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The quantum computing revolution?
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What is quantum machine learning?

data generating system

data processing device

- classical, Q - quantum




Quantum speedups for classical machine learning

Method Speedup Amplitude HHL Adiabatic gRAM
amplification

Bayesian OWN)  Yes Yes No No

inference!06107

Online OWN)  Yes No No Optional

perceptron!©®

Least-squares  O(logN)* Yes Yes No Yes

fitting®

Classical OWN)  Yes/No Optional/ No/Yes  Optional

Boltzmann No

machine?®

Quantum O(logN)* Optional/No No No/Yes  No

Boltzmann

maching?26!

Quantum O(logN)* No Yes No Optional

PCAl!

Quantum O(logN)* No Yes No Yes

support vector

machine!3

Quantum O(WN)  Yes No No No

reinforcement

learning3©

*There exist important caveats that can limit the applicability of the
method>.



The NISQ era

e Current quantum computers...

¢ are affected by noise and errors (not fault-tolerant)
® have a limited number of qubits (below 1000)
e are not fully connected

¢ They may prove useful in some applications

Noisy Intermediate Scale Quantum

where we ‘computing
are today / NISQapplication areas
10 / « Quantum chemistry
/ « Optimization
£ e = * Machine learning
5 error correction
o 10% 4 () threshold
g / fault-tolerant QC
e 10
s within 5
109 years
T t
10 100 1,000 10,000 100,000 ™

number of physical qubits
.

“Quanturm computing in the NISQ era and beyond” Preskill, 2018 https:Jianv org/abs/1801 00862



Variational circuits and QML

¢ Variational circuits are one of the central techniques in
QML
* They allow us to...

* embed data
® train parameters

encoded data gates with optimized parameters measuremen ts
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The power of Quantum

normalised counts

normalised effective dimension 91 24

classical neural network

easy quantum model

Neural Networks

quantum neural network
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Learning with few data

nature communications

Article

3

https://doi.org/10.1038/541467-022-32550-3

Generalization in quantum machine learning

from few training data

Matthias C. Caro'*
Andrew

Received: 12 April 2022

Accepted: 4 August 2022

, Hsin-Yuan Huang ®3*, M. Cerezo®®, Kunal Sharma’,
5%, Lukasz Cincio® & Patrick J. Coles ®°

22 August 2022

* Check for updates

work. we provide a

Modern quantum machine learning (QML) methods involve variationally
optimizing a parameterized quantum circuit on a training data set, and sub-
sequently making predictions on a testing data set (| Le., gener

ing). In this
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QUANTUM COMPUTING
Quantum advantage in learning from experiments

Hsin-Yuan Huang'?*, Michael Broughtor, Jordan Cotler"*, Sitan Chen®”, Jerry Li°, Masoud Mohsent’,
Hartmut Neven®, Ryan Babbush®, Richard Kueng®, John Preskill>°, Jarrod R. McClean**

Quantum technology promises to revolutionize how we leam about the physical world. An experiment
that processes quantum data with a quantum computer could have substantial advantages over
conventional experiments in which quantum states are measured and outcomes are processed with a
classical computer. We proved that quantum machines could lean from exponentialy fewer experiments
than the number required by conventional experiments. This exponential advantage is shown for
predicting properties of physical systems, performing quantum principal component analysis, and
learning about physical dynamics. Furthermore, the quantum resorces needed for achieving an exponential

quantum-enhanced experiments have a simi-
lar exponential advantage in a related scenario
shown in Fig. 1C, in which the goal s to learn
about a quantum process £ rather than a quan-
tum state p. Advantages of entangling measure-
ments over single-copy measurements have
‘been noticed previously (11, 12), but our work
goes much further by establishing an advan-
tage that scales exponentially with system size.

Building on previous observations (8, 13),
we proved that for a task that entails ac-
quiring information about a large number
of noncommuting observables, quantum-
enhanced experiments could have an expo-
nential advantage even when the measured
quantum state is unentangled. Our work sub-
stantially rud\uu Lhc wmplumyoﬂhc ‘required

advantage are quite modest in some cases. Conducting experiments with 40 qubits
and 1300 quantum gates, we demonstrated that a substantial quantum advantage is possible with
today's quantum processors.

improving
the prospects for near-term implementation.
By performing experiments with up to 40
superconducting qubits, we showed that this



Limitations in QML

Hardware size

® Feature and instance selection
® Few trainable parameters

Noise and errors
e Device access
Inherent problems (barren plateaus, architectures...)

(a) (b)

Loss



To know more...

<packt>

A Practical Guide to Quantum Machine
Learning and Quantum Optimization

This book provides deep coverage of modern quanfum algorithme, including machine learning and
optimization, fo help you Youll be infroduced

Yo'l discover many aortns, fol,and mefhds f modl opfimiaton problems with QUSO and
A, Grover

s quanfum support vector machines, quantum neural networks, and quanfum generafive adversarial
networla.

A Practical Guide to
Quantum Machine Learning
and Quantum Optimization

You'l alzo see how to utiize programming languages such as IBM's Qiskit, Xanadu's PennyLane, and
D-Wave's Leap.

By the in
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WHAT YOU WILL LEARN

+ Review the basics of quantum computing
+ Gaina solid understanding of modern quantum algorithms.

Get o free PDF o his book
Leverage the power of quantum computing by
applying quantum methods fo solve practical problems

- Solve optimization problems with quantum annecling, GAOA,
GAS, and VGE

 Find out how fo create quantum machine learring models

neural networks work using Qiskit and PennyLane
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Reinforcement learning
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Controlling particle accelerators

¢ A simple control problem at the Super Proton Synchrotron
(CERN, Geneva)
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Solving the problem with (classical) neural networks

e Feedforward dense neural network

¢ Two hidden layers with 8 neurons each

Q-net
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Solving the problem with quantum Boltzmann

machines

* Free energy reinforcement learning
e Quantum annealing used for energy estimation
* 16 qubits (D-Wave annealers, Chimera topology)
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Results with and without experience replay
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QBM vs neural networks

104 4 )
I\
~
\\
\\\16
= LN
8 \\\ = \‘\\ 32
- ~ 32 64
10° A b JEETN . g
- o TN s TR
23 S SO LI
gé 64 o= ~\I_,»’f ---- 2
n
28
£8
TR
5o 102 4
#3
-F- DQN, 1 hidden layer
-F- DQN, 2 hidden layers
10! A -f- DQN, 3 hidden layers
I -I- FERL, 1x2 unit cells
(Chimera graph)
10? 103 104 10°

# Q-net weights



A more complex problem
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Actor-critic architecture

Actor Critic
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To know more...
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Abstract

Free energy-based reinforcement learning (FERL) with clamped quantum Boltzmann machines
(QBM) was shown to significantly improve the learning efficiency compared to classical
Q-learning with the restriction, however, to discrete state-action space environments. In this paper,
the FERL approach is extended to multi-dimensional continuous state-action space environments
to open the doors for a broader range of real-world applications. First, free energy-based
Q-learning is studied for discrete action spaces, but continuous state spaces and the impact of
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