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ECONOPHYSICS

e ECONOMICS + PHYSICS (H. E. Stanley, Calcutta,
1995) and appears for the first time in the proceedings
published in Physica A 1996.

« Organization and complex dynamics of financial
markets (scale invariance, systems with self-organized = ™=
criticality) e

PHYSICS OF COMPLEX SYSTEMS




FISICA Y ECONOMIA
LA HISTORIA DE UN “ROMANCE”

Sintesis neoclasica (Hicks: marginalismo y+ keynesianismo)

Principios
1) los individuos tienen preferencias racionales

2) los individuos maximizan utilidad y las empresas ganancia.
3) los individuos actuan independientemente sobre las bases

de informacion completa y relevante.

Equilibrio general
Monetarismo



PHYSICS AND ECONOMY

History of a “love affair”

S. XIX Economy becomes a quantitative science (marginalism)

Economic dynamics in an irrotationl

Price field
VxP=0
oP.  OP;

L——1 j j=1.n Slutsky

oX;  OX

P=VU(X,...,X.)
U=U (xl,___, xn) Utility —quant.

Leon Walras W. S. Jevons

General Equilibrium

L=U(X,...%,) + 2D PXx

Irving Fisher
Zi P X; =Cte. Budget restriction
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STANDARD FINANCIAL MODEL
(Black-Merton-Scholes)

Black-Merton-Scholes model for valuing derivatives

- Efficient and complete market (Fama hypothesis: all information in
the price; informationally efficient markets)

- Formulation of the efficient market hypothesis in terms
of martingales.

- Risk-free (hedging strategy).

- There are no transaction costs.

- All market participants use all options
arbitration (arbitrage-free). ’

- The stochastic process followed by the underlying assets (stocks) H \, .‘M1
It is geometric Brownian motion (price dynamics). l i \ }
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STANDARD FINANCIAL MODEL

(Black-Merton-Scholes)

Black-Merton-Scholes model for valuing derivatives

- Efficient and complete market (Fama hypothesis: all information in
the price; informationally efficient markets)

- Formulation of the efficient market hypothesis in terms
of martingales.

- Risk-free (hedging strategy).

- There are no transaction costs.

- All market participants use all options
arbitration (arbitrage-free).

- The stochastic process followed by the underlying assets (stocks)
It is geometric Brownian motion (price dynamics).
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STANDARD FINANCIAL MODEL

(Black-Merton-Scholes)
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STANDARD FINANCIAL MODEL

(Black-Merton-Scholes)

UNDERLYING STOCK DYNAMICS

Brownian motion

dY (t) = pY (t)dt + g}'(f;
It6 process (v.a. iid)

1Y (1) 5
El_{__g}"l = udt + odz = pdt + o-dt

]

— 1 _ In(Y/Yy) — (n—0?/2)7]”
p(Y.t) = — exp < — —
V2mo?itY 2027




STANDARD FINANCIAL MODEL

(Black-Merton-Scholes)

OPTIONS
o of af 1 .. L, 0*f af .
if(Y.t)=| = -—— + =0)Y T dt + — iz
df (Y.t) (a? + 1} v _20" ¥ E)Y?) dt &)l'rﬂ 1
P AT T R S F Y oya-
dV(t) = — (,u} 5 T T 20 } 5y N'Y )df— (c‘?}' - _\)al d=
) ) 52 N = 0f/0Y S RA R
df Of 1 5 .,0°f . 200 O
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ot %)! 2 dY?

e Parabolic differential equation in linear
partial derivatives of 2nd order o
e Operator structure similar to the Fokker- F¥ 1)
Planck equation (Physics)

or Kolmogorov (Mathematics). ]
e Equation similar to that of diffusion with Nobel Prize (Bank of Sweden), 1997

negative diffusion constant. -Merton/SchoIes

= max (Y — K,0) opcdén de compra (call)

f(Y.T) = max(K —Y.0) opcién de venta (put)
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Fig. 4.7. Time evolution of the price of a European call option as a function of time
before maturity in years. Fixed stock price S = 100, interest rate r = 6%/y, and
volatility ¢ = 30%/,/7 have been assumed. The curves represent different stri
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STANDARD FINANCIAL MODEL

(Black-Merton-Scholes)

Deficiencies of the Black_Merton-Scholes model

- Information asymmetries during

information inputs to the market.

-Investor networks.
-Commissions.

Prob. [Distribution of log returns is not a gaussian] (Shapiro-Wilk)

"
‘J f\‘\;
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Carrete-Varela, 2008, unpublished

O F 20— &% RO B0 T 300
5

-

— ¢ Non-Gaussian stock price returns

e Existence of long-range memory in
time series of prices




STANDARD FINANCIAL MODEL

(Black-Merton-Scholes)

Deficiencies of the Black_Merton-Scholes model
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STANDARD FINANCIAL MODEL

(Black-Merton-Scholes)

Deficiencies of the Black_Merton-Scholes model

Probability distribution of
changes in the S&P500 index.
Comparison with Gaussian
and stable Lévy distributions.
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FLASH CRASH

On 6 May 2010, the market value of the Dow
Jones Industrial Average index fell by 9%,
but recovered in minutes. High-speed trading
algorithms were in part to blame.
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ITrading at the speed of light

To minimize risks, we must learn more about how financial markets
operate at ever faster rates, urges Mark Buchanan.

12 FEBRUARY 2015 | VOL 518 | NATURE | 161

FAST TRADING HOTSPOTS

The speed of light is the ultimate limit to how rapidly trades can be made between financial centres
(®) — it would take signals travelling at this speed 67 milliseconds to travel halfway around the Earth.
The midpoints between exchanges (s) are the best places to site high-frequency trading computers
because they access information from both simultaneously and with the minimum delay.




COMPLEX SYSTEMS

Systems with a very high number of constituent parts that interact with each other in a
non-linear manner, which causes the existence of complex organization and dynamics.

® Existence of correlations: importance of fluctuations (Statistical Mech.)

® Non-linearity: there are no simple cause-effect relationships between elements.

A small stimulus can cause a big effect or none at all. Extreme events. Non-Gaussian
Lévy distributions.

® Scale invariant phenomena: lack of a characteristic scale (criticality, self-organization,
fractality)

® Feedback mechanisms in both amplification and attenuation of effects.

® Open systems.

- Critical phenomena
Applications - Fluid turbulence

- Economy (Econophysics)
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TURBULENT FLUXES IN FLUIDS

P(u:)
R=1.>54
10
10°®
10710
R=2300
Reynolds
number N
R=Iv/h

Pat (AX)

Cascade model: Transfer of energy between
scales of the system.

J. Voit, The Statistical Mechanics of Financial Markets. (Springer-Verlag, Berlin, 2003)

Distribution of changes
in wind speed during 4
s intervals obtained on
the German North Sea
coast. The curve
represents the
Gaussian distribution
with the sample
standard deviation.

Probability density for
variations in the USS/DEM
exchange rate in intervals
of 640, 5120, 40960 and
163840 s (from top to
bottom). Nature 381, 767
(1996).



CRISIS CRITICAS DEL MERCADO:
SISTEMAS JERARQUICOS
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earthquake fitted to a power law with log-
periodic corrections. D. Sornette, C. G.
Sammiis, J. Phys. | (France), 5, 607 (1995).

J. Voit, The Statistical Mechanics of Financial Markets. (Springer-Verlag, Berlin, 2003)



CRISIS CRITICAS DEL MERCADO:
SISTEMAS JERARQUICOS
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ECONOMIC COMPLEXITY: THE ECONOMY AS AN
EVOLVING COMPLEX SYSTEM

Is the economy a complex system?

http://gold.cchem.berkeley.edu/Pictures_and_Images/rugged.gif




ECONOMIC COMPLEXITY: THE ECONOMY AS AN
EVOLVING COMPLEX SYSTEM

Formal description of the structure and dynamics of a complex system

: network formed by agents (vertices) and interactions between them
(connectors).

www-personal.umich.edu/~mejn/networks/



http://www-personal.umich.edu/~mejn/networks/addhealth.gif
http://www-personal.umich.edu/~mejn/networks/contagion.gif
http://www-personal.umich.edu/~mejn/networks/hivgc.gif
http://www.cheswick.com/ches/map/gallery/wired.gif
http://www-personal.umich.edu/~mejn/networks/

ECONOMIC COMPLEXITY: THE ECONOMY AS AN
EVOLVING COMPLEX SYSTEM

Formal description of the structure and dynamics of a complex system

-Theory of complex networks.

- Statistical mechanics of stable processes. Fractals.

- Nonlinear dynamic systems. Chaos theory.

- Statistical Mechanics (phase transitions, self-organized criticality...).
- Thermodynamics of irreversible processes (nonlinear regime).

- Computer simulation.
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COMPLEX NETWORKS

Dynamic processes in complex systems

DYNAMICS: Complex network as a substrate for nonlinear dynamic processes.
Relationship between structure and dynamics of complex networks.

Propagation processes: market penetration
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SIMULATIONS OF FINANCIAL MARKETS

Chaos, Solitons and Fractals 125 (2019) 13-16

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Simulation of a financial market: The possibility of catastrophic
disequilibrium

Amit Sinha?, Philip A. Horvath? Tyler Beason®, Kelly R. Roos¢*

Fig. 2. A 3D plot of p and Dex as a function of time, including the Ds — p phase
space plane, produced using parameter values that were identical to those used to
produce the stable solutions of Fig. 1, but with & equal to 1.05.

Fig. 3. A 3D plot of p and Dex as a function of time, including the Dg — p phase
space plane, from kMC simulations using parameter values that were identical to
those used to produce the stable solutions of Fig. 2.

Check for

Upaates

We have revealed a catastrophic market event, that displays the
clear harbinger of an immanent crash (a dragon-king), by apply-
ing kMC simulations to solve an agent-based model [8-10], thus
revealing extreme behavior that had not been observed in other
solutions. The stochastic nature of the kMC simulation technique
has much potential for broader application in modeling financial
markets. The next important step in this research area, especially
as applied to financial markets, is identification of tangible ob-
servables that can be positively associated with emergent behavior
identified as unstable or, as greatly deviating from normal. For in-
stance, by implementing an appropriate time scale, and identifying
matches between model variables and actual data, the possibility
of catastrophic financial events could be forecast at the daily level,
such as the more than thousand point drop in the Dow Jones In-
dustrial Average on February 5, 2018, the long-term disequilibrium
in asset price leading to a great depression in 1929, or the great
recession in 2008.



POTENTIAL JOBS

QUANTITATIVE ANALYST (STOCK
EXCHANGE)

INSURANCE ACTUARY

DATA ANALYST

RISK AND CRISIS MANAGEMENT
QUALITY AND CONTROL

FINANCES IN GENERAL

- UNIV. FRIBURGO
- UNIV. SILESIA

- CNR
https://wwwold.iac.cnr.it/~filippo/project

s/econophysics.html



https://wwwold.iac.cnr.it/~filippo/projects/econophysics.html
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© Mike Baldain / Cormerad

o Is'o have trouble slee.b_ihg. l ‘a'on’t. .
understand why. No one | talk to seems
to have any trouble falling asleep.”
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