Quantum Machine Learning Data Science in Fundamental Physics and its bridge to industry & society

Elías F. Combarro

Computer Science Department - University of Oviedo (Spain)

June the 6th 2024

Universidad de Oviedo

The quantum computing revolution?

What is quantum machine learning?

data processing device

C - classical, Q - quantum

data generating system

Quantum speedups for classical machine learning

Method	Speedup	Amplitude amplification	HHL	Adiabatic	qRAM
Bayesian inference ^{106,107}	O(√N)	Yes	Yes	No	No
Online perceptron ¹⁰⁸	O(√N)	Yes	No	No	Optional
Least-squares fitting ⁹	O(logN)*	Yes	Yes	No	Yes
Classical Boltzmann machine ²⁰	O(√N)	Yes/No	Optional/ No	No/Yes	Optional
Quantum Boltzmann machine ^{22,61}	O(logN)*	Optional/No	No	No/Yes	No
Quantum PCA ¹¹	O(logN)*	No	Yes	No	Optional
Quantum support vector machine ¹³	O(logN)*	No	Yes	No	Yes
Quantum reinforcement learning ³⁰	O(√N)	Yes	No	No	No

*There exist important caveats that can limit the applicability of the method⁵¹.

The NISQ era

- Current quantum computers...
 - are affected by noise and errors (not fault-tolerant)
 - have a limited number of qubits (below 1000)
 - are not fully connected
- · They may prove useful in some applications

"Quantum computing in the NISQ era and beyond" Preskill, 2018 https://arxiv.org/abs/1801.00862

Variational circuits and QML

- Variational circuits are one of the central techniques in QML
- They allow us to...
 - embed data
 - train parameters

The power of Quantum Neural Networks

nature communications

Article

https://doi.org/10.1038/s41467-022-32550-3

Generalization in quantum machine learning from few training data

Received: 12 April 2022	Matthias C. Caro ^{1,2} , Hsin-Yuan Huang ^{(3,4} , M. Cerezo ^{5,6} , Kunal Sharma ⁷ ,		
Accepted: 4 August 2022	Andrew Sornborger ^{3,9} , Lukasz Cincio [®] & Patrick J. Coles ® [®]		
Published online: 22 August 2022	Modern quantum machine learning (OMI) methods involve variationally		
Check for updates	optimizing a parameterized quantum circuit on a training data set, and sub-		
	sequently making predictions on a testing data set (i.e., generalizing). In this work, we provide a comprehensive study of generalization performance in		

RESEARCH

RESEARCH ARTICLE

QUANTUM COMPUTING

Quantum advantage in learning from experiments

Hsin-Yuan Huang^{1,2,*}, Michael Broughton³, Jordan Cotler^{4,5}, Sitan Chen^{6,7}, Jerry Li⁸, Masoud Mohseni³, Hartmut Neven³, Ryan Babbush³, Richard Kueng⁹, John Preskill^{1,2,10}, Jarrod R. McClean^{3,4}

Quantum technology promises to revolutionize how learn about the physical work. An experiment that processes quantum data with a quantum computer could have substantial advantages over conventional experiments in which quantum states are measured and outcomes are processed with a classical conquire. We proved that quantum machines could learn from exponentially flower experiments than the number required by conventional experiments. This sequential advantage is shown for predicting properties of physical systems. Furthermore, the quantum resources needed for adviving an exponential advantage are quire modes in some cases. Conducting experiments with 40 superiorduluting public and 1300 quantum gates, we demonstrated that a substantial quantum advantage is possible with today's quantum processors.

quantum-enhanced experiments have a similar exponential advantage in a related scenario about a quantum process *i* rather than a quanum state p. Advantages of entangling measurements over single-copy measurements have been noticed previously (*II*, *IZ*), but our work goes much further by establishing an advantage that scales exponentially with system size.

Building on previous observations (6, 73), we proved that for a task that entails acquiring information about a large number of noncommuting observables, quantumenhanced experiments could have an expotantial avertage even when the measured quantum state is unertangled. Our work substantially reduces the complexity of the required quantum-enhanced experiments, improving the prospects for near-term implementation. By performing experiments with up to 40 superconducing quebix, we showed that this

Limitations in QML

- Hardware size
 - Feature and instance selection
 - Few trainable parameters
- Noise and errors
- Device access
- Inherent problems (barren plateaus, architectures...)

1ST EDITION

A Practical Guide to Quantum Machine Learning and Quantum Optimization

This book provides deep coverage of modern quantum algorithms, including machine learning and optimization, to help you solve real-world problems. You'll be introduced to quantum computing using a hands-on approach that requires minimal mathematical and physical knowledge to understand the topics.

You'll discover many algorithms, tools, and methods to model optimization problems with QUBO and Ising formalisms and find out how to solve optimization problems with quantum annealing, QADA, Grover Adaptive Search, and VQE. The book also shows you how to train quantum machine learning models such as quantum support vector machines, quantum neural networks, and quantum generative adversarial as quantum support vector maximums, quantum metror nervoras, and quantum generotras trans-nervoras. The book takes a straightforward path to helping you learn about algorithms through chapters illustrating them with code that's ready to be run or quantum simulators and actual quantum computers. You'll also see how to utilize programming languages such as IBM's Qiskit, Xanadu's PennyLane, and D-Wave's Leap

By the end of this book, you'll have built a solid foundation in the fundamentals of quantum computing, along with a wide variety of modern quantum algorithms and programming skills that'll enable you to start applying quantum methods to solve practical problems right away

WHAT YOU WILL LEARN

- · Review the basics of quantum computing
- Gain a solid understanding of modern quantum algorithms
- · Understand how to formulate optimization problems with QUBO
- · Solve optimization problems with quantum annealing, QAOA, GAS, and VQE
- · Find out how to create quantum machine learning models
- Explore how quantum support vector machines and quantum neural networks work using Giskit and PennyLane
- Discover how to implement hybrid architectures using Qiskit and PennyLane and its PyTorch interface

A Practical Guide to Quantum Machir Learning and Quantum Optimization

Machine

SMUUE

ELIAS F. COMBARRO GONZÁLEZ-CASTILLO

(D)

1ST EDITION

A Practical Guide to **Quantum Machine Learning** and Quantum Optimization

Leverage the power of quantum computing by applying quantum methods to solve practical problems

ELÍAS E. COMBARRO SAMUEL GONZÁLEZ-CASTILLO

Foreword by Alberto Di Meolio. Head of Innovation - Coordinator CERN Quantum Technology Initiative

Get a free PDF of this book

Reinforcement learning

Controlling particle accelerators

• A simple control problem at the Super Proton Synchrotron (CERN, Geneva)

Solving the problem with (classical) neural networks

- Feedforward dense neural network
- Two hidden layers with 8 neurons each

Solving the problem with quantum Boltzmann machines

- Free energy reinforcement learning
- Quantum annealing used for energy estimation
- 16 qubits (D-Wave annealers, Chimera topology)

Results with and without experience replay

QBM vs neural networks

A more complex problem

Results

IOP Publishing

Ouantum Sci. Technol. 9 (2024) 025012

https://doi.org/10.1088/2058-9565/ad261b

Quantum Science and Technology

CrossMark	PAPER				
	Hybrid actor-critic algorithm for quantum reinforcement lea				
OPEN ACCESS	at CERN beam lines				
RECEIVED 18 January 2023	Michael Schenk ^{1,-} ⁽⁰⁾ , Elías F Combarro ¹ ⁽⁰⁾ , Michele Grossi ¹ ⁽⁰⁾ , Verena Kain ¹ ⁽⁰⁾ , Kevin Shing Bruce Li ¹ ,				
REVISED 31 August 2023	Mircea-Marian Popa' and Sofia Vallecorsa 😳				
ACCEPTED FOR PUBLICATION 5 February 2024 PUBLISHED 21 February 2024	 European Organisation for Nuclear Research, Espl. des Particules 1, 1211 Meyrin, Switzerland Computer Science Department, University of Oviedo, C. San Francisco 3, 33003 Oviedo, Asturias, Spain Politehnica University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania Author to whom any correspondence should be addressed. 				
	E-mail: michael.schenk@cern.ch				
Original Content from this work may be used under the terms of the Creative Commons	Keywords: energy-based reinforcement learning, quantum machine learning, accelerator physics				
Antribution 4.0 licence.	Abstract				
of this work must	Free energy-based reinforcement learning (FERL) with clamped quantum Boltzmann machines				
maintain attribution to the author(s) and the title	(QBM) was shown to significantly improve the learning efficiency compared to classical				

Q-learning with the restriction, however, to discrete state-action space environments. In this paper, the FERL approach is extended to multi-dimensional continuous state-action space environments to open the doors for a broader range of real-world applications. First, free energy-based Q-learning is studied for discrete action spaces, but continuous state spaces and the impact of

of the work, journal citation and DOI.

Thank you for your attention!

