a "cut-based" analysis, but sophisticated strategy for optimal class
separation

e Minimize empirical classification error + maximize geometric margin

g 2,

Figure by Larhmam on wikipedia / / Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 63/ 82


https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:SVM_margin.png

Support vector Machines

e Nonlinearity by kernel trick (deform the metric of the space until separation is
linear)
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https://commons.wikimedia.org/wiki/File:Kernel_Machine.svg

Decision Trees

e "Cut-based" analysis on steroids

e Orderingis key
o 1) check stopping criterion

o 2)sortaccording to each feature

(e]

3) compute all separations

(o]

4) if best separation improves, split

5)backto 1

o
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https://doi.org/10.1142/9789811234033_0002

Decision Trees: hyperparameters

e Class balance: normalize classes » ,; w; = ) _; wj, (3, j) atroot node
o Inpractice, early splitting provides balance anyway
e Impurity ¢(¢), and stopping criterion

o Minimum leaf (end node) size (maximum error v/ IN,,,;,, ensures significance of purity
estimate)

o Perfect separation
o Insufficient improvement

o Maximum tree depth (purely computational requirement)
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Decision Trees: splitting

e Impurity decrease: Ai(S,t) = i(t) — ppi(ty) — pri(tr)

e Optimization problem: Az(S*,t) = maxgespits Ai(S, 1)

unit
o
N
(3]

arbitrary
o
N

0.15

Split criterion

0.1 == Misclas. error

- Entropy

0.05 — Gini

II|IIII|IIII|IIII|IIIIII

0 0.2 0.4 0.6 0.8 1
signal purity

Fig. 5. Impurity measures as a function of signal purity.
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https://doi.org/10.1142/9789811234033_0002

Decision Trees: limitations

e Sensitivity to training sample

o Decision trees are not robust: high variance for small changes in training sample

e Tree depthresults in higher statistical uncertainty in the split purity

o Can be mitigated by pruning

e Ensemble learning fixes all of this
o Richer description when intersecting partitions

o More accurate description when averaging partitions

Partition 3 .
\ Partition 2
\ Cl=1
\ C2=0

N

Class 1 Class 1

__'Q

Class 2 Class 2

Image from 10.1142/9789811234033_0002 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 68 / 82


https://doi.org/10.1142/9789811234033_0002

Boosted decision trees

e Ada(ptive) Boost

o Increase at each iteration the
importance of events incorrectly
classified in the previous iteration

Box 2

D1 D2

' '
: + + D3
e
t ot + + s P
+ + T = -
+ + - 3
|
+
Box 1 + ¥ Box 3
-+
+_ «—— Box 4

e Gradient Boost

o fit the new predictor to the residual
errors of the previous one

.5 Ground truth tree 1 tree 2 tree 3

2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0

e Bagging: training trees on bootstrap replicas, average all trees

| can't remember where | took the images from. Maybe the TMVA manual?

e Random forest: bagging + pick only a random subset of features at each step

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7
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Performance (classification)

e Receiver operating characteristic (ROC) curve

o Area € [0, 1], higher values are better

e Fortwo classes

(signal, background):

o Signal efficiency

o Background
efficiency (rejection
:= 1-efficiency)

e Multiple classes:
pairwise, one-vs-all

Image from 10.1142/9789811234033_0002
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https://doi.org/10.1142/9789811234033_0002

Two-dimensional scatter plot

e Forregression problems

e Can compute linear pearson coefficient as an estimate of linearity

o Formulas exist also for weighted events
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https://indico.cern.ch/event/924283/contributions/4105189/attachments/2154021/3632722/FastML2020.pdf
https://doi.org/10.1007/JHEP04%282021%29020

Confusion matrix

e For classification, can also use it to discretize regression (e.g. in the case of
histograms)

e Note the normalization (each true label row sums up to 1)

Normalized confusion matrix

0.01 0.00 0.00 0.00 0.00
0.8
0.40 0.01 0.00 0.00 0.00
0.6
< 2.04 036 0.18 0.44 0.01 0.00 0.00
L
S
~ 304 024 0.07 0.21 0.47 0.02 0.00 L 0.4
4049 031 0.08 0.06 0.28 0.25 0.02
- 0.2
5.0 0.25 0.00 0.00 0.00 0.25
T T T T T I 0-0

Predicted label
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https://stackoverflow.com/questions/58766561/scikit-learn-sklearn-confusion-matrix-plot-for-more-than-3-classes

Error rates (for reference)

TOTAL POPULATION

TEST POS

TEST
ouT-

Lol TEST NEG

ACCURACY

ACC= TP+TN

TOT POP

Image from unite.ai

CONDITION
determined by "Gold Standard"
CONDITION POS CONDITION NEG
Type | Error
True Pos False Pos
TP FP
Type Nl Error
False Neg True Neg
FN TN
Sensitivity (SN), Recall Fali-Out
Total Pos Rate False Pos Rate
TPR FPR
TPR= TP FPR= FP
CONDITION POS CONDITION NEG
Miss Rate Specificity (SPC)
False Neg Rate True Neg Rate
FNR TNR
FNR = FN TNR = TN

CONDITION POS

CONDITION NEG
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https://www.unite.ai/what-is-a-confusion-matrix/

Model complexity
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Overtraining check

e KS test done mostly for BDTs. For neural networks, much handier ways

Do the training and test output distributions come from the same underlying p.d.f.?

TMVA overtraining check for classifier: DT TMVA TMVA overtraining check for classifier: BDTS TMVA TMVA overtraining check for classifier: BDT10 TMVA
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https://doi.org/10.1142/9789811234033_0002

Interpretability, explainability

e Permutation Importance: the decrease in a model score when a single feature
value is randomly shuffled (see scikit-learn documentation) (akin to impacts for
profile likelihood fits)

e Shapley Values: based on game theory (will use them this afternoon)

e Correlation-based: e.g. parallel coordinates in TMVA: look where each variable
is mapped to/correlated with

Journal of Physics: Conference Series 219 (2010) 032010 doi: 10.1088/1742-6596/219/3/032010

0.9926 427.1972 2.2000 197.0056 181.0919 460.4492 1.0751

0.0001 100
MVA_SVM_Gauss_0.5_17 Var00 Var01 Var02 Var03 Var04 Var05
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https://scikit-learn.org/stable/modules/permutation_importance.html

Model assessment by comparing
models

e Bayesian Information Criterion: BIC = nfreepammsln(ndaw)/2ln(13)

o Parameter 0 predicted by two models My and M: P(@\f, M) o P(£|%?§)AZSOM)

o Apply Bayes theorem to Bayesian evidence (Model likelihood): P(Z| M) =
[ P(Z|0, M)P(6|M)do

. CP(My|Z) _ P(3|My)w(Mp)
o Posterior odds: P(M|Z) — P(z|My)r(My)

o Canrewrite posteriors in terms of BIC, equivalent

e Minimum Description Length (MDL): Kolmogorov complexity (length of
minimum program needed to describe the data)
o fori = 1t02500;doprint’0001’; halt
o print'101001010100010111001000010000101110011100001010100101..."; halt
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Model assessment by comparing
models

e Structural Risk Minimization: complexity as Vapnik-Chervonkensis class
(largest number of shattered points)

o Build a nested sequence of models with increasing VC complexity h
o Write a probabilistic upper bound for the regression error: err < f(h/N)

o Choose model with smallest value of the upper bound
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Model assessment: focus on
prediction error

e Cross-validation: useful when data are scarce

o Split the data into K parts ("folds")

o For the kth part, fit the model to the other K-1 folds, and calculate test error as error on
predicting the kth part data

o Do this for all k, then combine the K estimates of the prediction error

o Choose K

= K=N (leave-one-out), unbiased but high variance (training sets are basically the same)

= Low K (5--10): Lower variance, but maybe bias (folds not representative of the data set)

Train Train Validation Train Train

Images from Hastie, Tibshirani, Friedman
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Model assessment: focus on
prediction error

e Bootstrap: a general tool to assessing statistical accuracy
o Estimate the variance on the statistic S(Z) (Z are the data)

o Can be used as model assessment tool, or to improve an estimator

o Bagging to combine weak learners (ensemble learning)

———---- Bootstrap
-_----- replications
S(Z*! - S(Z*2) = SUAL
[ { ______ ------227 DBootstrap
NSNS -- samples

. Traiu}ng
sample
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Exercises location

The public repository is at:
https://github.com/vischia/data_science_school_igfae2024

e The README .md contains instructions to run:

o Locally on your machine (conda, virtualenv)

o On Google Colab (in case you suspect your laptop may not be powerful enough for training
neural networks in a timely manner (mostly relevant for tomorrow, today you should be fine)
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https://github.com/vischia/data_science_school_igfae2024

Thank you!
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