Universality of unintegrated gluon distributions at small-*x*

Fabio Dominguez in collaboration with C. Marquet, B. Xiao and F. Yuan

Columbia University

Low *x* Workshop, Santiago de Compostela June 4th, 2011

1

Factorization at Small x

• Resummation of multiple scatterings

- Particle production is sensitive to transverse momentum of partons in the nucleus
- Dense dilute systems

Two Different Gluon Distributions at Small-x

- Weizsäcker-Williams distribution
 - Explictly counts number of gluons in a physical gauge
- Fourier transform of dipole cross section
 - Widely used in k_t-factorized formulas for inclusive processes
 - Does not admit partonic interpretation

Weizsäcker-Williams Distribution

Can be calculated in specific models

- McLerran-Venugopalan
- Kovchegov-Mueller

- No such colorless current available in the lab
- Consider two-jet events in DIS
- Make separation between quark and antiquark small by taking correlation limit
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon

- No such colorless current available in the lab
- Consider two-jet events in DIS
- Make separation between quark and antiquark small by taking correlation limit
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon

- No such colorless current available in the lab
- Consider two-jet events in DIS
- Make separation between quark and antiquark small by taking correlation limit
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon

- No such colorless current available in the lab
- Consider two-jet events in DIS
- Make separation between quark and antiquark small by taking correlation limit
- Singlet pair looks like a colorless object
- Octet pair looks like a gluon

Dijet in DIS

$$\begin{split} \frac{d\sigma^{\gamma_T^*A \to q\bar{q}X}}{d^3k_1d^3k_2} &= N_c\alpha_{em}e_q^2\delta(p^+ - k_1^+ - k_2^+) \int \frac{d^2x}{(2\pi)^2} \frac{d^2x'}{(2\pi)^2} \frac{d^2b}{(2\pi)^2} \frac{d^2b'}{(2\pi)^2} \\ &\times e^{-ik_{1\perp}\cdot(x-x')} e^{-ik_{2\perp}\cdot(b-b')} \sum \psi_T^*(x-b)\psi_T(x'-b') \\ &\times \left[1 + \underbrace{Q_{x_g}(x,b;b',x') - S_{x_g}^{(2)}(x,b) - S_{x_g}^{(2)}(b',x')}\right] \end{split}$$

$$Q_{x_g}(x,b;b',x') = \frac{1}{N_c} \left\langle \mathsf{Tr} U(b) U^{\dagger}(b') U(x') U^{\dagger}(x) \right\rangle_{x_g} \qquad S_{x_g}^{(2)}(x,b) = \frac{1}{N_c} \left\langle \mathsf{Tr} U(b) U^{\dagger}(x) \right\rangle_{x_g}$$

Dijet in DIS

$$\frac{d\sigma^{\gamma_T^*A \to q\bar{q} + X}}{dv_1 dv_2 d^2 P_\perp d^2 q_\perp} = \delta(x_{\gamma^*} - 1) x_g G^{(1)}(x_g, q_\perp) H_{\gamma_T^*g \to q\bar{q}}$$

Weizsäcker-Williams gluon distribution

$$x_g G^{(1)}(x_g, q_{\perp}) = -\frac{2}{\alpha_S} \int \frac{d^2 v}{(2\pi)^2} \frac{d^2 v'}{(2\pi)^2} e^{-iq_{\perp} \cdot (v - v')} \times \left\langle \text{Tr} \left[\partial_i U(v) \right] U^{\dagger}(v') \left[\partial_i U(v') \right] U^{\dagger}(v) \right\rangle_{x}$$

Photon Emission in pA Collisions

$$\begin{split} \frac{d\sigma^{qA\to q\gamma X}}{d^3k_1d^3k_2} &= \alpha_{em}e_q^2\delta(p^+ - k_1^+ - k_2^+) \int \frac{d^2x}{(2\pi)^2} \frac{d^2x'}{(2\pi)^2} \frac{d^2b}{(2\pi)^2} \frac{d^2b'}{(2\pi)^2} \\ &\times e^{-ik_{1\perp}\cdot(x-x')} e^{-ik_{2\perp}\cdot(b-b')} \sum \psi^*(x-b)\psi(x'-b') \\ &\times \left[S_{x_g}^{(2)}(b,b') + S_{x_g}^{(2)}(zx+(1-z)b,zx'+(1-z)b') \right. \\ &\left. - S_{x_g}^{(2)}(b,zx'+(1-z)b') - S_{x_g}^{(2)}(zx+(1-z)b,b') \right] \end{split}$$

Photon Emission in pA Collisions

 The gluon distribution involved is the Fourier transform of the dipole cross section

$$\frac{d\sigma^{(pA\to\gamma q+X)}}{dy_1 dy_2 d^2 P_{\perp} d^2 q_{\perp}} = \sum_f x_1 q(x_1) x_g G^{(2)}(x_g, q_{\perp}) H_{qg\to\gamma q}$$
$$x_g G^{(2)}(x_g, q_{\perp}) = \frac{q_{\perp}^2 N_c}{2\pi^2 \alpha_c} S_{\perp} \int \frac{d^2 r_{\perp}}{(2\pi)^2} e^{-iq_{\perp} \cdot r_{\perp}} S_{x_g}^{(2)}(0, r_{\perp})$$

Dijet in pA Collisions, Quark Initiated

- Consider separately hard scattering in each part of the diagram
- When hard scattering hits the $q\bar{q}$ pair the WW distribution has to be convoluted with the multiple scattering of the quark line

$$\frac{d\sigma^{(pA\to qgX)}}{dy_1 dy_2 d^2 P_\perp d^2 q_\perp} = \sum_{q} x_p q(x_p) \frac{\alpha_s^2}{\hat{s}^2} \left[\mathcal{F}_{qg}^{(1)} H_{qg\to qg}^{(1)} + \mathcal{F}_{qg}^{(2)} H_{qg\to qg}^{(2)} \right]$$

Dijet in pA Collisions, Gluon Initiated

 Two different terms corresponding to different hookings of the hard scattering

$$\frac{d\sigma^{(pA\to q\bar{q}X)}}{dy_1 dy_2 d^2 P_\perp d^2 q_\perp} = \sum_f x_p g(x_p) \frac{\alpha_s^2}{\hat{s}^2} \left[\mathcal{F}_{gg}^{(1)} H_{gg\to q\bar{q}}^{(1)} + \mathcal{F}_{gg}^{(2)} H_{gg\to q\bar{q}}^{(2)} \right]$$

Dijet in pA Collisions, Gluon Initiated

 Same as previous case + term with WW convoluted with two quark scatterings

$$\frac{d\sigma^{(pA\to ggX)}}{dy_1 dy_2 d^2 P_{\perp} d^2 q_{\perp}} = \sum_f x_p g(x_p) \frac{\alpha_s^2}{\hat{s}^2} \left[\mathcal{F}_{gg}^{(1)} H_{gg\to gg}^{(1)} + \mathcal{F}_{gg}^{(2)} H_{gg\to gg}^{(2)} + \mathcal{F}_{gg}^{(2)} H_{gg\to gg}^{(2)} \right] + \mathcal{F}_{gg}^{(3)} H_{gg\to gg}^{(3)}$$

Conclusions

- A way of measuring the Weizsäcker-Williams distribution is proposed
- Different gluon distributions can be probed in different experiments
- Gluon distributions for more complicated processes can be built as convolutions of two basic universal blocks

Gauge Link Structure

Weizsäcker-Williams distribution

$$xG^{(1)}(x,k_{\perp}) = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}}$$

$$\times \langle P|\text{Tr}\left[F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}\right]|P\rangle$$

Fourier transform of dipole cross section

$$xG^{(2)}(x,k_{\perp}) = 2 \int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-} - ik_{\perp} \cdot \xi_{\perp}}$$

$$\times \langle P|\text{Tr}\left[F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}\right]|P\rangle$$

Correlation Limit

- Change variables:
 - Momentum variables

$$q_{\perp} = k_{1\perp} + k_{2\perp}$$
 $P_{\perp} = (1 - z)k_{1\perp} - zk_{2\perp}$

Coordinate variables

$$v = zx + (1 - z)b \qquad u = x - b$$

- Take $P_{\perp} \gg q_{\perp}$
- In Fourier transform take the leading term in expansion in terms of u and u'
- One hard scattering (sensitive to the inner structure) + multiple softer scatterings (u = u' = 0)

Comparison of Two Gluon Distributions

- Weizsäcker-Williams
- Dipole