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If you are reading this as a web page: have fun! If you are reading this as a PDF:
please visit

https://www.hep.uniovi.es/vischia/persistent/2024-06-
03to07_MachinelLearningAtDataScienceSchoollGFAE_vischia_3.html

to get the version with working animations
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https://doi.org/10.1016/j.cpc.2019.06.007

Measurement-aware analysis opt.
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https://arxiv.org/abs/2203.05570

Measurement-aware detector opt.!

e Joint optimization of design parameters w.r.t. inference made with data

e MODE White Paper, 10.1016/j.revip.2023.100085 (2203.13818), 117-pages
document, physicists + computer scientists (published on June 2023!!!)

z ~ f(x)

Multidimensional
stochastic variable
(often latent variables) \ + A (ﬁ(COSt))

z ~ p(z|:22, 9)

L = L(physics output)

Sensor readouts

\
\

Y
¢(0) = R[z,0,v(0)]
s = A[((0)]

Low-dim summary
i for inference

Formulas from our white paper Pietro Vischia - Machine Learning at IGFAE DataSeience-Scheol - 2024.06.3-7 --- 4/ 108
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https://doi.org/10.1016/j.revip.2023.100085
https://arxiv.org/abs/2203.13818
https://arxiv.org/abs/2203.13818

Guarantee feasibility within
constraints

e Monetary cost

e Case-specific technical constraints

s — 0(9, Cb)

e 0:local, specific to the technology used (e.g. active components material)

o qb: global, describing overall detector conception (e.g. number, size, position of
detector modules)

e Fixed costs can be added separately to the loss function
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In general

Cost of the layout with
Depends on z and nuisances parameters theta

A \ ——
6 =arg mz’nQ/ [A(C),

c(6)lp(z[z, 0)f (x)dzdz ,
Weight desirable goals while obeying cost constraints

Closed form

1\
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https://arxiv.org/abs/2203.13818

Symmetry and interpretability
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http://dx.doi.org/10.2514/6.2006-7242

Moral imperative

Optimize... ..within constraints
e New large, long-term projects e Unprecedented global challenges
e Push technological skills to the * Society less receptive to
limit (cit. EUSUPP) fundamental research

Temperature change in the last 50 years

2011-2020 average vs 1951-1980 baseline
05 -0.2 +0.2 +0.5 +1.0 +2.0 +4.0°C

-09 -04 +04 +09 +18 +36 +7.2°F

Maximum extraction of scientific value from the available resources
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https://cds.cern.ch/record/2721370

The MODE Collaboration

https://mode-collaboration.github.io/

e Joint effort (created 11.2020) of particle physicists, nuclear physicists,
astrophysicists, and computer scientists. IGFAE too, via Xabier Cid Vidal!

COLLABORATION

At INFN and Universita of Padova Dr. Tommaso Dorigo, Dr. Pablo De Castro Manzano, Dr. Federica Fanzago, Dr. Lukas Layer, Dr. Giles Strong,
Dr. Mia Tosi, and Dr. Hevjin Yarar

At Université catholique de Louvain Dr. Andrea Giammanco, Prof. Christophe Delaere, and Mr. Maxime Lagrange
At Universidad de Oviedo and ICTEA Dr. Pietro Vischia

At Université Clermont Auvergne, Prof. Julien Donini, and Mr. Federico Nardi (joint with Universita di Padova)

At the Higher School of Economics of Moscow, Prof. Andrey Ustyuzhanin, Dr. Alexey Boldyrev, Dr. Denis Derkach, and Dr. Fedor Ratnikov
At the Instituto de Fisica de Cantabria, Dr. Pablo Martinez Ruiz del Arbol

At CERN, Dr. Jan Kieseler, Dr. Sofia Vallecorsa

At University of Oxford Dr. Atilim Gunes Baydin

At New York University Prof. Kyle Cranmer

At Université de Liége Prof. Gilles Louppe

At GSI/FAIR Dr. Anastasios Belias

At Rutgers University Dr. Claudius Krause

At Uppsala Universitet Prof. Christian Glaser

At TU-Miinchen, Prof. Lukas Heinrich and Mr. Max Lamparth

At Durham University Dr. Patrick Stowell

At Lebanese University Prof. Haitham Zaraket

At University of Kaiserslautern-Landau Mr. Max Aehle, Prof. Nicolas Gauger, Dr. Lisa Kusch

At University of Applied Sciences Worms Prof. Ralf Keidel

At Princeton University Prof. Peter Elmer

At University of Washington Prof. Gordon Watts

At SLAC Dr. Ryan Roussel

At Lulea University of Technology Prof. Fredrik Sandin and Prof. Marcus Liwicki

At IGFAE and Universidad de Santiago de Compostela Prof. Xabier Cid Vidal
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MODE Workshop Series

e Yearly workshops on
Differentiable Programming for
Experiment Design

o 2021: First Edition ' I e e
(Louvain-la-Neuve, Belgium) P, nucko I

o 2022:Second Edition
(Kolymbari, Greece)

o 2023:Third Edition
(Princeton, USA)

e You are all invited to the Fourth
Workshop, to be held in Valencia
(Spain), 23-25 September 2024!!!

o Abstract submission is still open!
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https://indico.cern.ch/event/1022938/
https://indico.cern.ch/event/1145124/
https://indico.cern.ch/event/1242538/
https://indico.cern.ch/event/1380163/

Method of choice depends on scale

~LHC
~Tomography
Time 2
per (Not to scale)
sample
P Ik 3
Parameters

Giles Strong at QCHS 2022

1. Grid/random search
2. Bayesian opt, simulated annealing, genetic algos, ...

3. Gradient-based optimization (Newton, BFGS, gradient descent, ...)
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Need for new paradigma

Conventional

computers
mimic

logical and
analytical
thinking

Transistor current [A]

‘ o= P~C-V2.f
¢ 1
: 0 Discrete states,

Ae GHz switching

i} 1

Technology readiness?

Image by Fredrik Sandin, Lulea University

’ G;le voltage [V]

mimic

the senses,
learning and
perception

Synapse conductance

/

70 %030 gtimuli [mV]

10

Quantum
processors
use quantum
superpositions
for probabilistic
inference

Quantum
states




Improve digital hardware

Computational/architectural tricks, or fast chips (FPGA, ASIC)
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Energy efficiency: redundancy
removal

Synaptic weights storage and operation on them (e.g. memory access) bulk of
energy-consuming operations

Less weights — less energy and time consumption

o Weight pruning, low-rank approximations, etc

Example: Yann LeCun's Optimal Brain Damage Figure 2.26mazumder

Sparse activation patterns (via gating)

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 14 / 108


https://proceedings.neurips.cc/paper/1989/hash/6c9882bbac1c7093bd25041881277658-Abstract.html

Energy efficiency: precision
reduction

e Quantization

https://fastmachinelearning.org/hls4ml/
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https://fastmachinelearning.org/hls4ml/

Neural Networks in hardware

A Flexibility/reconfigurability

General-purpose

processors

>
Energy efficiency

Image from Zheng, Mazumder (Wiley, 2019) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 16 / 108



Data Movements cost

o CPU design: dataflow hard to predict

e Neural network accelerators: dataflow often fixed and known at compilation

time

Can optimize data movement and memory access!

Register file

Inter-PE
communication

On-chip buffer

Normalized energy cost

1x

2X

6X

Off-chip DRAM

200x

Image from Zheng, Mazumder (Wiley, 2019). It assumes that every processing element has a dedicated register friechia - Machine Learning at IGFAE Data Science School - 2024.06.3-7
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Example: Tiling

e Break down matrix multiplication into subproblems that fit on-chip buffer

o Maximise data reuse

y w X
I 1] m=]
OO m
. OEm
/ Oooo = | minln X J
---IT 0O
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B k - J k
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Example: Google's TPUs

e Systolic flow
o Hide four-stage process within the matrix multiplication operation
o E.g.decoupled access/execution when reading weights

o Trick flow control into thinking inputs are read and update results at once
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Figure 4. Systolic data flow of the Matrix Multiply Unit. Software
has the illusion that each 256B input is read at once, and they instantly
update one location of each of 256 accumulator RAMs.
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https://arxiv.org/abs/1704.04760

Example: FPGA

e More configurable than ASIC (but it consumes more)

e Covered by the other speakers!
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Neuromorphic computing

Go back to spike-based neural models
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Gymnotus Omarorum

e Livesin ponds, active mostly by night

o Murky waters, lots of vegetation

e Generates electrical field, and detects its deformations

o Receptors are relatively simple neurons

e Often used as bait for fishing other fishes (pirayu and surubi)

e Uptoabout25cmlong

Image from Wikipedia Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 22/ 108



Generation and Detection

e Electrical organs generate electrical field around the fish

e Sensorial Electroreceptors Organs detect the field and its changes

Image from Palave et al., 2022 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 23/ 108



Electroreceptor Organs

Image from Palave et al., 2022 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 24/ 108



Electroreceptor Organs

Tuberous (TERs) and Ampullary

(Castelld et al., 2000)
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Biological neurons

dendrites

Chemical synapse
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Image from Johnston, Wu (MIT Press, 1994)



Biological membranes as circuits

Biological membrane Equivalent circuit representation
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Image from Johnston, Wu (MIT Press, 1994)



The Hodgkin-Huxley Model

dVv
o C% + GnamPh(V — Vo) + Gen*(V — Vi) + GL(V — V1)

I 3 -\-L
V— !
G, Gk Gna inside ]("' t

—_—C % S £ X !

vl— VK vNa T 4 ] :

T + + + + :

outside Na

_______________________________
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https://neuronaldynamics.epfl.ch/
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https://bioserver.net/understanding-the-spikes-of-the-neurons/

Emergent phenomena?

e Understand different levels of neuronal organization using computational
models of neurons

Image from utep.edu Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 30 / 108


http://museum2.utep.edu/archive/biology/DDemergent.htm

Neurons of Gymn. Om.

e Spherical neuron with four channels (different thresholds and time constants)

o Vischia, Caputi 2023: computational model compared with data from " [4] " (J Exp Biol (2006)
209 (6): 1122-1134.))

- Before hump (red), linear V-I relation
- After hump, for depolarizing steps V-I relation is nonlinear
The activated conductance does not inactivate at later times

- The amplitude of the stimulus step drives the spike latency - Early subthreshold responses
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https://doi.org/10.5281/zenodo.8394819
https://doi.org/10.1242/jeb.02080
https://doi.org/10.5281/zenodo.8394819

Rephractory period

e Interaction between signals (potentially from different neurons)

o Next steps in preparation: study of emergent properties in the interaction

between neurons

- Conditionling step induces a rephractory period

- Behaviour of the rephractory period matches observations

- Amplitude of conditioning step
- Amplitude of test step
- Delay of test step

=D WL
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P. Vischia, A. Caputi, 10.5281/zenodo.8394819, paper in preparation
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https://doi.org/10.5281/zenodo.8394819

Hodgkin-Huxley: good, but...

av

o C% + GnamPh(V — Vo) + Gen*(V — Vi) + GL(V — V1)

I ; o
V—> :
G, Gy Gya inside ]("' :

—_—C SRS . g :

vL VK vNa T 4 ] :

ne + + + + - :

_ outside Na

_______________________________

e Great to capture real neuron dynamics

e Computationally unfeasible for large networks

Image from Neuronal Dynamics and Zheng, Mazumder (Wiley, 2019) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 33/ 108


https://neuronaldynamics.epfl.ch/

(Leaky) Integrate-and-fire Model

dV (t)

—=J -1
C— g . I
T R
(b)
C I5

/
VT
()

o |eakage current can be defined as:
o Conductance-based: more plausible but high computational overhead, I, = f(V (t))

o Current-based: more computationally efficient

Image from Zheng, Mazumder (Wiley, 2019) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 34 / 108



Information encoding

e Rate coding: information modulated on mean firing rate
o Similar to frequency modulation in telecom
o Low complexity — easy encoding/decoding

o Averaging — Large response time (unrealistic), but noise-robustness

e Temporal coding: information carried by the exact timing of a spike
o Feasibility supported by recent publications

o Not noise-robust, therefore disfavoured by non-deterministic hardware implementations

B |

Image from Zheng, Mazumder (Wiley, 2019) hool - 2024.06.3-7 --- 35/ 108



Example of time encoding

e Efficient, threshold-based encoding
o GPU (RTX3090): 40 GW simulation on discrete states

o Human brain equivalent: 20 W on dynamic states

)
—

High time resolution,

low redundancy

Few binary events

Slide by Fredrik Sandin, Lulea University



Spike or not to spike

e Memory as intra-neuron capacitor

o In perceptrons, memory can be implemented only via network structure (e.g. LSTM)

e Finite-state machine where output depends on previous history of inputs

e Encoding has a temporal distribution (good for spatio-temporal data)

Schematic

Logic analogy

Information encoding

Image from Zheng, Mazumder (Wiley, 2019)
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Learn with biological neurons

e Cannot use backpropagation-based gradient descent out of the box
o Spikes are discrete in nature — nondifferentiable

o Temporal component makes things difficult

Image from giphy.com


https://giphy.com/stickers/hungry-read-learn-LpiVeIRgrqVsZJpM5H

Example: ReSuMe

d’lU o1l

o — (Sut) ~ So(®) o+ [ " au(s)Si(t - 5)ds)

e Remote Supervised Method st s
o Force network towards desired (d) ﬁ’di(s)si(“s)“s . f 2i()Si(t-s)ds R
spike trains S4(t) . S4(t) R
o Potentiate w when target spike Sft) N Soft)
o Depress w when output spike Wailt) Wail
oy t
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. 9 . Si(t) Si(t) -,
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St S,(t)
wDi(t) woi(t)

(c) (d)
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Spike-Timing-Dependent Plasticity

e Hebbianrule: "in asense, then, cells that fire together wire together"

o But extended to account for relative timing of pre- and post-synaptic spikes

Aw=) Y K(tn, —tr,) A Aw

e Excitation/Inhibition used to LTP
devise learning rules (supervised
or unsupervised) >
tpost - tpre
LTD

Image from Zheng, Mazumder (Wiley, 2019) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 40 / 108



Spike-Timing-Dependent Plasticity

Aw = Z Z K(tzTost e tgre)

e Causal: Long-Term Potentiation.

o Postsynaptic comes after presynaptic

e Anticausal: Long-Term Depression

o Postsynaptic comes before
presynaptic

Image from Zheng, Mazumder (Wiley, 2019)

S(t—t7) A
y; ()
7y
Anti-causal Region t
x; ()
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Spike-Timing-Dependent Plasticity

e Gradients from STPD-based rules agree with numerical simulations

o Except when firing rate is too high (it becomes difficult to estimate if input or output spike
comes first)

3.5x 102~
3.0 x 102 1070 o
——o— Estimated from STDP ]
25x102- —o— Obtained numerically
1

§ 20x102- | § 1071 -

% Working Saturated % ]

5 1.5x10727 region 1 region © —o— Estimated from STDP
10x 102 : 162 - =—O=Obtained numerically
5.0 x 10-3 - ! ]

Fire rate = 0.8 !
00 I T~ T T T T T T ! L 10_3 T T T T T T T T T |
0.0020406081.01214161820222426283.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 045 0.5

Input potential Normalized weight
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STPD and reinforcement learning

e Neurons at different places fire when agent is close

e Agentisincentivised (rewarded) for being close to target

Agent Target 0.4
3 lterations
°
0.3 5 lterations
10 lterations
15 lterations
0.2 - .
20 lterations
e  Reference
> 0.1
0.0 4 e o o o o
-0.1 +
-0.2 T T T T T T T T T T T T T T T 1
0 50 100 150 200 250 300 350 400

V()

Image from Zheng, Mazumder (Wiley, 2019) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 43 / 108



STPD and reinforcement learning

e Example: maze

e Brighter colour — agent thinks a reward is more likely

V‘//‘

20

0 20 40 60 80 100 120 0 20 40 60 80 100 120

Image from Zheng, Mazumder (Wiley, 2019) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 44 / 108



Neuromorphic hardware

The hardware implementation of spiking neural networks

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 45/ 108



Different types of operations

e Perceptron-based networks: matrix multiplication

e Spiking neural networks: event-driven computations

o "when a spike occurs, compute something"

High time resolution

N it samp\/es High time resolution,
low redundancy

2 3 4 5 6 Tid(ms)

2
7]
c
]

=
o
o

|
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Address-Event Representation

e Gap in operational speed exploitable for time multiplexing
o CMOS circuit operating speed O(ns)

o Neuromorphic system for real-time applications requires O(us) or O(ms)

e Vastly reduce routing complexity (number of physical interconnects)

o Buswidth: N — logs N, where [N is the number of axons

1 I 0 ol =2 I
' + |1103213101] 4 ' 1
7 >
] 2 2 2 i
Bus
i i 3 3 i i
Encoder Decoder
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The energy advantage

e Perceptron-based networks: matrix multiplication

o Sparsity doesn't affect much the throughput and energy consumption

e Spiking neural networks: event-driven computations

o Sparser inputs require less computations, therefore less time and energy

input |_ Conventional Output

0.2 | |

0.0 . 0.7
—0.1 0.2 0.0 -0.1 -0.3 -1.3 0.7 0.0 0.2 —0.6 1.1 0.0
-0.3 | 0.2
-1.3 J -0.6

: 1.1

input Event-driven | Output

1 0

0 03 2 > 0

0 : 1

1 0

0 | J 0
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Energy-efficient architectures

o Architectures allocate resources based on spike-generated computation

requests

Input spike queue

Si,

Si

Sig,

Image from Zheng, Mazumder (Wiley, 2019)

Weight memory

!

Scheduler

= Processing element 1

—=| Processing element 2

—| Processing element n

Neuron
state RF
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STPD weight update in hardware

e Centralized architecture: memory and processing units are separate (similar to
perceptron architectures)

o Memory access cost is high

e Distributed memory architecture: can have in-memory processing — high
energy efficiency

o Memory access cost is low

Weight Main STDP Main
Memory Memory
Controller
Weight Cache STDP Cache
[ T
AL 1T 11
@— % XX — Neuron
% % XX ——1 Neuron
° o [ ]
° (4 L]
° ° °
% % X X — Neuron
1stLayer —— 2nd | ayer S— L1 otLayer

Image from Zheng, Mazumder (Wiley, 2019)

Neuron A A A
Synap:e. . . <I‘
H—u—a—
L o o
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Energy cost

e Biological systems (human brains) still win, at the moment

Brain
Housekeeping 4.75E-11
Resting potential 5. 77E-11
Action potential 1.96E-11
Transmission 8.17E-15
Single neuron 2.49E-10
Full brain 2.15E+01

Spikey

1.37E-06
3.83E-08
4.39E-10
1.08E-11
1.49E-06
1.29E+05

SpiNNaker

1.66E-04
8.99E-05
1.04E-08
9.59E-09
3.33E-04
2.87E+07

R2600X

4.49E-04
4.77E-05
3.04E-08
5.82E-08
9.62E-04
8.29E+07

Intel mobile

1.23E-04
4.25E-06
4 46E-09
2.14E-08
3.37E-04
2.90E+07

RTX2070

9.76E-07
3.63E-06
4.71E-09
3.40E-09
3.18E-05
2.74E+06

Values for the simulation of 1s of model time are reported in Jouls. The single neuron and full brain estimates assume a fan-ocut of 2,000 synapses and a spike rate of 4Hz. R2600X: AMD
Ryzen 2600X. Intel mobile: Intel Core i7-4710MQ. RTX2070: NVIDIA RTX 2070. Both CPUs are measured using a PeakTech power meter. The lowest values from simulators/emulators

are highlighted in bold.

Table from 10.3389/fnins.2022.873935
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Implementations in history

NeuromorphicTechnologies - Ecosystem Timeline

(Source: Neuromorphic Sensing and Computing 2019,Yole Developpement, September 2019)
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Zoology of implementations

Neuromorphic chips

Modelling of Application-driven
biological systems research
(analysis) (synthesis)
T Including properties
: such as:
g Neurogrid | MNIFAT @ In-memory computing
- | —
E @ BrainScaleS ! Spirit? @ Fine-grained parallelism
o |
52 DYNAP HEAOR @ Learning in hardware
[®) I
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< : asynchronous
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DeepSouth ' IBM TrueNorth
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(c_i [ L L ® Leveraging noise
2 SpiNNaker and stochasticity
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How to work on these systems

e Some of these chips come as kits
e Some have relatively easy companion software packages

¢ Inparticular, we will use Rockpool, an open-source tool designed by SynSense
o Program and deploy on Dynap-SE2 and Xylo processors

o Companion simulator (xy1osim) provides estimates of expected energy consumption if
algorithm is deployed on a real chip
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Quantum Machine Learning

Change the way information is encoded and treated

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 55/ 108



Quantum Supremacy?

Google officially lays claim to
quantum supremacy

A mputer reportedly beat the most powerful supercomputers af one )
type of calculation

Google researchers report that their quantum computer, Sycamore, has performed a calculation that can't be achieved with any classical computer. The quantum
chip (shown) must be cooled to near absolute zero to function.
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https://www.sciencenews.org/article/google-quantum-computer-supremacy-claim

Quantum and P-vs-NP

¢ Feynman goals when he introduced the concept of quantum computing:

o To get an efficient way to simulate quantum mechanics

o To make sure that quantum systems were at least capable of universal classical computation

e David Deutsch (QC pioneer, e.g. 10.1098/rspa.1985.0070)

o To find an "empirical test" of the (controversial) Many-Worlds Interpretation of QM

o To show that Nature has the property of computational universality (i.e., there's a single,
programmable quantum system that can simulate any other quantum system).
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Turing Machine

e Describe any computer algorithm using:
o Infinite tape

Finite alphabet

o

o

Moving head

State register

[e]

Table of instructions

[e]

Video from youtube


https://www.youtube.com/watch?v=FTSAiF9AHN4

(Non-)Deterministic Turing

Machine

Deterministic

Tl
\
\
f(n)

\2

accept or
v ./ reject

f(n)

Non-Deterministic

accept— o

./.\.
/ ./\.L\.
./ %\.

N

e — reject

4

¢ —accept


https://commons.wikimedia.org/wiki/File:Difference_between_deterministic_and_Nondeterministic.svg

Pvs NP

e Can problems that can be verified in polynomial time (/NP) can also be solved
in polynomial time (P)?

( PSPACE problems \

[ NP problems \

NP complete

o e S gt
- —-—
- -

Image from


https://commons.wikimedia.org/wiki/File:BQP_complexity_class_diagram.svg

P=NP = collapse of cryptography

Crypto bro

A person with a weak grasp on cryptocurrency/blockchain applications, yet
has formed very strong opinions on the "best" ones. Often observed parading

their involvement in crypto and arguing with other crypto bros.

Crypto bro twitter bio: Entrepreneur. #40DL. $BTC. Living life in the clouds.
Gym rat.

o e by VinixxiniV January 1, 2018



https://ascendex.com/en/discover/education/what-is-a-crypto-bro/
https://www.urbandictionary.com/define.php?term=Crypto%20bro

Slightly more complex situation

EXPSPACE
?

EXPTIME

Image from wikipedia Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 62/ 108
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Capacity

e Capacity: the upper bound to the number of bits that can be stored in the
network during learning

o Transfer of (Fisher or Shannon) information from the training data to the weights of the
synapses

o Related to the number of trainable parameters

he

C(A)=log, |A|

A

Figure 1. Learning framework where h is the function to be learnt and A is the
available class of hypothesis or approximating functions. The cardinal capacity is the
logarithm base two of the number, or volume, of the functions contained in A.
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Encode information with Qubits

e Random bit (Bernoulli random variable) whose description is not governed by
classical probability theory but by quantum mechanics

e Notonly "because it can take real values in [0, 1]": complex numbers as
coefficients v and (3 create interference

o Interference is not reproducible with classical bits

® 0 I

® ! 1)
Classical Bit Qubit
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https://prateekvjoshi.com/

Quantum Machine Learning

data processing device

CcCclCQ

QC [QQ

: C - classical, () - quantum

Image from M. Schuld, F. Petruccione (2018) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 65/ 108

data generating system



https://link.springer.com/book/10.1007/978-3-319-96424-9

Two coins

Classical coin

State Preparation Toss coin 1 Toss coin 1 again
(heads, heads) 1 0.5 0.5
(heads, tails) 0 0 0
(tails, heads) 0 0.5 0.5
(tails, tails) 0 0 0

Quantum coin

State Preparation Toss coin 1, don't observe Toss coin 1 again
|heads > |heads > 1 0.5 1
|heads > [tails > 0 0 0
|tails > |heads > 0 0.5 0
tails > |tails > 0 0 0
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Classical probability

Probability vectors:

1 0.5
e a0
Bevlol we = o
_O_ -0 3

Transition probability matrix (lines sum up to one, 3rd axiom of Kolmogorov):

1 @ 9 @
jE A e |
5_5101_0
o 0wy
(0.5 ] 1 0 1 0] [0.5] 0.5 |
i 0 T /_1 (O il () el U 0l
e e e 1 e
L o B R L@

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 67 / 108



Qbit

1

0 2
Amplitude vectors @ = | o | , with probability p = ||

0

0.5
, 0
= 0.5

i Lo

2 o © =

Transition via unitary UtU =UUT = 1) complex matrix (Hadamard gate):

1 0 1 0
[ e e e |
Hﬁl@—lo
ol n0ee 1

Negative entries induce laws different than the ones in classical probability theory!
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Qbit and interference

1
o = Ha=—

V2

, With probabilities:

O = O =

p(|heads > |heads >) = p(|tails > |heads >) = |+/0.52 = 0.5

Now applying the transformation again:

l85s 0l a0 I [1+0+1+0] 1
a0 s 0 e IS il 0 508 0L 0 (0
S e o o IR S e )

e ful 0+0+0+0]| [0

From a state of high uncertainty to a state of lower uncertainty: counterintuitive!
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What if | observe after the first
measurement?

l R
obs — ,or &Xops —

=2 o @ [
D = © ©

and in both cases:

a// . Ha/ _ i

obs \/§

, with probabilities:

O = O =

p(|heads > |heads >) = p(|tails > |heads >) = [/0.5] = 0.5
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When observing intermediate
state

Recover classical picture

State Preparation Toss coin 1 and observe Toss coin 1 again
|heads > |heads > 1 0.5 0.5
|heads > [tails > 0 0 0
tails > |heads > 0 0.5 0.5
tails > |tails > 0 0 0
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Quantum computer and algorithms

e Quantum computer: physical implementation of /N qubits, with precise control
on the evolution of the state

e Quantum algorithm: targeted manipulation of the quantum system, with a
subsequent measurement to retrieve information from the system

e Quantum computers are sampling devices
o Choose experimental configuration (e.g. strenght of a magnetic field)

o Read out a distribution over all possible measurement outcomes
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Prepare the data

Classical

Fig. 1.2 The mini-dataset T
displayed in a graph. The
similarity (Euclidean
distance) between
Passengers 1 and 3 is closer

than between Passengers 2
and 3

Passenger 2

Passenger 3

cabin number

Passenéer 1

ticket price
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https://link.springer.com/book/10.1007/978-3-319-96424-9

Prepare the data

Quantum

price room survival

Passenger 1 0.921 0.390 yes (1)
Passenger 2 0.141 0.990 no (0)
Passenger 3 0.866 0.500 ?

cabin number

Passeﬁg‘ér 2

Passefiger 3

Passenger 1

ticket price

Fig. 1.3 Left: Additional preprocessing of the data. Each feature vector gets normalised to unit
length. Right: Preprocessed data displayed in a graph. The points now lie on a unit circle. The
Euclidean distance between Passengers 1 and 3 is still smaller than between Passengers 2 and 3

Image from M. Schuld, F. Petruccione (2018)
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Data encoding

e Represent datain terms of Qubits

Table 3.3 Some useful single qubit logic gates and their representations

Gate

Circuit representation

Matrix representation

Dirac representation

X

01
10

11){0] + [0)(1]

£1){0] — #[0)(1]

11){0] = 10)(1]

1
?(IO) + 1) (0] +
U0 —1I)|

1 1 .
2510)(01 + J5il 11|

‘EEECE

1 0
0 exp(—im/4)

1
2510)(01 +

-5 exp 74 [1)(1]

Image from M. Schuld, F. Petruccione (2018)

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 75/ 108
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Evolution of a quantum system

Y(t) >= U(t)[y(0) >

e U(t)is aunitary operator (matrix)
e Qubit|yy >= |0 > +8|1 >

e Gates: action, representable by unitary matrix, on one or two qubits
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Evolution of a quantum system

e Approximate with a sequence of a small dictionary of quantum gates acting on
one or two qubits at the time

e Circuit of gates: same as for classical algos, but built upon a limited number of

logic gates

e All operations are reversible (consequence of unitarity)

Table 3.3 Some useful single qubit logic gates and their representations

Gate Circuit representation | Matrix representation | Dirac representation
01
b X (1 O) 11)(0] + [0)(1]
Y mbd ((.' :) i11)(0] — 101
I
[z 10
z (0 _1) I1)(0] —10)(1]
11
H i 4 (1 _1) 130} + 101 +
—50) = 11)(1]
10 .
S —Isl- f(o;') 510001 + il 1)1
1 0
R — R}~ }@ ' \i@m) O] +
& 0 exp(—im/4) A i 101
Image from M. Schuld, F. Petruccione (2018) E oXP I )( | hool - 2024.06.3-7 --- 77 / 108



https://link.springer.com/book/10.1007/978-3-319-96424-9

Quantum circuits

e Typically measurements are performed at the end of the circuit

e Efficient guantum algorithms: their decomposition into circuit grows at most
polynomially with input size

e Popular algorithms: Grover (search a list), Shor (find the prime factors of an
integer)

: Uf :

Image from M. Schuld, F. Petruccione (2018) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 78 / 108


https://link.springer.com/book/10.1007/978-3-319-96424-9

Measurement

e Measuring collapses the probability distribution to one classical bit of
information

e Example: Hadamard gate
o measure [tp >= |0 > +5|1 >
o obtain 0 with probability a? and 1 with probability 32

o after measurement, the state will be either [0 > or |1 >

¢ |Independent measurements of W > are impossible (no-cloning theorem)

Image from M. Schuld, F. Petruccione (2018) Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 79 / 108
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The Curse of Dimensionality

e How many samples do we need to estimate f*, depending on assumptions on
its regularity?
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The Curse of Dimensionality

e How many samples do we need to estimate f*, depending on assumptions on
its regularity?

e f* constant — need only 1 sample

Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 81/ 108



The Curse of Dimensionality

e How many samples do we need to estimate f*, depending on assumptions on
its regularity?

e f* constant — need only 1 sample

e *linear — need d samples
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The Curse of Dimensionality

How many samples do we need to estimate f*, depending on assumptions on
its regularity?

f* constant — need only 1 sample

* linear — need d samples
d

It can be demonstrated that in 2 dimensions you need n. ~ € “ samples
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Classical vs Quantum ML

Classical

dataset D
new input =

Quantum

2

dataset D
new input &

Machine learning
algorithm

¥

Encoding

4

Quantum machine
learning algorithm

¥

2

Read out

Prediction y

¥

Image from M. Schuld, F. Petruccione (2018)

Prediction y
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Quantum system

state preparation

l

unitary evolution

4

measurement


https://link.springer.com/book/10.1007/978-3-319-96424-9

Label data
N\ ™~

membership example
oracle oracle

f(z) f(z); =~ p(x)

o

0;\ 10..0) N\

quantum quantum
membership example

iz, f(z)) oracle ; Mlm, f(x)) oracle

o

|z,
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https://link.springer.com/book/10.1007/978-3-319-96424-9

Network structure

e Qubit operations can represent rather naturally neural networks

lin) (in| = |q1, 92, 43){q1, 92, g3].

Full unitary operations, U_li,
(preserve information)
|h1)(ha| . _ |h2){h2|
U 1 Tracing operations u 2
— (information loss)
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https://link.springer.com/book/10.1007/978-3-319-96424-9

Training the algorithms

e Evolution through unitary transformations emulates linear algebra

o Can be used to invert matrices and find weights

e Perceptrons: decision boundaries as points in an hypersphere, find hyperplanes

Fig. 7.2 In the dual representation, the normal vector of the separating hyperplanes w! and w?
of a perceptron model are represented by points on a hypersphere, while the training set identifies
a feasible region for the separating hyperplanes. Each training vector corresponds to a plane that
‘cuts away’ part of the hypersphere (illustrated by the grey planes)
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Training the algorithms

e Hybrid classical/quantum training schemes also possible

-

Quantum device

0) —

0)

U(9)

A

A

~\

e N

Classical device

J

update

N

g(t)
g(t+1)

rerun

Fig.7.3 The idea of a hybrid quantum-classical training algorithm for variational circuits is to use
the quantum device to compute terms of an objective function or its derivatives, and subsequently
use a classical device to compute better circuit parameters with respect to the objective. The entire
routine gets iterated until the objective is minimised or maximised

Image from M. Schuld, F. Petruccione (2018)
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Training the algorithms

e Gradient descent exploits intrinsic analytic differentiability of quantum circuits

3, (W (x,|o,|¥(x,0)) =(0]...3,e7" .. .0,...e"" ...|0)

Image from M. Schuld, F. Petruccione (2018)

+(0]...e "M ..o, ...8,e" ... |0)

= (0]...(—io)e ™" .. .o,...e" ... ]0)
+(0]...e " .o,...(io)e " ...|0)

=(0]...(1 —io)e ™ ...0,...(1 +ic)e* ...|0)
+{(0]...(1 +io)e " .. .o,...(1 —io)e* ... |0)
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Classifying new data

e Often by proximity after representing datain a unit circle

Fig. 6.10 Example of how 2
the kernelised binary
classifier in this section
weighs neighbouring training
inputs to come to a decision.
The inputs are normalised
and lie on a unit circle. The
influence of a training input
on the prediction of the new '
input (black square) is
depicted by the colour
scheme, and lighter dots
have less influence

e class O
A class1

A

feature 1
o

-2 0 2

feature O
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Quantum advantage

e Measuring all information of a quantum state is subject to curse of
dimensionality

e But the quantum computer has immediate access to all this information and
can produce the result

o Forinstance, yes/no decision

e Exponential speedup by design!!!
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Quantum Supremacy?

Google officially lays claim to
quantum supremacy

A mputer reportedly beat the most powerful supercomputers af one )
type of calculation

Google researchers report that their quantum computer, Sycamore, has performed a calculation that can't be achieved with any classical computer. The quantum
chip (shown) must be cooled to near absolute zero to function.
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Quantum Supremacy?

e "How large a QC should be such that it is not possible to simulate it classically?"

o Benchmarks for quantum supremacy are an open field of research
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101
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&
- 2 weeks
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> 10 millennia
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— Prediction from gate and measurement errors
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Figure from 2206.04079

number of qubits, n
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Build a quantum computer

Current Microwaves
Laser Q Electron
it ! Vacancy—e l
s .
S Capacitors 3 .
E - G : | Time |
Laser
«—— Microwaves C
Electron
Superconducting loops  Trapped ions Silicon quantum dots Topological qubits Diamond vacancies
Company support Microsoft, Quantum Diamond
Google, IBM, Quantum Circuits ionQ Intel Bell Labs Technologies
© Pros
Fast working. Buildonexisting ~ Very stable. Highest Stable. Build on existing Greatly reduce Can operate at
semiconductor industry. achieved gate fidelities. semiconductor industry. errors. room temperature.
© Cons
Collapse easily and must Slow operation. Many Only a few entangled. Existence not yet Difficult to
be kept cold. lasers are needed. Must be kept cold. confirmed. entangle.

Image credits: Graphic by C. Bickle/Science data by Gabriel Popkin
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NISQ

e Noisy Intermediate-Scale Quantum computers
o Noisy
o 50-100 qubits only

o Not fully-connected

e They may still be able to surpass digital computers, but noise limiting factor for
size of reliable circuits

Quantum Computing in the NISQ era and beyond

John Preskill

Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics,
California Institute of Technology, Pasadena CA 91125, USA
30 July 2018

Noisy Intermediate-Scale Quantum (NISQ) technology will be available in
the near future. Quantum computers with 50-100 qubits may be able to perform
tasks which surpass the capabilities of today’s classical digital computers, but
noise in quantum gates will limit the size of quantum circuits that can be
executed reliably. NISQ devices will be useful tools for exploring many-body
quantum physics, and may have other useful applications, but the 100-qubit
quantum computer will not change the world right away — we should regard
it as a significant step toward the more powerful quantum technologies of the
future. Quantum technologists should continue to strive for more accurate
quantum gates and, eventually, fully fault-tolerant quantum computing.
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Quantum Computer ASMR

e 15mK temperatures

o Essentially, listen to the sound of the refrigerator

Full video at https://www.youtube.com/watch?v=0-FyH2A7EdO


https://www.youtube.com/watch?v=o-FyH2A7Ed0

Noise control

e Logical qubit constituted by a set of physical qubits

o The additional physical qubits are tasked with error correction
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Quantum supremacy revisited

e Proofs or empirical tests to check for quantum supremacy
o Further reading: 10.1038/s41534-017-0018-2

Classical

Harrow, Hassidim & Lloyd Quantum

propose a quantum Machine
algorithm to solve Learning
linear systems of equations
Quantum 1996
C ti ] |
omputing ) I 5
1994 . 2009 2013 TIME
Peter Shor Luv Grover
proposes a quantum proposes a quantum
algorithm for algorithm for
prime factoring unordered search

Fig. 3.3 Timeline of quantum computing and quantum machine learning
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Speedup holy grail

e Provable quantum speedup

Strong quantum speedup

Common quantum speedup

Potential quantum speeedup

Limited quantum speedup

Holy grail: provable exponential speedup
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Speedup in QBLAS

¢ Quantum Basic Linear Algebra subroutines
o Quantum Fourier Transform
o Quantum Phase Estimation

o HHL (quantum solver for linear systems of equations)
e Some QML algorithms rely on exponential speedup provided by QBLAS

e Common issues: load input, read output, decide circuit size
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Open questions

e Does learning from quantum data produce different results than from classical
data?

How can we combine data genereration and analysis effectively?

Can we design algorithms to solve otherwise intractable problems?

Don't automatically trust anyone who promises to have successfully treated a
quantum problem
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QML in fundamental research

e So far, mostly as good as classical methods

e Must identify use cases where a quantum approach can be more effective
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Same performance, fewer samples

0.900
0.875 A ]
..... R
Sy TLlyhey R
08504 A _.an s EE e
Gk =y @ — ——0
=
0.825 - ¢ ,’—.——. *+—0 —— BDT 3-variables
O -7;5"""'2'__‘_%.‘..‘.:::7@--—& ~[1- BDT 5-variables
2 0.800 1 o -k BDT 7-variables
ﬁ DNN 3-variables
0.775 - DNN 5-variables
DNN 7-variables
| —$— QCL 3-variables
0.750 =[1- QCL 5-variables
-4+ QCL 7-variables
0.725 A —— BDT 18-variables
DNN 18-variables
0.700 LA | T L | T L T T TTTTT T L
102 103 104 10° 10°
Events

Image from 2002.09935 Pietro Vischia - Machine Learning at IGFAE Data Science School - 2024.06.3-7 --- 103/ 108


https://arxiv.org/abs/2002.09935

How can | work on Quantum ML?

e Several implementations (mostly in python), hiding away the raw calculations
o Pennylane
o Tensorflow Quantum
o Qiskit

o
import pennylane as qml

def QSP_circ(phi, W):
"""This circuit applies the SPO. The components in the matrix
representation of the final unitary are polynomials!
gml.Hadamard(wires=0) # set initial state |+>
for angle in phi[:-1]:
gml.RZ(angle, wires=0)
gml.QubitUnitary(W, wires=0)

gml.RZ(phi[-1], wires=@) # final rotation
gml.Hadamard(wires=0) # change of basis |+> , |—>
return
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Summary

e Neural networks rely on automatic differentiation for gradient descent

e Digital networks

o Accelerators: software and hardware tricks in common hardware

e Spiking networks
o Encode signals in neuron spikes
o Event-based processign: natural time and energy advantage

o Deploy in CMOS or memristors

e Quantum Networks
o Machine Learning based in quantomechanical properties (interference effects)
o Encode information in a richer structure (qubit)

o Quantum supremacy: expected exponential speedup in many problems
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Tomorrow the workshop begins at
9 AM



Thanks for attending!!!

| hope to have provided some base pointers for you to then go more into
detail on these topics
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Thank you!

Welcome back to regular Galician weather &
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