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1. Introduction to DIS

A. Deep-inelastic scattering cross-section:
o~ LI FHY
Hadron part F* (Q% = —¢° > 0, z = Q?/[2(pq)]):

]
thﬁwqj>@Q%
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where Fj.(z,Q%) (k = 1,2,3,L) - are DIS SF and ¢ and p are

photon and hadron (parton) momentums.



B. Wilson operator expansion: Mellin moments M;.(n, Q%) of
DIS SF Fi.(x, Q%) can be represented as sum

Min @)= xR Qi) Aaln. i)
=20 5.0 “Coeff. function

where Ay (n, p1?) =< N[O}, ..., |N > are matrix elements of the
a

M1 5s8n”

Wilson operators O



C. The matrix elements Ay (n, 1i2) are Mellin moments of the
unpolarized PD f,(n, 1i?).
DGLAP [: Renormgroup| equations:

T1n nga<f’f Q) = 1C§JyZWb—>a(5’7/y) foy, Q7). (1)

The anomalous dimensions (AD) v,;(n) of the twist-2 Wilson
(hereafter as = ag/(47))

operators O/ﬂ, e

(m) m

1 00
Yap(n) = /O do 2" Wi—alz) = mZ:O Vab (n)ag’,
All parton densities are multiplies by z, t.e.

structure function = combination of parton densities.



3. Method

(C.Lopez and F.J.Yndurain, 1980,1981), (A.V.K., 1994)
Here | present briefly the method, which leads to the possibility

to replace the Mellin convolution of two functions

f@)® fole) = f) C;yf1(y)f2($/y)

by a simple products at small z.



A. So, if fi(z) = Bi(x, Q) is perturbatively calculated Wilson
kernel and fo(z) = 2 fu(z, Q%) ~ 27 at £ — 0, then

fi(z) ® folz) ~ Mi(1+6,Q%) fo(z) 2)

where M;.(1 4 9, Qz) is the analytical continuation to non-integer
arguments of the Mellin moment M. (n, Q?) of Bi(x, Q?):

Mip(n,Q%) = ff 2" *By(z, Q?) (3)

The equation (2) is correct if the moment M;.(n, Q%) has no

singularity at n — 1.



B. The general case

(M(n) contains the singularity at n — 1):

the form of subasymptotics of fo(x) starts to be important.
Let PD have the different forms:

o Regge-like form z fp(z) = 70 f(x),
o Logarithmic-like form z f7 (z) = 2 %In(1/z) f(x),
o Bessel-like form = f7(x) = 2 1,(2,dIn(1/z)) f(x),

where f(z) and its derivative f/(z) = df(x)/dz are smooth at

x = 0 and both are equal to zero at z = 1:




Then (i = R, L, I)

file) ® folx) = Myp(1+6;,Q°) fol),
where Ml+(5i — M5 with 1/§ — 1/6;.

Regge-like behavior:

['(1—6)I(v)
Nl4v—20)]
where zfp(x) ~ (1 —z)Y at z — 1.

1/0p = 1/6 |1 —a°

The second term comes from low part of convolution

integral

f@)® fola) = Y Y fifa /) falo) (4)



So,
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— = — if :135<<1
Sp 0
and
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Analogously, for nonRegge behavior at 0 — 0

1 1.1
SLZZm +O(1/In(1/z)),

1 Jln(l/x I 1(20din(1/z))
J d JCZ (1/x))



3. Double-logarithmic approach

(A.V.K. and G.Parente, 1998),
(A.Yu.lllarionov, A.V.K. and G.Parente, 2004)

1 Leading order without quarks (a pedagogical example)

At the momentum space, the solution of the DGLAP equation in

this case has the form
My(n, Q%) = Mgy(n,Qf)eor)5,

where M (n, Q?) are the moments of the gluon distribution,

(@} ) as(@) )
s=In (02)] a(Q?) = e and dgg_Zﬁo

The terms fyg;)(n) and (3 are respectively the LO coefficients of

the gluon-gluon AD and the QCD S-function.



For any perturbatively calculable variable QQ(n), it is very conve-
nient to separate the singular part when n — 1 (denoted by “Q")

and the regular part (marked as “Q"):

Qn) = +Q(n)

—

Q

n—1

Then, the above equation can be represented by the form
My(n, Q%) = My(n, Q3)e das3r0/(n=1)=dgg(m)sro
with Y45 = —=8C'4 and Cy = N for SU(NN) group.

Finally, if one takes the flat boundary conditions

Aq

xfa(%@%) = Aa, —  Ma(n, Q%) | ()




1.1 Classical double-logarithmic case (d,,(n) = 0)

(A.D.Rujula, S.L.Glashow, H.D.Politzer, S.B.Treiman, F.Wilczek
and A.Zee, 1974)

Then, expanding the second exponential in the above equation
k

dyas10)
vl o2 4, 1 (—dggsL0
g (n, Q%) = kzo k! (n — 1)]‘“1

and using the Mellin transformation for (ln(l/x))k:

k!
b dec"in(1/2))" = v

we immediately obtain the well known double-logarithmic behavior

1 - k
fil@, Q%) = Ag > m(=dggsio) (In(1/2)" = Aglloro),
where Iy(o7,0) is the modified Bessel function with argument o, =

QJCZggsLOln(x). (R.D.Ball and S.Forte, 1994),




1.2 The more general case

For a regular kernel K'(x), having Mellin moment

(nonsingular at n — 1)

K(n) = [ dea"°K(z)

and the PD f,(x) in the form ]V(Jciln(l/x)) we have the following

equation

AN

d
In(1/x)

K(x) ® falz) = K(1)fa(z) + O )



So, one can find the general solution for the LO gluon density

without the influence of quarks

folw,@%) = Agly(oole 9510 4 O(prp),
where (R.D.Ball and S.Forte, 1994)

nggsLO 9LO (0) 4
= = Yoq (1) =224 =
PLO= “iniw) ~ n(1/e) 0 e =224 57
and if

with f as the number of active quarks.



2 Leading order (complete)

At the momentum space, the solution of the DGLAP equation at
LO has the form (after diagonalization)

Ma(n, Q%) = M (n, Q%) + M, (n,Q°) and
MiE(n, Q%) = MeE(n, Qe = pgEemdes/ (n=T)edeln)s

)

where
Tt ()
My (n, Q%) = e(n)My(n,Q%),  dg = "%,
2050

1

5[(%9(”) + dgq(n))

£ (dgg(n) — dgq(n)) 11+ ;

L, dag) = dggln)
) = ) =50 L

d+(n) =




+ . dab(”) a
5ab(n> — di(ﬂ) _ d;(n)( a b)

As the singular (when n — 1) part of the + component of the
anomalous dimension is Il d} = dgg = —4C4/B) 1! while
the — component does not exist: !l ( I = 0) !l | we consider

below both cases separately.



2.1 The “+” component

The analysis of the “+" component is practically identical to the

case studied before. The only difference lies in the appearance of

new terms 3 (n) 11l . If they are expanded in the vicinity of n = 1
in the form ¢ (n) = gl + (n — 1)&f;, Il then for the terms
e multiplying Mp(n, %), we have the same results as in previous
section:
/\/l_ —d (1
My Q%) o e AyTy(oro)e” O+ O(pp0),

where the symbol —— M— denotes the inverse Mellin transformation.
The values of o and p coincide with those defined in the previous

section because d = dgg.



The terms &, that come with the additional factor (n — 1) in
front, lead to the following results
k

~ Ab —d _ ~ 0 1(_CZ-I—SLO>
— 1\&r +spo/(n=1) _ z+ 4,
(n—1) ‘ b 20 (n— 1)
M1 oo 1 1

A k _
= e S e i desro) (1)t

= e Avrohoro),

i.e. the additional factor (n — 1) in momentum space leads to

replacing the Bessel function Iy(o7,0) by proli(or0) in z-space.
Thus, we obtain that the term £, (n)M;(n, Q?) leads to the

following contribution in x space !l :

€5 lo(o10) + Ehproli(oro) Ape” L0+ O(pr o)



Because the Bessel function [,,(o) has the v-independent asymp-
totic behavior !l €7/ /0 at 0 — oo (i.e. ©* — 0), the second
term is O(p) and must be kept only ! when &, = 0. This is the
case for the quark distribution at the LO approximation.

Using the concrete AD values, one has

f;(I,QQ) — ( g‘|‘4A )[O(O'LO> _aJr(l)SLO + O(pLO) and

@) = L4y + L Agprohioro)e M0 1 0o

where d (1) = 1 + 20f/(27ﬁ0).



2.2 the “—” component

In this case the anomalous dimension is regular !/l and one has
e ap(n) Ae =5 MO oo () 4yed-(s10 1 O(a)
Using the concrete AD values !l | we have
fiy (@,Q%) = — A =1%10 1 O(z) anc
Iy (@,@Q%) = Age™ (V10 4 Ofa),
where d_(1) = 16f/(2703)).



Finally we present the full small x asymptotic results for PD and

F5 structure function at LO of perturbation theory:

falz,Q%) = £5(x, Q%) + fi (2,Q%) and
FQ(Ia Q2> — €~ fC](Z7 QQ)

where f;,f;, fq and f, were already given before and e =
[ 2

=1 €7/ f is the average charge square of the f active quarks.

Extension to NLO is trivial and can be found in (A.V.K. and
G.Parente, 1998)



So, we resume the steps we have followed to reach the small z

approximate solution of DGLAP shown above:

e Use the n-space exact solution.

e Expand the perturbatively calculated parts (AD and coefficient

functions) in the vicinity of the point n = 1.

e The singular part with the form
Agln — 1)k6—OZSLO/(n—1>

leads to Bessel functions in the z-space in the form

. (k+1)/2
Aa(dSL())

Inx

I 41(2ydspolne)




e The regular part B(n)exp (—d(n)syo) leads to the additional

coefficient

B(exp(~d(1)s10) + Olydso/In)

behind of the Bessel function !l in the x-space. Because
the accuracy is O(JCZSLO/lnm), it is necessary to use only the
first nonzero term Il | ie. all terms (n — 1)* in front of

exp (—d/(n — 1)), with the exception of one with the smaller k

value, can be neglected.

o |f the singular part at n — 1 is absent, i.e. d = 0, the re-
sult in the x-space is determined by B(1)exp(—d(1)sy) with
accuracy O(x).



4. Fits of HERA data

At low x, the structure function Fh(z, Q?) is related to parton
densities as (A.V.K. and G.Parente, 1998)

at LO

Pyl Q%) = 1L fule, QP
at NLO
f

Py(z, Q%) = fq<:ccz> +as(Q7) fol, Q%))

Fits of HERA experimental data of the structure function F5(z, Q?)
(A.Yu.lllarionov, A.V.K. and G.Parente, 2004)
Il Only two parameters: A, and A,

Agcp cannon be extract in small x Physics.
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5. Analytical and “frozen” coupling constants

Two modifications of the coupling constant (G.Cvetic,
A.Yu.lllarinov, B.A. Kniehl, and A.V.Kotikov, 2009)
A. More phenomenological.
(G.Curci, M.Greco and Y.Sristava, 1979), (M.Greco, G. Penso and
Y.Sristava, 1980), (N.N.Nikolaev and B.M.Zakharov, 1991,1992),
(B.Badelek,J.Kwiecinski and A.Stasto, 1997), (A.M.Badalian and
Yu.A.Simonov, 1997)
We introduce freezing of the coupling constant by changing its
argument Q? — Q2 + ]\4p2 where M, is sually the p-meson mass.
Thus, in the formulae of the previous Sections we should do the

following replacement

as(Q%) = ap(Q7) = as(Q” + M) (6)



B. Theoretical approach.
Incorporates the Shirkov-Solovtsov idea (D.V.Shirkov and L.I.Solovtsov,

1997), about analyticity of the coupling constant that leads to the
additional its power dependence.

(K.A.Milton, A.V. Nesterenko, O.Solovtsova, G. Svetic, C. Valen-
zuela, I. Schmidt, O. Teryaev, N. Stefanis, A. Bakulev, S. Mikhailov,

)



Then, in the formulae of the previous Section the coupling con-

stant as(Q?) should be replaced as follows

EOQP) = auf@?) — - Mo (7)
o T R - Mo
at the LO approximation and
) 5o 1 A
aan(Q°) = as(Q°) — 26002 — A2 — . (8)

at the NLO approximation, where the symbol ... marks numerically

small terms.



Table 1: The result of the LO and NLO fits to H1 and ZEUS data for different low Q? cuts. In the fits f is fixed to 4 flavors.

‘ H A, ‘ A, ‘ Q3 [GeVQ] H X2 /n.o.p. ‘

Q? > 1.5GeV?

LO 0.7844.016 | 0.801+£.019 | 0.3044.003 754/609
LO&an. 0.9324.017 | 0.707+£.020 | 0.3394.003 632/609
LO&Sr. 1.0224.018 | 0.650+.020 | 0.356+.003 547/609
NLO -0.200+.011 | 0.903+£.021 | 0.495+.006 798/609
NLO&an. 0.310£.013 | 0.6404.022 | 0.702+.008 655/609
NLO&fr. 0.1804.012 | 0.780+£.022 | 0.6614.007 669/609
Q? > 0.5GeV?

LO 0.6414.010 | 0.937+£.012 | 0.2954.003 1090/662
LO&an. 0.846+.010 | 0.771+£.013 | 0.3284.003 803/662
LO&Sr. 1.1274.011 | 0.534+.015 | 0.358+.003 679/662
NLO -0.192+.006 | 1.087+.012 | 0.478+.006 1229/662
NLO&an. 0.281+.008 | 0.6344+.016 | 0.680+.007 633/662
NLO&fr. 0.205+.007 | 0.6504.016 | 0.589+.006 670/662

e Usage of the analytical and “frozen” coupling constants leads

to improvement with data:  \~ decreased twicely

e Really, no difference between results based on the analytical and

“frozen” coupling constants.

Il One example of application the analytical and “frozen” cou-

pling constants: (A.V.Kotikov, A.V.Lipatov and N.P.Zotov, 2004)



The results for F5 and for the slope of the SF F5
The double-logarithmic behaviour can mimic a power law shape

over a limited region of =, Q2.

fal@, Q) ~ e N @) and Fy(z, Q) ~ A (00D
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6. Cross section of neutrino-nucleon scattering at high energy

(A.Yu.lllarinov, B.A. Kniehl, and A.V.Kotikov, 2011)
Charged-current (CC) and neutral-current (NC) DIS processes:

v(k)+ N(P) — (k) + X,
v(k)+ N(P) — v(k') + X, (9)

N = (p+ n)/2 denotes an isoscalar nucleon target of mass M.

Familiar kinematic variables

Q? q-P
= 10
2q-P’y k.P7 ( >

s=(k+P) Q" =-¢, x=

where ¢ =k — k.
In the target rest frame, we have s = M (2F, + M) and xy =
Q*/2MEy).



Inclusive spin-averaged double-differential cross sections:

dQOZ'VN GQF’MEV M‘Q/ : vIN

dx dy o Q% + M‘Z/ Ky)F™, (1)
where 1 = CC,NC; V =W, Z,
G is Fermi's constant, K (y) = 2 — 2y + y°.
Koo =1, Kxo = 1/2 — 24 + (10/9)22,, where 2,y = sin® 0,
with 6, being the weak mixing angle. Using x,, = 0.231, we have
Kyne = 0.328.
The contributions due to the structure functions F¥" and F¥

K;

to the r.h.s. of Eq. (11) are negligibly small.



Impose the lower cut-off Q% on (%

1 dr d2a?N
N OME 21 ;
- — v A 12
o (Ev) QMEV/Q% Q™ T drdy’ (12)
where & = Q?/(2ME,)).
N G% . oME, .o M ’
o (Bv) = Kilgy @ Q2+ M¢
dx €T :
1 7 2
~—K |—| F . 13
X €T T T 2(1;7@ ) ( )

The inner integral can be rewritten as the Mellin convolution
x Nz M2
K(z) ® Fy™ (2, Q7).



Explore the low-2 asymptotic form F¥V (z, Q?) ~ 20 F¥N(z, Q?):

K(2) @ F¥N(2,Q%) ~ M(&, Q% 1+ O FYN(#,Q%)  (14)

at small values of z.

Here,
1 1
(:U Q21+5)—2 (w QQ)—5)+M(1+5), (15)
where
1 1 ldy

2
. = 16
QD) ~ (e @)
and M(1+ ¢) is the analytic continuation of the Mellin moment
2 2 1

M(n) = fj dva"°K(z) =
(n) =k dez (=) n—1 n n+1

(17)

for integer values of n.



So,

2
3

Q%+ M;
X M(2,Q% 1+ 8)F¥N (&, Q7). (18)

Because the )% dependence of F¥V (%, Q?) is twist-2 like one,
the factor [M¢/(Q? + M¢)]? essentially fixes the scale Q% = M¢::

G4 _ .
of M (By) = 7 KMy M (3, My, 1+ 6™ (3, My),  (19)

where & = M¢/(2ME,)).

GQ
oV N(Ey) ~ 4:}(@' /5%‘”” dQ?




(1) If § is not too small: #° << Const

- 4+ 35+ 6°
M(@,QQ,H&)—M(1+5)—5(5L)(§+2) (20)

becomes independent of & and Q2.

(2) If 0 < 1,
M(%,Q°1+6) = - S (21)
o 0(%,Q%) 2
where ¢ is determined by the asymptotic low-z behavior of ﬁQVN:
if F¥N(z, Q%) o InP(1/z) for z — 0, then

1/0(x, Q%) = In(1/z)/(p + 1).




3 forms of F¥N(z,Q?):

(1) HERAPDF1.0 set

In the low-x regime, it may be well approximated by the following

ansatz:
F5ar(z, Q%) = Cppy(QH)z—0PM @) (22)

From our fit:

Spar(M3Z) = 8pyr(Miy) ~ 0.37, (23)



(2) Berger, Block, and Tan (BBT) form

FS (e, Q%) = (1 - 2) [Ag + Ay(@)m P =
z(1 —xp)
+ As(Q?) In? zﬁ (1_;3 , (24)

where Ay = Fp/(l — wp), with F'ip = 0.413 and xp = 0.11.
We have

L oA ap/n)/i+1) 1 ap

oppT(™, Q%) =2 g A;In'(zp/x) 3w
(25)

So, Fy. (Npr(@, M?) ocIn’s, 1/dgpp(i, M?) o« Ins.
This leads us to the important observation that U%%T x In s,
which manifestly violates the Froissart bound in contrast to what

is stated in BBT papers.



(3) Improved Haidt (H) ansatz

i@, Q) = Bo+ Bi@) ™"
2 l QQ
BiQ) = £ bl |1+ ol (26)
We have
) 1 N 221:0 B; ln”l(ﬂ?Q/%)/(i + 1> ~ lln@ (27)
O (@, Q%) vio BiIn'(zp /) 2w
with o = 0.06.

So that O'%]N ~ In? s as it should.
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Conclusion

e | have demonstrated the low x asymptotics of parton densities

and SF FQ.

e Low xr asymptotics of F5 are in good agreement with data from
HERA at Q2 > 2.5 GeV2.

e Usage of the analytical and “frozen” coupling constants leads
to improvement with data from HERA at Q2 < 2.5 GeV?.

o For quite flat Fh(z, Q%) (ie. Fh(z,Q?) /™% — 0 for any &
values)
oV N(E,)/F¥N (&, M) contains In(1/%),
where & = M¢/(2ME,)).
So BBT form of F(x, M¢;) violates the Froissart bound.



Next steps:

e To consider the models of F5(z, Q?) with saturation.
[preliminary] For quite flat F(z, Q%)
(i.e. Fo(z,Q?) /=% — 0 for any & values)

o) M (Ey) [ FYN (&, My) ~ In*(1/3),
because Fh(z, Q%) ~ Q~.

e To analyse of some LHC processes using the analytic and “frozen”

coupling constants.



