

"Measurement of the pp inelastic cross section using pile-up events with the CMS detector"

How to use annoying pile-up events to your advantage

Analysis technique

The probability of having n_{pileup} depends only on the total $\sigma(pp)$ cross section:

$$
P\left(n_{Pileup}\right)=\begin{array}{c} (L^*\sigma)^{n_pileup}\ast e^{-(L^*\sigma)}\\[2mm] n_{pileup}! \end{array}
$$

If we count the number of pile-up events as a function of luminosity, we can measure $\sigma(pp)$.

For an accurate measurement we need a large luminosity interval.

- 1. Acquire the bunch crossing using a primary event: the bunch crossing is recorded because there was an event that fired the trigger. We don't use this primary event, we only use it to record the bunch crossing
- 2. Count the number of pile-up events: for any give bunch crossing, we count the number of vertices in the event.
- 3. Correct the number of visible vertices for various effects: vertex merging, vertex splitting, real secondary vertices…
- 4. Fit the probability of having $n = 0, \ldots 8$ pile-up events as a function of luminosity: using a Poisson fit, we obtain 9 values of $\sigma(pp)_{n}$
- 5. Fit the 9 values together: from $\sigma(pp)$ _n we obtain $\sigma(pp)$

LHC is doing really well, it has reached a record instantaneous luminosity of $1.7*10^{33}$ cm⁻² s⁻¹. However for this study the important parameter it the instantaneous luminosity per bunch (currently 1080 bunches)

We studied events with:

0-8 pile-up events

and

luminosity range $0 - 0.7 10^{30}$ cm⁻² s⁻¹

(2010 data taking period)

We studied events with 0-8 pile-up events (non enough statistics to go further)

Vertex reconstruction

The goal of the analysis is to count the number of pile-up events as a function of luminosity. This means we need to count vertices.

To minimize correction, we use only vertices with 3 or more tracks

June $6th$, 2011 \overline{N} . Cartiglia 7

Vertex requirements

Position along the beam line:

Quality cut:

At least 3 tracks with p_t > 200 MeV in $|eta|$ < 2.4.

Each track should have at least 2 pixel hits and 5 strip hits The vertex should pass an overall quality cut, NDOF > 0.5

June $6th$, 2011 $\qquad \qquad \frac{N. \text{ Cartiglia}}{3}$

Vertex merging and secondary vertices

Summed Track Multiplicity

Vertex merging:

When two vertexes overlap they are merged into a single one. This blind distance is ~ 0.06 cm

Secondary vertices:

- 1. Fakes from the reconstruction program
- 2. Real non prompt decay

Both reduced by the request on the transverse position cut

Most evident at low track multiplicity

June $6th$, 2011 $\qquad \qquad \frac{N. \text{ Cartiglia}}{9}$

Simulation - I

This analysis uses only the simulation of the vertex efficiency, which does not depend on the specific physics model

Simulation- III: Does this idea work?

We have done the analysis using simulated events as real data:

- 1. We impose a Monte Carlo total inelastic cross section (64 mb)
- 2. At generation the fraction of events with 3 tracks, |eta|<2.4: 56.3 mb (88%)

Data: uncorrected distributions

Given the very good CMS vertex efficiency, good fits even without corrections

Fitted Cross Section

Each fit provides an estimate of the cross section. The fit to these 9 values gives the final value:

 $σ(pp) = 56.4 mb$ (3 charged particles with p_f > 200 MeV in $|eta|$ < 2.4)

ξ (ξ = M_x^2/s) interval:

Main Systematic Errors

Luminosity: The CMS luminosity value is known with a precision of 4% : $\Delta\sigma = 2.4$ mb

Analysis:

Use a different set of primary events (single mu or double electron): $\Delta \sigma = 0.9$ mb Change the fit limit by 0.05 : $\Delta\sigma = 0.3$ mb Change the minimum distance between vertices $(0.06 - 0.2 \text{ cm})$: $\Delta \sigma = 0.3 \text{ mb}$ Change the vertex quality requirement NDOF $(0.5 - 2)$ & Trans. cut: $\Delta \sigma = 1.4$ mb Use an analytic method instead of a MC: $\Delta\sigma = 1.5$ mb

 $\sigma(pp) = 56.4 \pm 2.4$ (Syst) ± 2.4 (Lum) mb

(3 charged particles with pt>200 MeV in |eta|< 2.4)

Using the same technique we measured 3 different cross sections:

- 3 charged particles with $pt > 200$ MeV in $|eta| < 2.4$ $\sigma(pp) = 56.4 \pm 2.4$ (Syst) ± 2.4 (Lum) mb
- 3 charged particles with $pt > 250$ MeV in $|eta| < 2.4$ $\sigma(pp) = 54.9 \pm 2.4$ (Syst) ± 2.4 (Lum) mb
- 3 particles with $pt > 200$ MeV in $|eta| < 2.4$ $\sigma(pp) = 59.7 \pm 2.4$ (Syst) ± 2.4 (Lum) mb (already shown at DIS 2011)

Comparison with Models and Extrapolation to σ_{inel} (pp)

We compared to several models and we defined a range of values for the extrapolation factor to go from the measured values to the total cross inelastic cross section: $f = 1.18 \pm 0.06$

$$
\sigma_{inel} (pp) = 63 - 70 mb
$$

Summary

We have developed a new method to measure the inelastic pp cross section The value that we obtain for 3 tracks, $|eta| < 2.4$ and $p_t > 200$ MeV is:

 $\sigma = 56.4 \pm 2.4$ (Sys) ± 2.4 (Lum) mb

Systematic checks show that the largest uncertainty derives from the luminosity measurement.

Using Monte Carlo - driven extrapolations we obtain a value for the total inelastic pp cross section in the range:

 σ_{inel} (pp) = 63 – 70 mb (Model dependent!!)