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If you are reading this as a web page: have fun! If you are reading this as a PDF:
please visit

https://www.hep.uniovi.es/vischia/persistent/2024-06-
03to07_MachinelLearningAtDataScienceSchoollGFAE_vischia_2.html

to get the version with working animations
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Brain activity...

INPUT ) BRAIN = OUTPUT
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https://www.zomato.com/blog/elements-of-scalable-machine-learning

...approximated...

INPUT ® BRAIN — OQUTPUT
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https://www.zomato.com/blog/elements-of-scalable-machine-learning
https://pixabay.com/vectors/bloc-notes-pencil-rings-1300653/

...using computers

INPUT ) BRAIN = OUTPUT
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https://www.zomato.com/blog/elements-of-scalable-machine-learning
https://www.twinkl.com.pa/teaching-wiki/computer

Santiago Ramon y Cajal

e "The Spanish father of culturism"

Images from menshealth and The Nobel Prize


https://www.menshealth.com/es/fitness/a35188446/ramon-y-cajal-ciencia-culturismo-fitness/
https://nobelprizemuseum.se/en/synapses-science-and-art-in-spain-from-ramon-y-cajal-to-the-21st-century/

Images from
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e "The Spanish father of culturism" e The 1906 Nobel Prize in Medicine

and


https://www.menshealth.com/es/fitness/a35188446/ramon-y-cajal-ciencia-culturismo-fitness/
https://nobelprizemuseum.se/en/synapses-science-and-art-in-spain-from-ramon-y-cajal-to-the-21st-century/
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https://appliedgo.net/perceptron/
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https://appliedgo.net/perceptron/

Computationally heavy
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https://giphy.com/gifs/reaction-9o9dh1JRGThC1qxGTJ

Simplified Neurons

Bulletin of Mathematical Biology Vol. 52, No. 1/2, pp. 99-115, 1990. 0092-8240/90$3.00+ 0.00
Printed in Great Britain. Pergamon Press plc
Society for Mathematical Biology

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

B WARREN S. MCCULLOCH AND WALTER PITTS
University of Tllinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.

Because of the “all-or-none” character of nervous activity, neural events and the relations among
them can be treated by means of propositional logic. It is found that the behavior of every net can
be described in these terms, with the addition of more complicated logical means for nets
containing circles; and that for any logical expression satisfying certain conditions, one can find a
net behaving in the fashion it describes. It is shown that many particular choices among possible
neurophysiological assumptions are equivalent, in the sense that for every net behaving under
one assumption, there exists another net which behaves under the other and gives the same
results, although perhaps not in the same time. Various applications of the calculus are
discussed.
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Artificial Neural Networks




Perceptron step by step

Linear combination of the inputs
D Wi,
J

Activation function (imitates the activation of real neurons, where a voltage
peak, a spike, is generated when the injected potential passes a threshold)

g (wo =+ Z wjacj)
J
Bias term, an order-zero term in the inputs (translation)

U= g(’wo =t Z’ijj)
)

In matrix form, a row-column product

= g(wg Sl XTW)
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Activation Function

e Originally, the activation function was linear

9(z) =1lifz =wy + ) w;z; >=0
Gl — e — = e

e Activation function is the only chance of estimating nonlinear functions

e Otherwise, a neural network would be just a fancier linear regression model

§=g(1+ [i;r [g]) — g(1 + 3y + 2x,)
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Popular activation functions

Sigmoid Rectified Linear Unit (ReLU)
g9(z) = maz(0, z)

9'(z) = Lifz > 0,0 otherwise
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Multidimensional outputs

o 3}1, g)g, each one with the same formula as a single neuron— just with an
additional index

g = glwg; + ) wjm;)
j
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Neural network with one internal
layer

Between input and hidden layer: w®)

Between hidden layer and output layer: W (2)

Output of the hidden layer neurons:

1 1
2 = g(woy + ) wjiw))
J

Output of the network

Yi = Q(w(()?i) B Z w]('?i) z;)
J

The generalization to multiple outputs ¥; is also trivial
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Gradient Descent

e Search for the "minimum error" as a function of the values of the training
paramters (weights)

“‘\\\\‘:."

\\\\“

Top illustration from easyai.tech, bottom one from the MODE White Paper


https://easyai.tech/en/ai-definition/gradient-descent/
https://arxiv.org/abs/2203.13818
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Backpropagation

(a) Forward pass >

€ — - (b) Backward pass
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https://jmlr.org/papers/v18/17-468.html

Backpropagation

Empirical Loss Function

Cost function

Empirical risk

JW) = 3" L(Fat; W),y 0)
=1

Minimized by:

e - -
WY = argminyyJ (W) = argminyJ(W) = — Z E(f(m(z); W), y*(z))
n
=
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Loss function comes from inference

e Decision-theoretic approach (C.P. Robert, "The Bayesian Choice")
o AX':observation space
o O: parameter space
o D:decision (action) space
e Statistical inference take a decisiond € D related to parameter @ € © based

on observationz € X, under f(x|0)

o Typically, d consists in estimating h(6) accurately

U(@, d) — "39,0[ U(’P)
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Loss function comes from inference

e Loss function: L(0,d) = —U (6, d)

o Represents intuitively the loss or error in which you incur when you make a bad decision (a
bad estimation of the target function)

o Lower bound at O: avoids "infinite utility" paradoxes (St. Petersburg paradox, martingale-
based stragegies)

e Generally impossible to uniformly minimize in d the loss for 6 unknown

o Need for a practical prescription to use the loss function as a comparison criterion in practice
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Frequentist loss, Bayesian loss

e Frequentist loss (risk) is integrated (averaged) on X:R(H, 5) =
By [ L(6,6(2))
o 5() is an \textbf{estimator} of  (e.g. MLE)

o Compare estimators, find the best estimator based on long-run performance for all values of
unknown 6

o lIssues: based on long run performance (not optimal for &, ); repeatability of the experiment;
no total ordering on the set of estimators

e Bayesian loss: is integrated on O: p(m, d|x) = E” {L(é’, d) |$}

o

7 is the prior distribution

o Posterior expected loss averages the error over the posterior distribution of & conditional on

Lobs

o Canuse the conditionality because x5 is known!

o Canalso integrate the frequentist risk; integrated risk (7, §) = E™ {R(@, 5)} averaged

over 0 according to 7 (total ordering)
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ANNSs and Bayesian networks

e Standard ANN training essentially is a frequentist MLE
o NN weights: true, unknown values

o Data: random variable

e Bayesian networks treat weights w as random (latent) variables, and condition
on the observed data

o Obtain p(w|data) starting from prior belief 7r(w) and likelihood p(data|w)

o Predictions obtained as expectation values, £, [ f] = [ f(w)p(w|data)dw, averaging f
weighting by the posterior

o Marginalization leads to essentially learning the generative model (the pdfs), leading to
interpretability

4 Evidence

P(D|H1)
R

P(D[Hs)

—L I

D

Fig. 3.4 Graphical illustration of how the evidence plays a role in investigating different model
- hypotheses. The simple model H, is able to predict a small range of data with greater strength,
Image from 10.1007/978-3-030-42553-1 while the more complex model H2 is able to represent alargen range-of data,though with lewer

E Data Science School - 2024.06.3-7 --- 25/ 136
probability. Adapted from [45, 46]


https://doi.org/10.1007/978-3-030-42553-1

Training loop

e Initialize the weights (for instance w ~ Gaus(0, 02)

e Loop until convergence

o Compute network output (forward step)

OI(W)
W

o Compute gradients

2J(W)
W

o Update the weights according to the learningrate W <~ W + 1

o Return weights
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Backpropagation

€ - (b) Backward pass

Image from Guines Baydin et al, JMLR 18 (2018) 1--43 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 27 / 136


https://jmlr.org/papers/v18/17-468.html

Jacobian and Hessian
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Matrix multiplication

¢ Neural network weights expressable as matrices
e Generalize matrix calculus to tensors (tensorflow)

e Optimize for efficient tensor calculus (e.g. GPU—TPU, computational tricks)

Input Weights Output
n B
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m=1/ | = mil i
X
K L
— n “.
& C
m A k B =
X
Y
Y
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https://glouppe.github.io/

Example: Google's TPUs

e Systolic flow
o Hide four-stage process within the matrix multiplication operation
o E.g.decoupled access/execution when reading weights

o Trick flow control into thinking inputs are read and update results at once

o 173 [oomial |
{7 30 GiBls R
14 GiB/s iB/s 5
:) DDR3-2133 Weight FIFO
::> (Weight Fetcher) — —> —> —> Data
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N
d_ N
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r
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Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input is read at once, and they instantly
update one location of each of 256 accumulator RAMs.
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https://arxiv.org/abs/1704.04760

Derive

Image from Guines Baydin et al, JMLR 18 (2018) 1--43

h==z
Ii!.’|+1 = “”11(1 - Iin)

flz) =l = 64(1—x)(1 —22)*(1 — 8z +8z?)*?

Mannal
Differentiation

f(x):
V=X
fori=1to 3
v=4=vx(1l-v)
return v

or, in closed-form,

fx):
return 64%x* (1-x)*((1-2%x)"2)

* (1-8kx+Bkx*x) "2

f(z) = 1282(1 — =)(—8 + 16z)(1 — 2z)*(1 -
8z +8z?) +64(1—z)(1—2z)%(1— 8z +8z%)2 —
64z(1 —22)%(1 — 8z + 82%)* — 256z(1 — z)(1 —
2z)(1 — 8z + 8z2)?

h 4

Symbolic
Differentiation
of the Closed-form

Automatic
Differentiation

A 4

Numerical
Differentiation

£ (x):
(v,dv) = (x,1)
fori=1to 3
(v,dv) = (d*v*(1-v), d*dv-8*v*dv)
return (v,dv)

7 (%) _.f”[ Tp)

Exact
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(e
return 128k (1 - x)* (-8 + 16%x)

*#((1 - 2%x) "2) *(1 — 8*x + B*x*x)
+64%(1 - x)*((1 - 2*x)"2) *((1

- B*x + Bxx*xx)"2) - (64*x*(1 -
2xx) "2)* (1 — S*x + Skx*x) "2 -
256%x*(1 — x)* (1 - 2%x) *(1 - 8%x

+ 8*x*x) "2
7 (xp) f'(xa)
Exact
N
£2(x):
h =0.000001
return (f(x +h) - f(x)) / h
£ (%) = f'(zq)
Approximate
L]



https://jmlr.org/papers/v18/17-468.html

Automatic differentiation

has many names

e Automatic differentiation

Algorithmic differentiation
o AD
Autodiff

Algodiff

Autograd
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Automatic differentiation

3

z(x,y) =2x+xsin(y) +y

VE - ’ ‘
— =Vg |
Vat+Vaq+Vsg y 8

Forward mode Reverse mode
e Totheextreme, f : R — R™ e Totheextreme, f : R” — R

o Evaluates(%,...,%) e Evaluate Vf(x)(4L, ..., 2L)

G O

e Computational cost of calculating J ¢(x) for f : R — R™ inR™ x R™

O(n time(f)) O(m time(f))
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Forward and reverse (==backprop) modes

Primal: independent to dependent

Adjoint (derivatives): dependent to independent

y(x) = 2z9 + zo sin(z1) + =3

Fwd
Primal
Trace
Atomic
operation

Vo = Xy
V1 = 21
Vg = 2’0()
V3 =
sin(vy)
Vg =
VU3

U5 = U:f’
Vg =

v2 +

V4 + Uy

Y= e

Fwd Tangent
Trace (set x( =
Valuein 1 tocompute Valuein
Jy
(1> 2) 3_300) (1a 2)
Atomic
operation
1 U9 = Lo 1
2 U1 = X1 0
2x1
o 0 x
vz = 2 —0.41
9 U3 = v1cos(v1) 1
0.9093 Vy : Vgv3 + 0.9093 -+
09093 VoUs
. o 9 1x0
8 U5 = 3U107
. . . 3x0x4
10.9093 "{6 = Vg + Vg4 + 24
Us 0.9093 +
0
10.9093 4y = vs 2.9093

Fwd
Primal
Trace
Atomic
operation

Vo = 2o

Rev Adjoint
Trace (sety —
Valuein 1 tocompute
(1,2) o)
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operation

—
I

0
1

0
1

no
Bl

I
& &

vo = Vo +
1_)26?)2/8’1)0
Uy =
1_}46’04/8’00
U1 = U1 +
17382)3/8’01
V1 =
U50v5 /Ovy
Vg =
Vg Ovg /Oy
V3 =
1_)48’04/81)3
Vg =
1_)681)6/8’04
U5 =

V606 / Ovs

2
0.9093
0.9093

8

10.9093

Value in

(1,2)

2.9093
11.5839

Vo + V2 X
2 =
2.9093
Vg X V3 =
0.9093
U1 + U3 X
cos(v1) =
11.5839
Uy X
3v? =12
g X 1=
1
Vg X Vg =
1
vg X 1 =
1
g X 1 =
1
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Designed to be simple in software

import torch, math

x0 = torch.tensor(l., requires grad=True)

x1 = torch.tensor (2., requires grad=True)

p = 2*x0 + x0*torch.sin (x1)

print (p)
p.backward()
print (x0.grad, xl.grad)

Primal: tensor (10.9093,
Adjoint: tensor (2.9093)

+ x1**3

yielding

grad fn=<AddBackward0>)
tensor (11.5839)

e Torch (and similar software) will correctly differentiate only when the atomic

operations are supported within it

o Common operations are overloaded ( mul _rewrittenby torch. mult )

o Operations from libraries (math.sin () ) must be replaced by their differentiation-aware

equivalents (torch.sin ())
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Sampling scheme

e Batch: compute on the whole training set (for large sets becomes too costly)
e Stochastic: compute on one sample (large noise, difficult to converge)

e Mini-batch: use a relatively small sample of data (tradeoff)

I I

>8Il = Stochastic |

3.6 | — Mini-batch I
3.4 | ==e Batch -

91 3.2
3.0}

2.8}
2.6 |-

2.4}
2.5 3.0 3.5 4.0 4.5
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https://agenda.irmp.ucl.ac.be/event/3738/t

Descent strategies

e Mostly nonconvex optimization: very complicated problem, convergence in
general not guaranteed

e Nesterov momentum: big jumps followed by correction seem to help!

e Adaptive moments: gradient steps decrease when getting closer to the
minimum (avoids overshooting)

Top illustration from easyai.tech, bottom one from the MODE White Paper


https://easyai.tech/en/ai-definition/gradient-descent/
https://arxiv.org/abs/2203.13818

Number of parameters

e Empirical studies: increasing number of parameters doesn't help beyond a
certain point

97 | | | | |
—~ e—e 3 convolutional
= 96 | |
g +—+ 3, fully connected
= 95 |- V—¥ 11, convolutional []
& o4l -
=
=
S o3| — 3 -
=] T 1
7
S 92 i
91 | | | | |
0.0 0.2 0.4 0.6 0.8 1.0
Number of parameters x 108
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https://www.deeplearningbook.org/

Depth

e Empirical studies: increasing depth tends to always result in some
improvement

96.5 T T T T | T T
96.0
95.5
95.0
94.5
94.0
93.5
93.0
92.5
92.0

Test accuracy (percent)

10 11
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https://www.deeplearningbook.org/

Regularization: weight decay

e Another way of regularizing is via weight decay e regularization)

o Tradeoff between good fitting (small MSE) and small norm (smaller slope, or fewer features
with large weights)

o Instatistics, "ridge regression”, "Tikhonov regularization"

J(W) = MSErain + AW’ W

\

7
\
/ AN
\ L~ s/
~ -~ [/
w1
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https://www.deeplearningbook.org/

Early stopping...

e Train until the validation set loss starts increasing, and pick the model
corresponding to the minimum validation loss

0.20 I | | |

e—e Training set loss
0.15 —— Validation set loss |-

Loss (negative log-likelihood)
=
—
o

0 50 100 150 200 250
Time (epochs)
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https://www.deeplearningbook.org/

...Is a form of regularisation

e Early stopping limits the reachable phase space, and is therefore analogous to
L2 regularization (weight decay)

J(W) = MSEain + AW w

& (=

— ,—

— ” -_‘-.._

g ;v § 7 7T WY
b 4 RN
I~ AV
Y. L~” /!

~ P

w1 w1
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https://www.deeplearningbook.org/

Impressive results

Videos from YouTube, autonomous driving


https://www.youtube.com/watch?v=MqUbdd7ae54

Impressive results

e Busco colaboraciones para aplicaciones médicas de inteligencia artificial

Video de YouTube, cancer research


https://www.youtube.com/watch?v=mq_g7xezRW8

Differentiable Programming

Execute differentiable functions (programs) via automatic differentiation

Yann LeCun @
January 5, 2018 -

OK, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming!

Yeah, Differentiable Programming is little more than a rebranding of the modern collection Deep Learning
techniques, the same way Deep Learning was a rebranding of the modern incarnations of neural nets with
more than two layers.

But the important point is that people are now building a new kind of software by assembling networks of
parameterized functional blocks and by training them from examples using some form of gradient-based
optimization.

An increasingly large number of people are defining the networks procedurally in a data-dependent way
(with loops and conditionals), allowing them to change dynamically as a function of the input data fed to
them. It's really very much like a regular progam, except it's parameterized, automatically differentiated, and
trainable/optimizable. Dynamic networks have become increasingly popular (particularly for NLP), thanks to
deep learning frameworks that can handle them such as PyTorch and Chainer (note: our old deep learning
framework Lush could handle a particular kind of dynamic nets called Graph Transformer Networks, back in
1994. It was needed for text recognition).

People are now actively working on compilers for imperative differentiable programming languages. This is
a very exciting avenue for the development of learning-based Al.

Important note: this won't be sufficient to take us to "true" Al. Other concepts will be needed for that, such
as what | used to call predictive learning and now decided to call Imputative Learning. More on this later....

O 1.8K 186 Comments 464 Shares
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https://www.facebook.com/yann.lecun/posts/10155003011462143

Many ways of inserting our biases

e Regularization corresponds to inserting our bias into the algorithm

o "l know that the solution should not wiggle", "I know that the curvature must not be too large"

e Two models A and B performing the same classification task
0 § = f(w), x)
o §B = f(wl®),x)

e [f the inputs distributions are somehow different, but we know (or want that)
the output are related, we can assume that the weights should be similar

J(W) = MSE;.in + )\||W(A) — W(B)H%
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Parameter sharing

e Simply require parameters are equal

o If they are equal, you can store only one number in memory (sometimes dramatic memory
footprint reduction)
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https://www.goodhousekeeping.com/life/pets/a43276342/cat-instagram-captions

Convolution: a form of averaging

S)— /;c(a)w(t — a)da

e Whendiscretized, integral becomes a sum
o xinput
o w kernel: specifies how far does the averaging goes

o S feature map
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Convolution: a form of averaging
S(Z7]) o (K*I)(’L,]) = ZZI(Z —m,J _n)K(m7n)

m n
Input
Kernel
c d
w T
g h
Y z
i J k l
v Output
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aw + bx + bw + ex + ew + dr +
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Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 49 / 136


https://www.deeplearningbook.org/

Receptive field

ONORONONO
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https://www.deeplearningbook.org/

Receptive field: deeper = larger

OJO¥ OO0
SERE
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https://www.deeplearningbook.org/

Parameter sharing

ojoyolo
ololo
O-0.0.0
040
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https://www.deeplearningbook.org/

Convolutional network

e Convolution — nonlinear activation — pooling

e Pooling: replace output at a location with a summary statistic
o e.g., max pooling = report the maximum output in a neighbourhood

o Helps with invariance for translations

Large response
in pooling unit
Large

response

Large response
in pooling unit

in detector

Large

response

unit 3
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https://www.deeplearningbook.org/

Convolutional networks

e ki
1E 51

kel g

IFEEETS R,

TAF e B2

M =]
= [E -
ru -E
: £
ol Ei
| ok
- -
l_.'_l L
P Bi
< oy
- -
%1 -]
s d

__________ — — — e —
F|=_-..1tur£-= maps fm htapi- _\

C 5
\ input feature maps  feature maps
w3 28 x 18

feature extraction classification

Images from tue.nl and Yann LeCun's LeNet Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 54/ 136


http://parse.ele.tue.nl/education/cluster0
http://yann.lecun.com/exdb/lenet/index.html

Intermediate representations
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https://www.deeplearningbook.org/

Morphology of galaxies

| Intermediate Spirals
.. " .

B?(rgd S.;;!;';;,; -

Irregular

Image from



https://link.springer.com/article/10.1007/s12145-019-00434-8

Representations of galaxies...

00 25 50 75 100 125 150

()
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https://link.springer.com/article/10.1007/s12145-019-00434-8

...work pretty well

Testing done on the 64 Galaxy Testing Set

80
60
40 Incorrect Predictions
20 Correct Predctions
0 Total Images

Eliptical Spiral Galaxy Irregular
Galaxy Galaxy

B Totalimages W Correct Predictions W Incorrect Predictions
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https://link.springer.com/article/10.1007/s12145-019-00434-8

Semantic representations

Object Detection Instance Segmentation
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https://ai-pool.com/d/could-you-explain-me-how-instance-segmentation-works

What about time?

e Convolutional network: process grid of values (e.g. images)

e Recurrent networks: process a sequence of values indicised by a "time"
component

o Languageis a sequence

e Parameter sharing crucial to generalize:
o lengths unseen in training

o different positions in the sentences

e Without parameter sharing, a network would have to learn all the language
rules at each step of the sequence

o Veryimpractical

e Both scale very well (thanks to parameter sharing)
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Convolutional networks for
sequences?

e Could "link" the steps of the sequence via the convolution
e Use the same kernel at each time step

e Shallow: it links only neighbouring time steps

Recurrent network

e Use the same parameter at the same step, s = f(s(*=1) 9)

o Very deep structure

I
\
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https://www.deeplearningbook.org/

Unfold the graph

RGTCrOrCrS
f f f f ~=7

f Unfold
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https://www.deeplearningbook.org/

Vast zoology

= An output at each time step, recurrent connections between hidden units

Images from Goodfellow, Bengio, Courville, 2016 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 63/ 136


https://www.deeplearningbook.org/

Vast zoology

e Anoutput at each time step, recurrent connections only from the output at one
time step to the hidden units at the next time step
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https://www.deeplearningbook.org/

Vast zoology

e Recurrent connections between hidden units, that read an entire sequence and
then produce a single output
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https://www.deeplearningbook.org/

Sequences of images

Ident. Cost Siamese Cost Ident. Cost

1 TT 1

Seq. Feature Seq. Feature

1 i
Temporal Pooling Temporal Pooling
1 t 1 1 t 1
RNN — RNN = RNN RNN —{ RNN = RNN
1 1 t ‘o 1 1
CNN CNN CNN CNN CNN CNN
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https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.148

Real-time segmentation

Videos from YouTube, autonomous driving and YouTube, cancer research


https://www.youtube.com/watch?v=MqUbdd7ae54
https://www.youtube.com/watch?v=mq_g7xezRW8

Graphs Represent Structure
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https://indico.cern.ch/event/852553/timetable/

Graph networks

e Represent data as point clouds

e Connect data points with weight-
dependent connections s \

e Train the network to find which
weights are strongest

o Learngthe connectivity structure of
the data

/\
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CMS High-granularity calorimeter

e 6 million cells with ~ 3mm spatial resolution, over 600m? of sensors

e Non-projective geometry

Learning representations of irregular partlcle-detector geometry
with distance-weighted graph networks -

(a) . (b) T e (c)
%)\ \ N/
o - ) 2\,
Fu "~/ v (.
N (a) Truth
@ ..\ ©
"N AR v
d.fx
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https://www.math.tecnico.ulisboa.pt/~jmourao/seminarios/Mendes_slides.pdf

Graphs for water simulation



https://sites.google.com/view/learning-to-simulate

Plug the Physics into the Al

How are symmetries implemented 7
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https://agenda.irmp.ucl.ac.be/event/4674/

Plug the physics into the Al:
constraints

g:f(X,e)

e Encode physics knowledge (e.g. inconsistency of models) inside the loss
function as a penalty term

J(w) = Loss(y,§) + Al[wl[3 + (5, @)

/ Physically Inconsistent
Physically Inconsistent . <« Models

Models ~.._ . <k Truth
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https://doi.org/10.1109/TKDE.2017.2720168

Plug the physics into the Al:
network structure

e Equivariance under group transformation can e.g. enforced by convolutional
layers

e Some implementations available in pytorch

Ty
LVl (Xl) >LVl (Xl)

¢ ¢

v T/ ~-

LVz (XQ) - ? LV2 (XQ)

Figure from 10.1109/TKDE.2017.2720168 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 74 / 136



https://docs.dgl.ai/en/0.9.x/generated/dgl.nn.pytorch.conv.EGNNConv.html
https://doi.org/10.1109/TKDE.2017.2720168

Plug the Physics into the Al

e Physics-aware differential equations solving

Animation from 2202.06988


https://arxiv.org/abs/2202.06988

Plug the Physics into the Al

e Several ODE problems now solvable via neural networks

® Who needs Lorenz? ® Who needs Navier Stokes?
Wy = —uwy — vwy + 0. [)l(n rr + W ,,,,]
L Thar Lovorss Sysiem . . e = xact Dynand 1 Dvnam
B\ )
1 il__iv/"‘f' "“* ) 1 6
i X ax
_— o omeeeee @ WHO needs Schrodmger'? Ve = 0.5ies + il
M ] 5 5 f +3 4 | s :: ’ Exact Dyninmis Learned Dynnanics ‘
" :{_ T y prem 1.5
i s | 5 , 10
; | H | t i : 2
% $ 2 b i3
{ S 1o
n» ,I.,.. Regreviban in Sobve fot A | - _“-_T!":/
L1 8.1 , 10 | 1 ] [ %9 R 11
“Discovering governing equations from data by sparse identification of nonlinear dynamical “Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations”
systems” Brunton, Proctor, Kutz, PNAS 2016 Raissi, JMLR 2018
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https://phiweek2018.esa.int/agenda/files/presentation224.pdf

Autoencoders

e Learnthe dataitself passing by a lower-dimensional intermediate
representations

o Capture data generation features into a lower-dimensional space
e Canuse for anomaly detection

e Cansample from the latent space to obtain random samples (generative Al)

—> Enhcoder (> Decoder — 2_

Original
input

Reconstructed
input

Compressed
representation
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Invertible networks
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http://127.0.0.1:8001/my_statistics_course/from%20https://arxiv.org/abs/1505.05770

Solve inverse problems
("unfolding")

e Correct detector observation noise to recover source distribution

£ | ]
z b=~ i 1.0{ — JetMassm
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Figure 5: Neural Empirical Bayes for detector correction in collider physics. (a) The source distribution p(x) is
shown in blue against the estimated source distribution gg(x) in black. (b) Posterior distribution obtained with
rejection sampling, with generating source sample x indicated in red. (c) Calibration curves for each jet property
obtained with rejection sampling on 10000 observations. In (a) and (b), contours represent the 68-95-99.7% levels.
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http://127.0.0.1:8001/my_statistics_course/from%20https://arxiv.org/abs/2011.05836

Interpretability
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https://arxiv.org/abs/1903.09644

Encode sequences

¢ One-hot encoding for unordered sequences

o Works e.g. for text

Feature (Color) One Hot Encoded Vector Red Green Yellow
Red [1,00] 1 0 0
Green [0,1,0] 0 1 0
Yellow One Hot Encoding [0,0,1] 0 0 1
Green [0,1,0] 0 1 0
Red [1,00] 1 0 0
SCA LFR

Topies
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https://www.scaler.com/topics/data-science/one-hot-encoding/

Encode sequences

e "Yellow" [0, 0, 1] can be predicted as "0 for red and 0 for green"

o One-hot-encoded features highly correlated ("multicollinearity")

e Dummy variable trap

Picture from scaler.com

o Drop one of the "dimensions"

Feature (Color)
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Green
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»
»

One Hot Encoding

Yellow Column dropped to avoid
the Dummy Variable Trap
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https://www.scaler.com/topics/data-science/one-hot-encoding/

Self-attention

e Capture dependencies and relationships within inputs

o Mostly in natural language processing and computer vision

e NN inputs, N outputs
o Allow inputs to interact with eacho other and find out which ones to pay attention to

o Outputis an aggregate of interactions and attention scores

o Useful for:
o Long-range dependencies: understand complex patterns and dependencies

o Contextual understanding: assign appropriate weights to important elements in the

sequence

o Parallel computation: can be computed in parallel — efficient and scalable for large datasets.
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Self-attention

e |Inputs (green) must be represented as: key (orange), query (red), value (purple)

o Initially, by random reweighting of inputs themselves

Self-attention

input #1 input #2 input #3
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https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Self-attention

e Calculate attention score
o Multiply (dot product) each query with all keys

o Foreach query: [NV keys — NN attention scores

Self-attention

input #1 input #2 input #3

Animation from towardsdatascience Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 85 / 136


https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Self-attention

e Activation function (softmax) of attention scores

Self-attention

input #1 input #2 input #3
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https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Self-attention

e Calculate alignment vectors (yellow), i.e. weighted values

o Multiply each attention score (blue) by its value (purple)

e Sum alignment vectors to get input for output 1, repeat for 2 and 3

Self-attention

input #1 input #2 input #3
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https://towardsdatascience.com/illustrated-self-attention-2d627e33b20a

Transformers

e The engine behind GPT3
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https://jalammar.github.io/illustrated-transformer/

Foundation Models

Large Language Models have become the most effective tool for language tasks

State-of-ar 1
More More More i P

data parameters compute
Limited :
atbien E.g., Question
Trends data Answering

E.g., Natural
Few-shot Lunguage
Learning
- Inference

language tasks

Large Pre-trained
Iraining Foundation E.g., Sentiment

Data Zero-Shot

Model Downstream Learning Analysis
learning

Domain E'g" Dlalog
Adaptation Response
Better pre-trained foundation model -
lower cost/effort, fewer labels, better performance downstream

Image by


https://indico.cern.ch/event/1078970/contributions/4863749/

Translate Problems into Solutions

e Symbolic integration: find the analytic formula for the area of the curve

| Integration (BWD) ODE (order 1) ODE (order 2)

Mathematica (30s) 84.0 i 1 61.6
Matlab 65.2 - -
Maple 67.4 - -
Beam size 1 98.4 81.2 40.8
Beam size 10 99.6 94.0 102
Beam size 50 99.6 97.0 81.0

Table by Lample, Charton (2019), image by Julia Inozemtseva Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 90/ 136


https://www.dropbox.com/s/72gerymld91mwyx/Weizmann_AI4Maths.pdf?dl=0
https://sites.google.com/a/georgiasouthern.edu/julia-inozemtseva/teaching-math-animations-and-pics#TOC-Integration

Reinforcement learning
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https://commons.wikimedia.org/w/index.php?curid=57895741

From Videogames...



https://www.youtube.com/watch?v=qv6UVOQ0F44

...to Physics

e Reward models consistent with the observed quark properties

1 Q2 Q3| u u wuz|dy do d3 |H|¢
charges Q=
qg| 6 4 3 |1-2 2 4|-3 -1 —-1|1]|1
—1.975 1.284 —1.219 —1.349 1.042 1.200
O(1) coeff. (ag) = 1.875 —1.802 —0.639 (bij) ~ 1.632  0.830 —1.758
0.592 1.772 0.982 —1.259 —1.085 1.949
VEV, Value v ~0.224 | V(Q) ~ —0.598
Q1 Q2 Q3| ur uy wug|dy do d3 | H|¢
charges Q=
2 Oo}-1 -3 1|-3 -5 —4]1 |1
—-0.601  1.996  0.537 0.740 —1.581 —1.664
O(1) coeff. | (ai;)~ | —0.976 —1.498 -1.156 | (bi;)~| —-1.199 -1.383  0.542
1.513 1.565 0.982 0.968 0.679 —1.153
VEV, value v; ~ 0.158 , V(Q) ~ —0.621

Table from 2103.04759
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https://arxiv.org/abs/2103.04759

What do we do

First principle, quantum
theoretical model

Colliders collecting 40
million events/s

Detectors with 100 million
readout channels

Massive theory-driven
simulation codes

Complex reconstruction chain:
from low-level readouts to high-
level physics objects
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& ool T analysis
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Di-Photon invariant mass
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https://indico.nikhef.nl/event/4875/contributions/21153/attachments/8264/11798/DeepLearning_EUCAIFCon_Amsterdam_2024_v2.pdf

Where we can plug Al

Highlight symmetries,
eorem proofing, model
simplification

Online control, design of
new accelerators

§ Fast Al-assisted inference
for triggers, design of new
ectors or experiments

Al-learned MonteCarlos
surrogates,
differentiable simulators

Reconstruction of physics objects,
tagging of reconstructed objects

19.7 1" (B TeV) + 5.1 1" (7 Tev)
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35- CMS S/(S+B) weighted sum
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3 A —
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~- detection, signal extraction
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https://indico.nikhef.nl/event/4875/contributions/21153/attachments/8264/11798/DeepLearning_EUCAIFCon_Amsterdam_2024_v2.pdf

Where we can plug Al

Highlight symmetries,
heorem proofing, model
simplification

Online control, design o
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Al-learned MonteCarlos
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Reconstruction of physics objects,
tagging of reconstructed objects
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Di-Photon invariant mass
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Most theory papers are symbolic

e Al-assisted theorem proofing

o

)
Lean ? ) Cog S8 Isabelle
[de Moura et al., 2015) j [Barras et al., 1997] [Nipkow et al., 2002]

https://machine-learning-for-theorem-proving.github.io/ (NeurlPS 2023)

¢ LLMs to solve mathematical problems

Article \ Open access \ Published: 14 December 2023

Mathematical discoveries from program search with
large language models

Bernardino Romera-Paredes &, Mohammadamin Barekatain, Alexander Novikov, Matej Balog, M. Pawan

o Simplify polylogarithms (no classical algorithm available, LLMs 91% success!)

Dutch:

Nnaamsveranderingsdocumentenbriefgeheel
- . 2Ea - 2Zax

Ff(x) = 9O (—Lln(x) — T.ig (f‘/g — Liig (—z o \6))

+ a (—Li-:_(:x:) 4 T (m f_ 1) 4 Lis(w + 1) — Lio(—=) In(x + 1))

— a4 (Liz(:z: —+ 1) Im(w + 1) + é In®(xz + 1) + ; 1o — ) In® (@ + 1))

translatk‘

English: dossier
F(x) = —Lis(x®) — Liz(x?) + 4Cs
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Most theory papers are symbolic

e 5-point MHV amplitude w/ Feynman diagrams: from 1990 tokens to 27 tokens

<12>2¢15>2¢2a)<3a>[12] [14] [15] [23] [25] + (12>3(15>X<(23><3a><4as>[12] [15] [23] [=25] [34]@

<1s5>2(=3>(3a>2c¢as>=[12]"~ [15] [23] [as5]

Feed to network
promising

pairs
[
transformer

\ - simplified form

U

of 2 terms

<12>=

{15323 >{(3a4)L4a45>

Solve string theory &

e Find nontrivial Calaby-Yau metrics = Compactiffona  yses metric compute

(1910.08605) Calabi-Yau mamy\spectrum

e Look for fixed points of metric

flows (2310.19870) -\/ -

e Predict rank of gauge group refine to find SM
(1707.00655, prediction later
proven)
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Beyond symbolic manipulation

[ Can AI ﬁnd inte resting questionS? Article ‘ Open access ‘ Published: 10 February 2024
t The current state of artificial intelligence generative

| dels i tive than h
e Can Al models teach themselves to divergont thinking taaks o ans on

be good physicists using data? Kent £, Hubert &, kim N. Awa & Darya L. Zabelina

Scientific Reports 14, Article number: 3440 (2024) | Cite this article

o If Al understands physics (can T cosses 282 et et
calculate everything) but we do GPT4

GPT41
GPT42

not, do we consider it an P
acceptable "understanding"?

Control 2

Control 3

Control 4

Control § L]
Control 6

Control 7

Control 8 L]
Control 9 L]

Control 10

Control 11 L]

. humans
Control 13 [ ] >

Control 14 [ ]

Control 15 [ ]
Control 16 [ ]

Control 17 [ ]

Control 18 L]

Control 19 L ]

Control 20 [ ]

Control 21 L ]

Control 22 L ]

Control 23 L ]

Control 24 L J

Fig. 3. Originality National Percentile Ranks (GPT-4 and Control Group).

»
>

Torrence Test score
GPT4 more creative than 99% of humans
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Accelerate accelerators

e Daily operation and control have huge impact on resources and efficiency

o Beam scheduling: changing supercycle requires 20-100 clicks (2-25min) about 60 times/day

o 15% of the yearly cost of SPS fixed target cycle employed for "waste" cycles to mitigate
hysteresis problems

e What if we could make them fully automatic (like e.g. Space telescopes)?

[,

Competmg
ObJECtIVES

by

External
conditions

AN

Constraints
B - >
H

Repeatability
errors

Operational complexities

Operator inputs

/

Accelerator control
algorithm

f(z)

/

Control parameters

magnet currents, RF parameters,
laser settings

Accelerated beam

Image from 2312.05667

1
. ;
X Physics
S— now
- knowledge
‘( ------------------ o _
: O
| 5
Limited, noisy beam measurements Measurement
transverse profile monitors, BPMs, ICTs,
quadrupole scans, TDCs database

Pietro Vischia - Machine L

Goal: specific beam
characteristics at the target

coing 2t IGEAE Data Science Schaal-20
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Accelerate accelerators

e Hierarchical, Al-controlled autonomous systems

e Optimize trasmission to target in a system with 5 DoF, using Bayesian
Optimization

= == Constant Prior . NN, r=0.3, MAE=0.3
Target 100 4
<
Doublet < 754
C .
S N
o 50 /
Bends S 254 | -
= "
o L7
T . I t T T T T
riple 0 10 20 30
Step

Courtesy T. Boltz et al, arXiv:2403.03225
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Trigger

e See talks by A. Zabi and S. Folgueras

e Pack Al models into the L1 trigger — improve selection criteria

o AtICTEA!

e Cando e.g. anomaly detection, and online graph building

H
Probabilistic c
Encoder
=

RIFAXOLITL

Probabilistic
Decoder

CMS Experiment at the LHC, CERN
Da led: 2023-May-24 01:42:17.826112 GMT
Run / Event / LS: 367883 / 374187302

pew et al 23Q7.07289 .o ot lCFAE Data Scicnce Schook 2024.06.3-7 - 101 /136




Simulations: the problem

e Monte Carlo simulations are very costly

e The more data we collect, the more simulated events we need

Particle-ID and charge : '
isElectron, isPhoton, ..

Kinematics :
Pr: i # muon
Iy
| , electron
1 + charged hadron /—\’
H ‘E
|-

GAN: Adversarial L e _. IE’ [Generator| | |
* D(x) @ G(z) *

training
-

75 . —
N - X VAE: maximize = Encoder Decoder | |
variational lower bound 9 (2lx) po(x]z)
Trajectory displacement : ~

dy : closest approach to PV in xy-plane B
d, : z position where d, is evaluated

Jet constituents e e PRl B Showers in complex high-
= resolution calorimeters

Diffusion models: xol -
Gradually add Gaussian =
noise and then reverse

aco

nt-level kinematics Pile-up Interactions
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Simulation: two solutions

1. Use classical
simulation or collider
data as input

2. Train generative

3. Oversample

surrogate

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

=0

b

| Discriminato? . IE’ Generator b
Dt c(z X
Encoder” J Decoder X
'Io(zl" m(X\t)

Flow . Inverse Jx!
O] (@)

* Very recently, Madgraphs_aMC@NLO authors deployed a version of their code that can run on GPUs.
 This version significantly improves computation times (see this talk).

= =
2 9

Matrix Elements
Per Second [s7!]
-
Q

[
o

gg—ttgg

Intel

< S N N
< S
&£ X3 Qc& ® %\OQ’
+& K
Y

Talk by C. Vico Villalba

1705.02355, 2008.06545

_______________________ -
: So our idea is: can we do this on :
: hardware based accelerators? 1
1= FPGAs are: 1
1 * Highly parallelizable :
1 * In some cases not as fast as GPU. 1
1 = But less power consuming. 1
: * Hardware based! really versatile. 1

1
: 1
I 1
I 1
I 1
I 1
I 1

1
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Simulation: long term solution

o Make everything differentiable, exploiting differentiable programming

Cheetah MadJax
Cheetah — A High-speed Differentiable & Q (differentiable matrix element

Beam Dynamics Simulation for Computation)
Machine Learning Applications
4th ICFA Machine Learning Workshop LY “ . le—22 e+e"—>HiggS—>ZZ—t4/ le—23
—_— ——— T N 2.50 1 — |MJ?
o 0.0
2.25 A
. . -0.2
Gradient-based Tuning 2.00 1
-0.4 N
g 1.75 A o %
» Tune magnet settings or lattice parameters using the gradient of the Ng 1.50 4 ' Ng
beam dynamics model computed through automatic - 08 i
differentiation. 1.25 A ’
« Seamless integration with PyTorch tools tuning neural networks. 1.00 - -1.0
+ Becomes very useful for high-dimensional tuning tasks (see -1.2
neural network training). 0.75 1
80 100 120 140
Mz (GeV)

Deviation from target /
ground truth

Actuator / unknown variable
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Towards full differentiability

Matrix Element: differentiable (MadJax)
Integration in Madgraph: multi-channel integration speed up (MadNIS)

Parton shower: mostly differentiable (2208.02274, and recent work by
Kagan+Heinrich)

Detector simulation: GATE/GEANT4 numerically differentiable (in small
ranges) (2202.05551)

Operator overloading for GEANT4 (2405.07944)
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AD in GEANT4

e Probabilistic generator f : © x Q — Y, (0, w) —y

e Find optimal inputs € to maximize output y

Figure from 2405.07944

o Need oy

50" pathwise derivative

501 (0,0)

= Derivgrind: insert AD logic into

the program (a sort of debugger):
cannot support tricky cases

CoDiPack: operator overloading
(e.g. replace double type): can run
out of memory when storing the
real-arithmetic evaluation graph
(tape)

Clad: compiler-based source
transformation tools: could use
smaller tapes, more advanced
optimization

. 200 —_AD
|
g —DQ
g 100 H
Q
=
— 0
8
5
|E S —100 | 5
15}
| | |
0 10 20 30 40 50
layer index
20 .
'T —— AD
g —DQ
g 10
c
=
— [ _
g
&
IR 10| .
| | |
0 10 20 30 40 50
layer index

Figure 10: Algorithmic derivative of the edep with respect to
the absorber thickness a (top) and gap thickness g (bottom).
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2309.06782

Reconstruction...

Tracks and calorimeter hits

Pt % | Ly b — Track
e ® Raw ECAL hit
At ® Raw HCAL hit

c’ha\'gtfgo\‘z\ng ; : g Raw Muon chamber hit

Raw detector hits L

Calotimeter

Raw tracker hit clustering
Raw ECAL hit

Raw HCAL hit
Raw Muon chamber hit

Tracks and calorimeter clusters

— Track
@ ECAL or HCAL cluster

d Particles
HyS

5\

Charged hadron
Photon
— Neutral hadron
— Electron
.. — Muon

Reconstruction
maps low-level
detector read-outs

to physical
particles
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https://arxiv.org/abs/2401.05815

2309.06782

..with Al

Xi = [type’ P> EECAL’ EHCAL’ n, ¢’ Mouters ¢0uler’ q, -
y;=[PID,pr,E,n, ¢.q, ..
h € R256
Trainable neural networks: &, &, 9
® - track, 7 - calorimeter cluster, M - encoded element
- target (predicted) particle,

.], type € {track, cluster}
.J, PID € {none, charged hadron, neutral hadron, y,

- no target (predicted) particle

Event as input set Event as graph Transformed inputs c [ , T
X={x} X={x},A=A4; H={h) S b [ PF(M=1.04,lQR=0.11)
o MLPF (M=0.99,IQR=0.06) |
LIPS Graph building Message passing ‘q';' i
PR g LSH+NN o— -—> . . E 08
FX|w) = 3]
° X|w) CX,Alw) = Lo ]
= |
Target set ¥ = {y;} Output set 1" = {y/} l 0.4
Decoding
Elementwise loss L(yj, yj’) TR 0.2 R
classification & regression FFN \k
—> ,
9(39: hj |w) = Y 0.0 ) .

i 59 12 1.4
jet PT,reco/PT, gen

0.6 0.8

e*, u*)
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Identification...

light quark
Ijet?

gluon jet?

bottom
quark jet?

top
::2;1;?32;2297238 quark ]et?

2015-10-21 06:26:57 CEST
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..with Al

Vast landscape of taggers CMS Muon ID: made in
|
2800 - o LLF taggers .PaI’T f.t. ICTEA.
HLF taggers CMS Simulation (13 TeV)
@ Transfer learning 31.00,”” . —_——
. *PELICAN <SSV
2490 e " LorentzNet Goos fmmmn o
. P () £ 0 goi e Tight ID + mini-isolation E
.00 Pareto frontier.’ © 0-90¢
e S 0.85 ]
4 IS 5
ParticleNet = 0.80F 3
o 1600 A ',' ® ° 5 0%
. . ar 0.75F 1
« DiscgFFS on EFPs ParticleNet-lite DE_ i
1200 A KA L ResNeXt 0.70- 3
TreeNjiN ® g
l" '\g PFNDNN EFP .CNN 065 E
2@ DNNEFPs u
800 A L4 68'\|}ISSGJS ® BN 0.600t/ i AT T
o’ EFNg PoLa P-CNN 107 1072 10" 1
. ® LoLa Nonprompt muon rate
" :
400 - R . Linear EFPs
,00 ® DA
¢ n-PELICAN TopoDNN ¢
0+
10t 102 10° 104 10° 108 107
Parameters
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Inference: unfolding

e Use classifiers to learn appropriate Detector-level Particle-level
weights - Data

3=

=
Step 1: Step 2:
Reweight Sim. to Data Reweight Gen.
Vn—1 % Wn Un—1 i> Un

Q . . ul eights = o

E) Simulation | - * Generation

= s

Lo | 2

U)>‘ Push Weights

— —

e Morph distributions one into the detector
other using diffusion models
{9, 7) i (w474}
---------- |
o) oamry)
i parton

1911.09107, 2404 XXXXX Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7
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Inference: anomaly detection

Gaussian processes) | B B UCLouvain
@ Multivariate gaussian associated to a set of nverse BYIQRY s
random variables (Ndim = Nrandom mriables) @ Data: mixture model with small S
@ Kernel as a similarity measure between bin @ Classification based on sample properties

centers (counts) and a averaging function o Compare bootstrapped samples with

) =0, | G reference (pure B)
S e, ) = 4 exp (LEEED) .vf',(jj%'j’;;_‘,’{]znp(,(;;,;";;‘_’j,}z) . @ Use Metodiev theorem to translate inference
() into signal fraction

Ss(a,a’) = C 1‘:([)( e .«ﬂ)’/].ﬂ) t:xp( 5 (=P @ - m)?) ,’ri’).

° iy @ Validate with LRy LDﬁt ICT EA'

@ Signal is not parameterized - P sl
e Hyperparameters fixed by the B-only fit R
@ S: residual of B-subtraction "
12
™ 10 okltried = 0.14
108 R £10° 8
£10° ?“ﬁ ¢ [
?10‘ 2o 1 rJ
? 10! o : /'
10" ;_—c: 0 0.05 0.10 0.15 0.20 0.2!
Y s ' @ O Test statistic
:z 0 WT:'T":""-“ ——— }: S]QE Atitveshold 0.13062015354641128 TPR=0.38 FPR-0.17
s i 8 . Zfi%:&??iff??éiéffizs,
108 g2
< 10° \"' E ! 0
100 E‘— &
g 102 / E N -
fikn i T T
10° —7501
5 & e mam 1000 " - . Vischia-Dorigo arXiv:1611.08256, doi:10.1051/epjconf/201713711009, and P.
nvariant Mass [Te 2 e [TeV] ]
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Go to INFERNO: syst-aware

Inference opt.

compute via automatic differentiation

SIMULATOR OR NEURAL
APPROXIMATION NETWORK

-

- T
softmax S0 = ag?aaj g1
&
Sz
> & log £ 4 U
SUMMARY INFERENCE-AWARE
STATISTIC LOSS

stochastie gradient update ¢'7! = ¢ + n(t) Vel

)
(=]
L

244

221

20

validation-set inference-aware loss

18

16
0 25 50 75 100 125 150

training epoch

Figures from 10.1016/jcpc.2019.06.007 (@ inference-aware training loss

profiled likelihood A{-Inc)

cross-entropy
inference-aware

N

20 30

(b) profile-likelihood comparison

40 50 60
s parameter of interest

70

80
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The likelihood ratio trick

e Train surrogate to discriminate x; ~ p(x|6y) fromz; ~ p(z|6:)
e Cross-entropy
LXE — —E[1(9 — 91) log §(£B‘00,(91) e 1(9 — 90) log(l e §(£B‘90,01))]
o Minimized, s(z|6y,601) = p(z|61)/(p(x|6y) + p(x]61))

¢ |nvert, to estimate the likelihood ratio:

7(2|60,601) = (1 — 8(x|60,61))/5(x|60,01)

physics.aps.org/articles/v11/90

parameter @ > \}:%‘w. 5
atent observable ./f{;":)" R S ot 0;
atent z L e —— o — | (FESIN approximate
3 ~\\“§ : 4 likelihood
...... ratio
— r(z, z|0) > _
. argmin L[g] — 7(x|0) —>| |
—> t(z,2|0) > ¢

augmented data

0;
Simulation | " Machine Learning | | Inference
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Measurement-aware analysis opt.

Data space

signal
bkg up
bkg down
bkg

> 0

-2

-4

-4 -2 0 2 4
X
Losses

0.06

0.05

0.04
[
=

2 0.03
(%]
0
o

0.02

0.01

0.00

0 5 10 15 20
epoch

Animation from 2203.05570

metric value

frequency
= Now »
1) o o o

o

neos

Histogram model

Example KDE

[0,0.2]

mmm signal
mmm bkg up
 bkg

bkg down

[0.2,0.5] [0.5,0.8] [0.8,1]

interval over nn output

Metrics

: —— KDE hist
—— KDE
e N,
3.0 e HAS | data
: : -=- kernel

bandwidth _ g 40 +bandwidth

Binwigth

2.5

2.0

1.5

1.0

T

05 10
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—a
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https://arxiv.org/abs/2203.05570

Measurement-aware detector opt.!

e Joint optimization of design parameters w.r.t. inference made with data

e MODE White Paper, 10.1016/j.revip.2023.100085 (2203.13818), 117-pages
document, physicists + computer scientists

iade it L = L(physics output)

Multidimensional

stochastic variable
(often latent variables) \ + A (E(COSt))

z ~p(z|z \
p(z|z,0) ‘ep

Sensor readouts

¢(6) = Rl[z,6,v(0)]
s = A[((0)]

Low-dim summary
i for inference

Formulas from our white paper Pietro Vischia - Machine Learning at IGFAE Data Science-Schoet=2024.06.3-7 --- 116 / 136
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Prototype for muon tomography

TomOpt: Differential optimisation for task- and constraint-aware design of particle detectors in the
context of muon tomography

Giles C. Strong, Maxime Lagrange, Aitor Orio, Anna Bordignon, Florian Bury, Tommaso Dorigo, Andrea Giammanco, Mariam Heikal, Jan Kieseler, Max
Lamparth, Pablo Martinez Ruiz del Arbol, Federico Nardi, Pietro Vischia, Ha{ham Zaraket

v
s I%ut and specifications of detectors designed for tomography by scattering of cosmic-ray
muons. The software exploits differentiable programming for the modgh f Miuon interactions with detectors and scanned volumes, the inference of volume properties, and
the optimisation cycle performing the loss minimisation. In doing ‘ ovide the first demonstration of end-to-end-differentiable and inference-aware optimisation of
tw

We describe a software package, TomOpt, developed to optimise the geom:
particle physics instruments. We study the performance of tie ‘e on a relevant benchmark scenarios and discuss its potential applications.




Go to INFERNO: syst-aware

Inference opt.

compute via automatic differentiation

SIMULATOR OR NEURAL
APPROXIMATION NETWORK

-
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softmax S0 = ag?aaj g1
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Measurement-aware analysis opt.
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Animation from 2203.05570
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Measurement-aware detector opt.!

e Joint optimization of design parameters w.r.t. inference made with data

¢ MODE White Paper, 10.1016/j.revip.2023.100085 (2203.13818), 117-page
document, physicists + computer scientists

iade it L = L(physics output)

Multidimensional
stochastic variable
(often latent variables) \ + A (E(COSt))

z~p (z |:12 ) 9)
Sensor readouts

\
\
Y

¢(6) = Rl[z,6,v(0)]

s = A[C(0)]

Low-dim summary
i for inference

Formulas from our white paper Pietro Vischia - Machine Learning at IGFAE Data Science-Schoet=2024.06.3-7 --- 120/ 136

High-level features ™ ™= wm


https://doi.org/10.1016/j.revip.2023.100085
https://arxiv.org/abs/2203.13818
https://arxiv.org/abs/2203.13818

Guarantee feasibility within
constraints

e Monetary cost

e Case-specific technical constraints

s — 0(9, Cb)

e 0:local, specific to the technology used (e.g. active components material)

o qb: global, describing overall detector conception (e.g. number, size, position of
detector modules)

e Fixed costs can be added separately to the loss function
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In general

Cost of the layout with
Depends on z and nuisances parameters theta

A \ ——
6 =arg mz’nQ/ [A(C),

c(6)lp(z[z, 0)f (x)dzdz ,
Weight desirable goals while obeying cost constraints

Closed form

1\

From our white paper and internal TomOpt presentation Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 ---
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https://arxiv.org/abs/2203.13818

Thrive in asymmetries

Photo from doi:10.2514/6.2006-7242 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 123/ 136


http://dx.doi.org/10.2514/6.2006-7242

Large gains to be had

e MUonE: proposed 150 GeV muon beam experiment to be built at CERN
o Measure precisely the q2 differential cross section in electron-muon scattering

o 40 tracking stations and a calorimeter

e Dramaticimprovement in the resolution on q2 even from a simple grid search

0.03 =
2
a(q°)
0.025 = Original MUonE design _—
L qz
0.02 —
0.015 .
0.01f—
-  Optimized design (smart
0005 = parameterization, grid
-  search...)
0 T L L l L L L I L L L I L L L I L L L I L L L l L L L l
0.02 0.04 0.06 0.08 0.1 0.12 0.14

i q2

Image from Physics Open, 4:100022, 2020 and MODE White Paper Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 124 / 136


https://doi.org/10.1016/j.physo.2020.100022
https://arxiv.org/abs/2203.13818

Assist the physicist with a
landscape of solutions

e Cannot parameterize
everything

e The optimal solution:
unrealistic

e Provide feasible solutions
near optimality

e The physicist will fine tune

Illustration (c) P. Vischia, book in preparation Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 125/ 136



How far from optimality?

e Canwe define in a general way an acceptable increase in loss?

o Tradeoff performance/cost

e For sure we canregularize the loss landscape to select our scale of interest

Image from Li et al (taken as pictorial representation out of its original context) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 126 / 136


https://arxiv.org/abs/1712.09913

Method of choice depends on scale

~LHC
~Tomography
Time 2
per (Not to scale)
sample
P Ik 3
Parameters

Giles Strong at QCHS 2022

1. Grid/random search
2. Bayesian opt, simulated annealing, genetic algos, ...

3. Gradient-based optimization (Newton, BFGS, gradient descent, ...)
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Experimental design: present and
future

e Gradient descent applied to experiment design works!!!

o Discreteness and stochasticity mostly solvable or avoidable

e What now?

» 0:00/0:13

Figure by Gpeyre on wikipedia
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https://en.wikipedia.org/wiki/File:Gradient_Descent_in_2D.webm

Method of choice depends on scale

~LHC
~Tomography
Time 2
per (Not to scale)
sample
P Ik 3
Parameters

Giles Strong at QCHS 2022

1. Grid/random search
2. Bayesian opt, simulated annealing, genetic algos, ...

3. Gradient-based optimization (Newton, BFGS, gradient descent, ...)
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From perceptron-based networks...

e Matrix multiplication

- & .
1k—- n
m=1/ | = mél
X
n
k - -
- » n l.
. c
m A k B =
X
A\
\J

Figures by Gilles Louppe Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 130/ 136


https://glouppe.github.io/

...to spiking neural networks

e Event-driven computations

o "when a spike occurs, compute something"

)
—

High time resolution,

low redundancy

Few binary events

Figures by Fredrik Sandin



The energy advantage

e Perceptron-based networks: matrix multiplication

o Sparsity doesn't affect much the throughput and energy consumption

e Spiking neural networks: event-driven computations

o Sparser inputs require less computations, therefore less time and energy

input |_ Conventional Output

0.2 | |

0.0 . 0.7
—0.1 0.2 0.0 -0.1 -0.3 -1.3 0.7 0.0 0.2 —0.6 1.1 0.0
-0.3 | 0.2
-1.3 J -0.6

: 1.1

input Event-driven | Output

1 0

0 03 2 > 0

0 : 1

1 0

0 | J 0

Image from Zheng, Mazumder (Wiley, 2019) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 132/ 136



Encode information with Qubits

e Random bit (Bernoulli random variable) whose description is not governed by
classical probability theory but by quantum mechanics

e Notonly "because it can take real values in [0, 1]": complex numbers as
coefficients v and (3 create interference

o Interference is not reproducible with classical bits

® 0 I

® ! 1)
Classical Bit Qubit

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 133/ 136
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https://prateekvjoshi.com/

Represent neural networks

e Qubit operations can represent rather naturally neural networks
lin){in| = |q1, g2, g3)(q1, 92, g3|-

Full unitary operations, U_i,
(preserve information)

|h1><h1| Tracing operations |h2><h2|
u_1 (information loss) u_2
N
|h) (A
lin) (in| |out) (out|

e Gradient descent exploits intrinsic analytic differentiability of quantum circuits

3, (¥ (x, 0)|o, ¥ (x,0)) = (0]...9,e7* ...0,...€" ...]0)
+(0]...e7™" .. .0,...0,e"...|0)
=(0]...(—io)e ™" .. .0,...e"° ...|0)
+(0]...e7* . Lo,...(i0)e™ ... |0)
=(0]...(1 —io)e ™™ ...0,...(1 +ic)e™ ...|0)
+0]...(Ad+io)e™ ™ .. .o,...(1 —io)e* ...|0)

Images from M. Schuld, F. Petruccione (2018) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 134/ 136


https://link.springer.com/book/10.1007/978-3-319-96424-9

Need for new paradigma

e Ifyou areinterested in Neuromorphic computing or Quantum computing, drop

me a line!

Conventional .

computers

L7
mimic 5

logical and
analytical
thinking

Transistor current [A]

mimic

the senses,
learning and
perception

Synapse conductance

o= P~C-V2.{

& 1 0.1
0 Discrete states,
s GHz switching

0.001

0 | 2 3 70 50 -30 . .
Gate voltage [V] Stimuli [mV]

Technology readiness?

Image by Fredrik Sandin, Lulea University

Quantum
processors
use quantum
superpositions
for probabilistic
inference

1)

Quantum
/] states
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