

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

LIP Computing & Big Data

Joao Pina LIP Distributed Computing and Digital Infrastructures group

WHAT

The reference institution for experimental particle physics in Portugal and the Portuguese reference partner of CERN as well as other international scientific infrastructures

Has centres in: Lisbon, Coimbra, Braga

Experimental particle and astroparticle physics

Development of new instruments and methods

Scientific computing

Knowledge transfer, education and outreach

To whom we are connected

UTaiwan, IIT Madras

SNOLAB, SURF, MIT, Queen's, Fermilab, UBrown, UFlorida, URockefeller, Auger, CBPF, SBF, USP, USC, UCampinas, EERJ

IST, FCUL, ULisboa, FCTUC, UM, CTN, UA, ICNAS, LNEC, Ciência Viva, IBEB, INESC-ID, INESC-TECH, UBI, UÉvora, SPF, ISEC/IPC, LIBPhys, BioSI, CCMAR, ISEC, UPorto, IMM, IGC, PORBIODATA, FCT-FCCN

CERN, ESA, EGI, DESY, HIP Helsinki, MEPhi, Imperial College, USurrey, UOxford, TUDresden, LMU Munich, HephyViena, TUDortmund, IPPP, LPC, TUDelft, GSI, Humboldt, KIT, CEA, CESNET, Clermont-Ferrand, CYFRONET, PSNC, UUtrecht

> CSIC, IFCA, UPV, CESGA, BIFI, UAM, PIC, Lifewatch ESFRI, UGranada, USC/IGFAE, INFN, INAF, UFerrara, UTorino, UPadova, UPisa, UUdine, PoliMilano, PoliBari, LLR

Delivering IT services Computing and data

For **LIP**

- 1. Delivering internal IT services to LIP
 - Supporting research, innovation, education, outreach and administrative activities at LIP.
- 2. Participation in national and international projects, initiatives and digital infrastructures
 - Performing Research and Innovation

Via **INCD**

- 1. Provide compute and data oriented services to Portuguese academic and research community
 - INCD is a spinoff from the LIP participation in projects on computing and digital infrastructures.
 - Is the basis for the LIP computing services.
 - INCD itself is a legal entity, private non-profit association that joins LIP, FCT and LNEC.
 - Research infrastructure in the FCT roadmap of research infrastructures (until 2022).

Competences Projects & Initiatives

The group has participation in projects, infrastructures and initiatives in areas such as:

- Digital infrastructures
- High Performance Computing
- High Throughput Computing
- Cloud Computing
- Federated/distributed computing
- Software Quality Assurance
- Software management
- Linux containers
- Data repositories

INCD operations centers in 2024

INCD-B @ REN in Riba-de-Ave (DECOMMISSIONED) HPC / HTC 2600 CPU cores 384 Terabytes raw 1 Gbps

INCD-A @ LNEC in Lisbon HPC / HTC / Cloud / Federation 6000 CPU cores 5 Petabytes online raw 100 Gbps Includes the WLCG Tier-2

INCD-L @ LIP in Lisbon Tape storage 1 Petabyte backups 10 Gbps

INCD-D @ UTAD in Vila Real (STARTED PROD 2024) HPC / HTC / Cloud / Federation 5000 CPU cores + IB HDR200 4 Petabytes online raw 10 Gbps

INCD-C @ UC in Coimbra (BEING RENEWED) Tape storage expansion 20 Petabytes 10 Gbps

Network and housing in 2024

- INCD A @ "Sala-Grid" LNEC in Lisbon
 - Main data centre for INCD
 - 100 Gbps connectivity
 - Data centre managed by FCCN
 - Equipment managed by LIP team in Lisbon

- INCD - B @ NOS/REN/EDP in Riba-de-Ave

- Bob supercomputer offered by TACC
- 1 Gbps connectivity
- Commercial data centre under contract with FCT
- Equipment managed by LIP/INCD team in Braga/Minho
- INCD C @ UC in Coimbra
 - 10 Gbps connectivity
 - Physics department datacenter under agreement with LIP
 - Equipment managed by LIP team in Lisbon
- INCD D @ UTAD in Vila Real
 - 10 Gbps connectivity
 - University of Trás-os-Montes e Alto Douro data centre under agreement with FCT
 - Equipment managed by LIP/INCD team in Braga/minho
- INCD L @ LIP in Lisbon
 - 10 Gbps connectivity
 - LIP datacenter
 - Equipment managed by LIP team in Lisbon

Federation in IBERGRID and EGI

INCD is the main Portuguese infrastructure in EGI and IBERGRID

IBERGRID - 320 million jobs since 2006 (INCD supported > 6%)

IBERGRID - 1.3 million instantiated VMs since 2015 (INCD provided 24% of the elapsed time)

Federating about 1,243,400 CPU cores and over 1,4 Exabyte of storage space from hundreds of data centres including WLCG

cloud+grid+data

IBERGRID and **EGI**

IBERGRID responsibilities and activities:

- IBERGRID and EGI provide the backbone for WLCG
- Operations coordination at Iberian level and interface with EGI operations
- Software management for the EGI and IBERGRID federations
- Regional technical contact point
- Support for user communities
- Developing and operating core services e.g. software repositories for the EGi federation
- Integration of thematic and/or user services

The challenge of **Computing for the LHC**

LIP participates in the **ATLAS** and **CMS** experiments at the CERN Large Hadron Collider (LHC).

The MoU for Collaboration in the Deployment and Exploitation of the WLCG was signed in 2006 by CERN, GRICES and LIP.

Under the MoU LIP operates a Tier-2 computing and data facility integrated in WLCG for ATLAS and CMS.

Vorldwide LHC Computing Grid

Overview of the data processing in the ATLAS experiment

Portuguese Tier-2 ATLAS and CMS

The Tier-2 uses grid middleware and operates in the framework of the INCD infrastructure.

Currently based on the INCD Slurm cluster in Lisbon (INCD-A @ LNEC).

- ARC-CE + Slurm batch scheduler
- XRootd + Lustre
- StoRM + Lustre
- CVMFS

LHC Optical Private Network (LHCONE) Interconnects the WLCG Tier-1 centres worldwide

Requirement for 2029: 1 Tbps per site

LHCONE LHC Open Network Environment (L3VPN service)

Private Network connecting WLCG sites (Tier-1s + Tier-2s)

- Dedicated network for LHC
 ATLAS, CMS, ALICE LHCb
- A collaborative effort among Research & Education Network Providers
- Multi domain L3 VPN
- Routed Virtual Private Network connecting Science-DMZs
- BGP communities for traffic engineering
- Only for declared IP prefixes

The LHCONE is open to other HEP scientific collaborations

- Belle II
- Xenon
- Juno
- Nova
- Pierre Auger Observatory
- DUNE

The

- > 33 countries
- > 144 sites

Data Lake Moving to a network-centric model

CPU and storage not necessarily co-located:

- need fast and reliable WAN
- Storage might offer different QoS classes
- caching for remote compute Infrastructure

Fewer number of site operating storage services -> **less data replication**

https://doi.org/10.1051/epjconf/201921404024

OPENcoastS Coastal forecasts Coastal forecasts on-demand. Accurate and

timely predictions on water conditions.

- Water levels and velocities, wave characteristics \bullet
- Forecasts using the SCHISM model •

Atmosphere forcings:

- GFS (NOAA)
- ARPEGE (MétéoFrance)

Ocean forcings:

- PRISM2017 (LNEC) \bullet
- FES2014 (LEGOS)
- CMEMS (Copernicus) \bullet

Wave forcings:

North Atlantic WW3

Data:

- Buoy sensors
- Satellite images
- Weather info

OPENCoastS

Coastal circulation on-demand forecast

CD

Summarv

C-Scale **Copernicus**

European Open Science Cloud project.

C-Scale federate European EO infrastructure services:

- Copernicus DIAS and others.
- Capitalise on the European Open Science Cloud (EOSC) capacity and capabilities.
- Support Copernicus research and operations with large and easily accessible European computing environments.

Aqua Monitor detects how the Earth's surface water has changed during the last 30 years.

Changes are detected in real-time using satellite imagery for any place on Earth.

Porting the application from the Google Earth Engine platform to the open C-SCALE infrastructure, providing an interactive (zoomable) map that displays land use changes (wet vs dry).

Relies on the top-of-atmosphere reflectance images from Landsat 4,5, 7, and 8 and will be extended to use Sentinel-2 MSI Level-1C data.

Biodiversity

Integration of Iberian biodiversity information in the Global Biodiversity Information Facility.

- Joining the Spanish and Portuguese GBIF nodes
- Integration of GBIF nodes in EOSC
- Enabling combined analysis of data
- Implement resiliency for both national nodes

Collaboration with the GBIF nodes of Portugal (ISA) and Spain.

Artificial Intelligence: AI4EOSC

- Advanced services for Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) models and applications in the EOSC.
- Event-driven data processing based on serverless computing.
- Agrometeorological forecasts
- Integrated plant protection scenario
- Automated Thermography
- LIP contribution:
 - Software, services and applications quality, data FAIRness
 - Integration of udocker for serverless computing

Artificial Intelligence: iMagine

- Imaging data and services for aquatic science
- Ocean warming, and acidification
- Litter and oil spills monitoring of water surfaces
- Marine biomass estimation and preservation through real-time monitoring
- Coastal ecosystems, and beach-related human activities monitorization and analysis
- LIP contribution:
 - DEEP AI Application Development Service
- INCD contribution:
 - Federated Compute Infrastructure for AI and support

Installation T4.3 - Federated Compute Infrastructure for AI (EGI sites)

Digital Twins: DT-GEO

- Digital Twin for GEOphysical extremes (DT-GEO) that aims to analyse and forecast the impact of tsunamis, earthquakes, volcanoes, and anthropogenic seismicity.
- LIP contribution:
 - Workflows and support for deployment of components in HPC and Cloud resources

Rapid event and shaking characterisation

Software

The real HL-LHC computing challenge is a **software problem**:

- **Moore's law** is still there in the number of transistors
 - But not in an easily usable form many cores, specialized co-processors (e.g. vector units), GPUs, etc.
 - (Most of) Today's software is not efficient on these processors (legacy code x86_64)

- use new types of resources (HPC, GPU, other non-x86)
 - Implies significant re-engineering & re-writing of core application software
 - Most of the code developed by physicians over the last 10y
 - This is a non-trivial and long-term proposition

udocker

User tool to execute docker containers in user space. Developed at LIP:

- Fully user space.
- No root privileges required to use or install.
- Does not require compilation.
- Download and execution of docker containers by non-privileged users.
- Suitable for Linux batch systems and interactive clusters managed by other entities such as grid infrastructures.
- Does not require Linux namespaces.

https://github.com/indigo-dc/udocker

()			Sign up 🗮			
indigo-dc/udocke	(Public)	A Notifications	약 Fork 105 1 Star 945 +			
Code () Issues 28	11 Pull requests 4 Actions	Projects	Wiki ① Security			
🐉 master 👻	Go to	file Code -	About			
jorge-lip Update code	meta.json ··· × on	Feb 4 🕲 1,660	A basic user tool to execute simple docker containers in batch or interactive systems without root			
.sqa	Remove sqa configuration block not requir	12 months ago	privileges.			
docs	improve quality assurance section	12 months ago				
etc	update variables in udocker.conf	12 months ago	docker grid hpc containers			
🖿 paper	paper.md	11 months ago	emulation batch user chroot			
tests/unit	allow-root in umain	12 months ago	indigo docker-containers runc			
udocker	fix linting line too long	12 months ago	root-privileges proot fakechroot deep-hybrid-datacloud eosc-hub			
utils	improve tests	12 months ago	M Readma			
gitignore	add to gitignore, remove link	13 months ago	مله Readine			
🗅 .mailmap	add mailmap	6 years ago	公 945 stars			
🗅 .travis.yml	prepare for test and travis	3 years ago	③ 33 watching			
AUTHORS.md	update several documents, markdown styl	12 months ago	¥ 105 forks			
CHANGELOG.md	lint changelog markdown, add changelog	12 months ago	Releases 16			

Software from LIP SQAaaS

Quality Assurance as-a-Service platform (SQAaaS)

- Enables the on-demand creation of CI/CD pipelines making quality verification and validation easily accessible to developers.
 - The **Pipeline as a Service** building block allows you to compose and test customized CI/CD pipelines in accordance with reference criteria.
 - The **Quality Assessment & Awarding** building block analyses, the level of compliance to the quality baselines.
- Integrates a wide range of quality verification tools that are made easily available through a friendly web interface.

https://sqaaas.eosc-synergy.eu

SQA baseline dynamic stages	Environment Setup	qc_style o3api	qc_coverage o3api	qc_functional o3api	qc_security o3api	qc_doc o3api	Push Images to Docker Registry	Docker Compose cleanup
14s	5s	1min 43s	23s	1min 50s	10s	1min 14s	7s	55
14s	5s	1min 43s	23s	1min 50s	10s	1min 14s	7s	5s

- HEP is highly compute and data intensive and has very large specific requirements
 - Computing infrastructures and support are both essential and an integral part of HEP activities and they have been extremely beneficial to the wider research community and society.
- The infrastructure capacity for HEP activities requires huge amounts of capacity and human resources
 - Lack of human resources it's playing a key factor on today's deployment even with full service automatization. Use of AI may be a solution for some cases.
- dedicated facilities such as the WLCG are needed across multiple domains and tecnhologies
 - They are very specialized and suitable to other similar uses cases and they provide useful services that can be used by other communities
- Better code development and planning are required in scientific computing
 - Use of methodologies based on good practices reduce programing effort cost

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS partículas e tecnologia

Thanks!

Discovery through science

Innovation through technology

Sharing with People

Users from 53 research units and organisations in 2022

Biomolecular SIMulations Research Group (BioSIM) / UCIBIO Business Research Unit (BRU) / ISCTE Concepção e Desenvolvimento de Sistemas de Informação (CDSI) / ISCTE Centro de Estudos de Doencas Crónicas (CEDOC) / UNL Centro de Engenharia e Tecnologia Naval e Oceânica (CENTEC) / U.Lisboa Centro de Ecologia Evolução e Alterações Ambientais (cE3c) / U.Lisboa Centro de Ecologia Funcional (CEF) / U.C Centro de Física do Porto (CFP) Centro de Investigação em Biomedicina (CBMR) / UALG Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR) / U.Porto Fundação Champalimaud Instituto de Biossistemas e Ciências Integrativas (BioISI) / U.Lisboa Centro de Neurociências e Biologia Celular (CNBC) / U.Coimbra Departamento de Informática / FCUL / U.Lisboa Departamento de Informática / FCT-UNL Departamento de Engenharia Civil / U.Aveiro Departamento de Física / IST / U.Lisboa Departamento de Física / FCUL / U.Lisboa Departamento de Física / U.Minho Departamento de Engenharia Informática / U.Coimbra Departamento de Informática / U.Porto Departamento de Química / U.Aveiro Faculdade de Ciências Sociais e Humanas / UNL Faculdade de Letras / U.Porto Faculdade de Medicina / U.Lisboa Fundação para a Ciência e a Tecnologia - Unidade FCCN (FCT-FCCN) Nova School of Science and Technology (FCT/UNL) Institute for Bioengineering and Biosciences (IBB) / U.Lisboa Instituto de Biologia Experimental e Tecnológica (IBET/ITQB) Instituto de Geografia e Ordenamento do Território (IGOT) / U.Lisboa Instituto de Ciência e Inovação em Engenharia (INEGI) Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento (INESC-ID) Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA) Instituto de Ciências Sociais da Universidade de Lisboa (ICS) / U.Lisboa Instituto de Saúde Ambiental (ISAMB) / U.Lisboa Instituto Tecnologico e Nuclear (ITN) / U.Lisboa Instituto de Plasmas e Fusão Nuclear (IPFN) / U.Lisboa Instituto Superior de Agronomia (ISA) Instituto Superior de Engenharia de Coimbra (ISEC) Instituto Superior de Engenharia de Lisboa (ISEL) Instituto Universitário de Ciências Psicológicas, Sociais e da Vida (ISPA) Júnior Empresas do Instituto Superior Técnico (JUNITEC) Computer Science and Engineering Research Centre (LASIGE) / U.Lisboa Laboratório de Instrumentação e Física Experimental de Partículas (LIP) Laboratório Nacional de Engenharia Civil (LNEC) Nova School of Business and Economics (Nova SBE) / UNL Rede de Química e Tecnologia (REQUIMTE) / UCIBIO Sociedade Portuguesa de Botânica (SPBOTANICA) Universidade Aberta (U.Aberta) Applied Molecular Biosciences Unit / UCIBIO Portuguese node of the Global Biodiversity Network (GBIF) Portuguese Coastal Monitoring Network (CoastNET) Portuguese Biological Data Network (BIODATA.PT)

EuroCC HPC Competence Center

EuroHPC support project (2020-2022-2025)

High Performance Computing National Competence Center in EuroCC.

- Boost European HPC knowledge
- European network of 33 national HPC competence centres (NCCs)
- Bridge the skills gaps and promote cooperation

Areas

- Technology transfer
- Training and skills development
- Awareness and collaboration
- Collaboration with industry
- Access to expertise and knowledge

https://eurocc.fccn.pt / contacto@eurocc.fccn.pt

Software quality

Quality assurance for the EGI middleware distributions for grid (UMD) and cloud (CMD).

• Production

- Manage the EGI software validation process.
- Software validation of products to be released as part of CMD and UMD distributions.
- Automated validation in isolation environments and piloting at selected sites.
- Innovation
 - New streamlined validation process.
 - New repositories with added capabilities.
 - New frontend.

Research data **Repositories**

FCT contract, performed under INCD activities.

Feasibility study for a national catchall data repository aligned with open science and FAIR data principles.

- Leverage EOSC-Synergy work on thematic data repositories and FAIR quality indicators.
- Productization and automation of Dataverse based data repositories.
- Address resiliency, redundancy and data recovery aspects.
- Integration with federated identity e.g. Ciência ID, RCTSaai.
- Integration with permanent identifiers.

Pipeline Needs Jobs (27) T	ests 🔘						
Build	Servicesetup		Servicedestroy	Servicerestart	Checkservices	Pg_autoctl	
	O_Setup_Monitor_node		O_Destroy_Monitor	0_Restart_monitor	O_Check_Monitor	O_Switchover	
	1_Setup_Node1		1_Destroy_Node1	1_Restart_node1	1_Check_Docker_Containers	1_Drop_node1	
	2_Setup_Node2		② 2_Destroy_Node2	2_Restart_node2		2_Drop_node2	
	3_Setup_Node3			3_Restart_node3		3_Drop_node3	
	3_Tuning_Nodes			• 4_Restart_nginx		4_Promote_node1	
	• 4_Setup_Nginx			5_Restart_dataverse		S_Promote_node2	
	5_Setup_Dataverse_01					6_Promote_node3	
	6_Setup_Dataverse_02	\mathbf{b}					

DEEP Hybri<mark>dClouD</mark>

Deep Learning / Machine Learning as a Service Use of specialized hardware: GPUs, Low latency interconnects

Virtualized environments: (µ)Docker, LXD, QEMU/KVM Docker Orchestration: Mesos/Marathon, Kubernetes

ntainers

