The search for new physics at the energy and lifetime frontiers

John Paul Chou Rutgers University

Thursday, May 23th, 2024

NEWTON

Celestial Gravity

$$
\left\langle \begin{array}{c} \begin{matrix} \mathbf{F} \\ \mathbf{F} \end{matrix} & \begin{matrix} \mathbf{G_N} m_1 m_2 \\ \mathbf{r}^2 \end{matrix} \right\rangle \mathbf{r} \end{array}
$$

Terrestrial Gravity

• In 1797-98, 110 years after Newton published *Principia*, Cavendish performed his famous torsion experiment

• this confirmed the principle of Universal gravitation and determined Newton's constant

HIGGS

$$
S(\phi,A)=\int -\frac{1}{4}F^{\mu\nu}F_{\mu\nu}+|(\partial-iqA)\phi|^2-\lambda(|\phi|^2-\Phi^2)^2.
$$

Search for new physics $-$ J^{PC} – Thursday, May 23rd, 2024

DISCOVERY ~50 YEARS LATER

Search for new physics $-$ J^{PC} – Thursday, May 23rd, 2024

DISCOVERY ~50 YEARS LATER

What are the Big Questions of Particle Physics?

- The standard model of particle physics describes a remarkable range of phenomena
	- The interactions of particles are described by Quantum Field Theory (i.e. Quantum Mechanics + Special Relativity)
- **PARTICLE PHYSICS**

 The standard model of physics describes a rer range of phenomena

 The interactions of parti described by Quantum Theory (i.e. Quantum M

+ Special Relativity)

 Matter and energy, at the level of o • Matter and energy, at the lowest level of organization, is composed of some combination of quarks and leptons interacting via force carrying bosons

FOUR FORCES OF NATURE

PROBLEMS WITHIN THE STANDARD MODEL

- The standard model doesn't explain a lot of things...
	- There are many free parameters (CKM phases, fermion masses)
	- Why is there a generational structure? Why three generations?
	- Why is the top quark so massive?
	- The gravitational force is neglected entirely from the SM
	- No coupling constant unification

THE HIERARCHY PROBLEM

• The SM is really *just an effective theory* which is completed in the UV by a new theory that takes over

- as a fundamental scalar, the Higgs mass acquires quantum mechanical corrections to it's mass, proportional to the matching scale: $m^2h \approx m^2\omega + k\Lambda^2$
	- if the scale is the Planck scale, the corrections are \sim 10³⁴ times larger than the Higgs mass itself \overline{t}

$$
h \dashrightarrow -\dashrightarrow \bigodot_{t} \dashrightarrow -\dashrightarrow h
$$

• The Hierarchy problem, colloquially: "Why is gravity so weak?"

PROBLEMS FROM COSMOLOGY

- Dark Matter
	- From studying microwave background:
		- ~70% of the universe is dark energy
		- ~5% is baryonic matter
		- ~25% is some non-baryonic cold dark matter
	- Confirmation from galactic rotation curves and gravitational lensing
- Baryon (matter/antimatter) Asymmetry
	- More CP violation (and phase transition) need to satisfy Sakharov conditions

SUPERSYMMETRY

- The leading Beyond the SM (BSM) theory
	- provides gauge-coupling unification
	- natural dark matter candidate (if lightest super-particle is neutral and stable)
	- solves the Hierarchy problem
		- Only problem is that we haven't seen it yet..

GLUINO LIMITS

• CMS and ATLAS have together conducted *hundreds* of searches for gluinos, stops, sbottoms, sleptons, electroweakinos, …

MODELS, MODELS, EVERYWHERE…

- Of course, SUSY is just one prominent example of a model
	- There are many other models that can solve some, all, or none of the problems I've already mentioned
		- maybe the most likely model is "not yet thought of"…

SEARCHES FOR NEW PHYSICS

STANDARD MODEL EXCELLENCE

June 2021 **CMS Preliminary**

The Large Hadron Collider

PARTICLE COLLIDERS AS MICROSCOPES

• Wave-particle duality: particles exhibit both particle- and wave-like behavior

Planck's constant wavelength particle particle $\longrightarrow p = \frac{h}{\lambda}$ λ

If you want to probe short length scales, use high momenta particles!

We collide high energy protons to study the smallest length scales (particles)

THE LARGE HADRON COLLIDER

• The LHC is the world's highest energy particle collider

LUMINOSITY AND CROSS SECTION

- Data is quantified by the integrated rate of collisions $\widehat{\mathcal{E}}$ or the luminosity Ю
	- unit of $1/cross section = cm⁻² or inverse-barns,$ where 1 barn = 10^{-24} cm²
- ATLAS and CMS experiments collected ~140 fb-1 data luminosity for analysis in Run 2
- Run 3 proton collisions at higher collision energy of 13.6 TeV have just begin

SCHEDULE

THE CMS EXPERIMENT

Search for new physics $-$ J^{PC} – Thursday, May 23rd, 2024

PARTICLE DETECTION (AT CMS)

- keep
	- Event filtering: the trigger system
- The event trigger is one of the biggest challenges at the LHC
	- Proton beams cross 40 million times per second (every 25 ns)
	- Multiple overlapping proton collisions for every beam crossing
- Interesting collisions are very rare
- **Search for new physics JPC Thursday, May 234, 2024**

Search for new physics JPC Thursday, May 234, 2024

Search for new physics JPC Thursday, May 234, 2024

Search for new physics JPC Thursday, May 234, 20 • We can only record about 1000 per second **Data not selected by trigger are lost forever!**

HADRON COLLIDERS

- Easiest way to achieve high center-of-mass energy is colliding beams of protons or anti-protons
	- heavy, so little synchrotron radiation
	- stable, so can take time accelerating
- But: messy!
	- hadron colliders are really quark/gluon colliders
	- The center of energy of a pp collision is not known
- Transverse momentum (p_T) , rather than momentum itself, characterizes the energy scale of events
- rely on transverse momentum conservation to identify undetected particles

Search for new physics - JPC - Thursday, May 23rd, 2024

ETS

CMS Experiment at LHC, CERN, Data recorded: Fri Oct 5 12:29:33 2012 CEST Run/Event: 204541 / 52508234 Lumi section: 32

• When **quarks and gluons** are produced, they shower and hadronize to form "jets", collimated streams of pions, kaons, protons, etc.

The Mass and Multiplicity Challenges

DIJET RESONANCES

- If a particle can be produced through two quarks (or gluons), it will decay back into them
	- bump-hunt strategy: look for a back-toback dijet resonance on top of a falling background
	- long history of this search dating back to UA2

$$
M^2 = (E_1 + E_2)^2 + (p_1^2 + p_2^2)^2
$$

Search for new physics $-$ J^{PC} – Thursday, May 23rd, 2024

THE MASS CHALLENGE

-
- Focus has historically been on increasing sensitivity to higher masses
	- The trigger constrains the lowest reconstructable invariant mass
	- Is it possible that we missed something along the way?
- The hierarchy problem is an electroweak scale problem: **we should look for solutions at the electroweak scale**

BOOSTED TOPOLOGIES

-
- One technique to find low-mass resonances is to move into a boosted topology
	- Use recoil of another particle (e.g. gluon) to get the event enough total transverse energy that it is recorded by the trigger system
	- But this collimates the massive particle (e.g. Z'), merging its decay products together
		- Use variables dedicated to identifying substructure to distinguish it from other jets

PHOTON/JET ISR

- Use a photon or jet to recoil against the dijet system
	- Scan the mass of the recoiling dijet system

THE MULTIPLICITY CHALLENGE

- Multijet physics is difficult to constrain experimentally, **but it is an easy way to hide an beyond-the-Standard-Model excess**
	- Looks a lot like generic QCD production of jets
	- Monte Carlo simulations are not reliable. How do you predict backgrounds?
- Black Hole search takes scalar sum of pT of all objects in the event and looks for an excess in the tail as a function of the number of objects
	- Notice the search begins at $S_T=2.5$ TeV for N~8

Search for new physics J^{PC} – Thursday, May 23rd, 2024

MOTIVATING LIGHT, LARGE-N JET RESONANCES

• Natural SUSY anticipates light (100-500 GeV) 3rd generation squarks above the **Higgsinos**

• A hadronic R-parity violating coupling would result in squarks decaying into 4 quarks (8 quarks in the final state)

• Let's see if we can't tackle **the most challenging scenario** first: no b quarks, top quarks, soft leptons, or intermediate resonances

EVENT SELECTION

- Look for two high-p_T, large-radius (R=1.2) jets
	- \cdot H_T>900 GeV (to pass trigger threshold)
	- Each jet has substructure (N-subjetiness) consistent with at 4 least for "prongs"
	- Scan in the average mass of the two jets
- Top quark events is a standard candle (3-prong control region):
	- Controls understanding of the jet energy scale and resolution

Search for new physics $-$ J^{PC} – Thursday, May 23rd, 2024

CONSTRAINTS ON 4 AND 5-JET RESONANCES

• Signal region analysis constrains **strong** production of pairproduced resonances decaying into **4 or more objects** as light as 100 GeV! $10⁴$ **CMS** Squark pair production 38.2 fb⁻¹ (13 TeV)

The Lifetime Challenge

• Common Mechanisms

LONG-LIVED PARTICLES IN THE SM

- Approximate symmetry muon • Heavy mediator (2 μs) • compressed phase space v_e • small couplings neutron W^+ (15 mins) b-quarks D/D^* \boldsymbol{B} W^{\cdot} $(\sim$ ps) \boldsymbol{q}
	- The same mechanisms that give rise to long-lived particles in the SM can also result in such particles in BSM theories
	- Finding these particles at the LHC requires us to use the detectors—that were designed largely with ~prompt physics in mind—in novel ways

MANY EXPERIMENTS

• The last 8 years has seen a renaissance of new detector proposals to look for long-lived particles at the LHC

SND@ LHC $CODEX-b$ SHil ANUBIS-A **FACET**

• Vastly different sensitivities as a function of mass and lifetime

MATHUSLA

- **MA**ssive **T**iming **H**odoscope for **U**ltra-**S**table **N**eutra**L** P**A**rticles
- MATHUSLA is a dedicated detector for long-lived particles
	- Designed to have applicability across a broad range of potential final states
	- Conceptually simple: build a big empty box with trackers on CERN-owned land near CMS
		- LLPs that decay inside will be reconstructed as displaced vertices
		- Backgrounds can be ~O(1) because 80+ m rock shielding suppresses IP backgrounds and 4D tracking from ~ns timing are distinct criteria for signal identification

MATHUSLA COLLABORATION

- International collaboration including members & institutions from US, Canada, Chile, Bolivia, Mexico, Italy, Switzerland, …
	- TDR draft to be released in the coming weeks
	- Begin MATHUSLA operation with HL-LHC!
- Physics justification detailed in ~200 page report [1806.07396]

A Letter of Intent for MATHUSLA: a dedicated displaced vertex detector above ATLAS or CMS 1811.00927 LHCC-I-031

Cristiano Alpigiani,^a Austin Ball,^o Liron Barak,^c James Beacham,^{ah} Yan Benhammo,^c Tingting Cao,^c Paolo Camarri, f,g Roberto Cardarelli, f Mario Rodríguez-Cahuantzi, h John Paul Chou,^d David Curtin,^b Miriam Diamond,^e Giuseppe Di Sciascio,^f Marco Drewes,^x Sarah C. Eno,^u Erez Etzion,^c Rouven Essig,^q Jared Evans,^v Oliver Fischer,^w Stefano Giagu, ^k Brandon Gomes, d Andy Haas, l Yuekun Heng, ϵ Giuseppe laselli, $a\alpha$ Ken Johns,^{*m*} Muge Karagoz,^{*u*} Luke Kasper,^{*d*} Audrey Kvam,^{*a*} Dragoslav Lazic,^{*ae*} Liang $\mathsf{Li},^{af}$ Barbara Liberti, f Zhen Liu, ^y Henry Lubatti, a Giovanni Marsella, n Matthew McCullough, ^o David McKeen,^p Patrick Meade,^q Gilad Mizrachi, ^c David Morrissey,^p Meny Raviv Moshe, CKaren Salomé Caballero-Mora, Piter A. Paye Mamani, ab Antonio Policicchio, k Mason Proffitt, a Marina Reggiani-Guzzo, ad Joe Rothberg, a Rinaldo Santonico, f.g Marco Schioppa, ag Jessie Shelton, f Brian Shuve, s Martin A. Subieta Vasquez,^{ab} Daniel Stolarski," Albert de Roeck,^o Arturo Fernández Téllez,^h Guillermo Tejeda Muñoz,^{h} Mario Iván Martínez Hernández, h Yiftah Silver,^{c} Steffie Ann Thayil, d Emma Torro,^a Yuhsin Tsai,^a Juan Carlos Arteaga-Velázquez,^a Gordon Watts,^a Charles Young, e Jose Zurita. w, ac

Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case

1806.07396

Search for new physics $-$ J^{PC} – Thursday, May 23rd, 2024

DESIGN PRINCIPLES

- In the long lifetime regime > 100m, MATHUSLA has roughly same chance of "catching" an LLP decay in its decay volume as the main detectors
	- Greater depth of decay volume compensates for smaller solid angle coverage
	- For LLP searches, MATHUSLA's greater sensitivity than ATLAS/CMS is due to
		- near-zero backgrounds
		- no trigger limitations
- Therefore, MATHUSLA will beat the main detectors for LLP signals where main detector searches are significantly impeded by background and trigger considerations (up to 1000x better reach)
- Targets (in order of priority)
	- Hadronically decaying LLPs from few GeV to TeV
	- LLPs with mass < few GeV (any decay mode)
	- Cosmic Ray Physics

9.5 ns 13.0 ns

TEST STAND RESULTS

• Test stand operated above ATLAS in 2018 — combination of plastic scintillator and RPCs

6.4 ns

1.6 ns

-0.4 ns

-4.8 ns

-3.6 ns

-9.5 ns

• Both downward and upward rates/ angular distributions well predicted by simulation O(~10%)

10

[NIM A (2020) 164661]

Downward data

15

 \Box Downward cosmic ray simulation

20

25

Zenith angle [°]

CONCLUSIONS

- The LHC is performing marvelously
	- We are just well into a new run at 13.6 TeV that will integrate ~400 fb-1 of data
		- Any discovery of new physics, whether it addresses the problems I mentioned at the beginning or not, will bring with it a whole host of questions:
			- How does it relate to the other particles of the Standard Model?
			- Does it solve the dark matter problem? The Hierarchy problem? Something else? Who ordered it?
- Whatever happens, the next decade promises to be a challenging and exciting time in particle physics