
A.V.Kotikov, JINR, Dubna

(in collab. with G. Cvetic, Valparaiso Uni., Chile; A.Yu. Illarionov, Trento Uni., Italy;

B.A. Kniehl, Hamburg Uni., Germany; G. Parente, Santiago de Compostela Uni., Spain )

LOW X MEETING, June 3 – 7, Santiago de Compostela, Spain

Small x behavior of parton distributions.

Analytical and “frozen” coupling constants.

High-energy neutrino-nucleon cross-sections.

OUTLINE

1. Introduction

2. Results

3. Conclusions and Prospects



1. Introduction to DIS

A. Deep-inelastic scattering cross-section:

σ ∼ LµνFµν

Hadron part Fµν (Q2 = −q2 > 0, x = Q2/[2(pq)]):

Fµν = (−gµν +
qµqν

q2 )F1(x,Q2)

− (pµ − (pq)

q2 qµ)(pν − (pq)

q2 qν)
2x

q2F2(x,Q2) + ...,

where Fk(x,Q2) (k = 1, 2, 3, L) - are DIS SF and q and p are

photon and hadron (parton) momentums.



B. Wilson operator expansion: Mellin moments Mk(n,Q2) of

DIS SF Fk(x,Q2) can be represented as sum

Mk(n,Q2) =
∑

a=NS,SI,g
Ca

k(n,Q2/µ2)
︸ ︷︷ ︸
Coeff. function

Aa(n, µ2),

where Aa(n, µ2) =< N |Oa
µ1,...,µn

|N > are matrix elements of the

Wilson operators Oa
µ1,...,µn

.



C. The matrix elements Aa(n, µ2) are Mellin moments of the

unpolarized PD fa(n, µ2).

DGLAP [= Renormgroup] equations:

d

d ln Q2fa(x,Q2) =
∫ 1
x

dy

y
∑

b
Wb→a(x/y) fb(y,Q2) . (1)

The anomalous dimensions (AD) γab(n) of the twist-2 Wilson

operators Oa
µ1,...,µn

(hereafter as = αs/(4π))

γab(n) =
∫ 1
0 dx xn−1Wb→a(x) =

∞∑
m=0

γ
(m)
ab (n)am

s ,

All parton densities are multiplies by x, t.e.

structure function = combination of parton densities.



3. Method

(C.Lopez and F.J.Yndurain, 1980,1981), (A.V.K., 1994)

Here I present briefly the method, which leads to the possibility

to replace the Mellin convolution of two functions

f1(x) ⊗ f2(x) ≡ ∫ 1
x

dy

y
f1(y)f2(x/y)

by a simple products at small x.



A. So, if f1(x) = Bk(x,Q2) is perturbatively calculated Wilson

kernel and f2(x) = xfa(x,Q2) ∼ x−δ at x → 0, then

f1(x) ⊗ f2(x) ≈ Mk(1 + δ,Q2) f2(x) (2)

where Mk(1 + δ,Q2) is the analytical continuation to non-integer

arguments of the Mellin moment Mk(n,Q2) of Bk(x,Q2):

Mk(n,Q2) =
∫ 1
0 xn−2Bk(x,Q2) (3)

The equation (2) is correct if the moment Mk(n,Q2) has no

singularity at n → 1.



B. The general case

(M (n) contains the singularity at n → 1):

the form of subasymptotics of f2(x) starts to be important.

Let PD have the different forms:

• Regge-like form xfR(x) = x−δf̃ (x),

• Logarithmic-like form xfL(x) = x−δln(1/x)f̃ (x),

• Bessel-like form xfI(x) = x−δIk(2
√√√√d̂ln(1/x))f̃ (x),

where f̃ (x) and its derivative f̃ ′(x) ≡ df̃ (x)/dx are smooth at

x = 0 and both are equal to zero at x = 1:

f̃ (1) = f̃ ′(1) = 0



Then (i = R,L, I)

f1(x) ⊗ f2(x) ≈ M̃k(1 + δi, Q
2) f2(x),

where M̃1+δi
= M1+δ with 1/δ → 1/δ̃i.

Regge-like behavior:

1/δ̃R = 1/δ


1 − xδ Γ(1 − δ)Γ(ν)

Γ(1 + ν − δ)


 ,

where xfR(x) ∼ (1 − x)ν at x → 1.

The second term comes from low part of convolution

integral

f1(x) ⊗ f2(x) ≡ ∫ 1
x

dy

y
f1(x/y)f2(y) (4)



So,
1

δ̃R
=

1

δ
if xδ << 1

and
1

δ̃R
= ln

1

x
− [Ψ(1 + ν) − Ψ(1)] if δ = 0

Analogously, for nonRegge behavior at δ → 0

1

δ̃L
=

1

2
ln

1

x
+ O(1/ln(1/x)),

1

δ̃I
=

√√√√√√√√
ln(1/x)

d̂

Ik+1(2
√√√√d̂ln(1/x))

Ik(2
√√√√d̂ln(1/x))



3. Double-logarithmic approach

(A.V.K. and G.Parente, 1998),

(A.Yu.Illarionov, A.V.K. and G.Parente, 2004)

1 Leading order without quarks (a pedagogical example)

At the momentum space, the solution of the DGLAP equation in

this case has the form

Mg(n,Q2) = Mg(n,Q2
0)e

−dgg(n)s,

where Mg(n,Q2) are the moments of the gluon distribution,

s = ln




α(Q2
0)

α(Q2)



, α(Q2) =

αs(Q
2)

4π
and dgg =

γ
(0)
gg (n)

2β0

The terms γ
(0)
gg (n) and β0 are respectively the LO coefficients of

the gluon-gluon AD and the QCD β-function.



For any perturbatively calculable variable Q(n), it is very conve-

nient to separate the singular part when n → 1 (denoted by “
̂
Q”)

and the regular part (marked as “Q”):

Q(n) =
̂
Q

n − 1
+ Q(n)

Then, the above equation can be represented by the form

Mg(n,Q2) = Mg(n,Q2
0)e

−d̂ggsLO/(n−1)e−dgg(n)sLO,

with γ̂gg = −8CA and CA = N for SU(N ) group.

Finally, if one takes the flat boundary conditions

xfa(x,Q2
0) = Aa, → Ma(n,Q2

0) =
Aa

n − 1
(5)



1.1 Classical double-logarithmic case (dgg(n) = 0)

(A.D.Rujula, S.L.Glashow, H.D.Politzer, S.B.Treiman, F.Wilczek

and A.Zee, 1974)

Then, expanding the second exponential in the above equation

M cdl
g (n,Q2) = Ag

∞∑
k=0

1

k!

(−d̂ggsLO)
k

(n − 1)k+1

and using the Mellin transformation for (ln(1/x))k:

∫ 1
0 dxxn−2(ln(1/x))k =

k!

(n − 1)k+1

we immediately obtain the well known double-logarithmic behavior

f cdl
g (x,Q2) = Ag

∞∑
k=0

1

(k!)2
(−d̂ggsLO)

k
(ln(1/x))k = AgI0(σLO),

where I0(σLO) is the modified Bessel function with argument σLO =

2
√√√√d̂ggsLOln(x). (R.D.Ball and S.Forte, 1994),



1.2 The more general case

For a regular kernel K̃(x), having Mellin moment

(nonsingular at n → 1)

K(n) =
∫ 1
0 dxxn−2K̃(x)

and the PD fa(x) in the form Iν(
√√√√d̂ln(1/x)) we have the following

equation

K̃(x) ⊗ fa(x) = K(1)fa(x) + O(

√√√√√√√√√√

d̂

ln(1/x)
)



So, one can find the general solution for the LO gluon density

without the influence of quarks

fg(x,Q2) = AgI0(σLO)e−dgg(1)sLO + O(ρLO),

where (R.D.Ball and S.Forte, 1994)

ρLO =

√√√√√√√√√√

d̂ggsLO

ln(x)
=

σLO

2ln(1/x)
, γ(0)

gg (1) = 22 +
4

3
f

and

dgg(1) = 1 +
4f

3β0
with f as the number of active quarks.



2 Leading order (complete)

At the momentum space, the solution of the DGLAP equation at

LO has the form (after diagonalization)

Ma(n,Q2) = M+
a (n,Q2) + M−

a (n,Q2) and

M±
a (n,Q2) = M±

a (n,Q2
0)e

−d±(n)s = M±
a e−d̂±s/(n−1)e−d±(n)s,

where

M±
a (n,Q2) = ε±ab(n)Mb(n,Q2), dab =

γ
(0)
ab (n)

2β0
,

d±(n) =
1

2
[(dgg(n) + dqq(n))

± (dgg(n) − dqq(n))

√√√√√√√√√
1 +

4dqg(n)dgq(n)

(dgg(n) − dqq(n))2
]

ε±qq(n) = ε∓gg(n) =
1

2
(1 +

dqq(n) − dgg(n)

d±(n) − d∓(n)
),



ε±ab(n) =
dab(n)

d±(n) − d∓(n)
(a 6= b)

As the singular (when n → 1) part of the + component of the

anomalous dimension is !!! d̂+ = d̂gg = −4CA/β0 !!! while

the − component does not exist: !!! (d̂− = 0) !!! , we consider

below both cases separately.



2.1 The “+” component

The analysis of the “+” component is practically identical to the

case studied before. The only difference lies in the appearance of

new terms ε+
ab(n) !!! . If they are expanded in the vicinity of n = 1

in the form ε+
ab(n) = ε+

ab + (n − 1)ε̃+
ab, !!! then for the terms

ε+
ab multiplying Mb(n,Q2), we have the same results as in previous

section:

ε+
abMb(n,Q2) M−1

−→ ε+
abAbI0(σLO)e−d+(1)sLO + O(ρLO),

where the symbol M
−1

−→ denotes the inverse Mellin transformation.

The values of σ and ρ coincide with those defined in the previous

section because d̂+ = d̂gg.



The terms ε̃+
ab that come with the additional factor (n − 1) in

front, lead to the following results

(n − 1)ε̃+
ab

Ab

(n − 1)
e−d̂+sLO/(n−1) = ε̃+

abAb
∞∑

k=0

1

k!

(−d̂+sLO)
k

(n − 1)k

M−1
−→ ε̃+

abAb
∞∑

k=0

1

k!

1

(k − 1)!
(−d̂+sLO)

k
(ln(1/x))k−1

= ε̃+
abAbρLOI1(σLO),

i.e. the additional factor (n − 1) in momentum space leads to

replacing the Bessel function I0(σLO) by ρLOI1(σLO) in x-space.

Thus, we obtain that the term ε+
ab(n)Mb(n,Q2) leads to the

following contribution in x space !!! :

(ε+
abI0(σLO) + ε̃+

abρLOI1(σLO))Abe
−d+(1)sLO + O(ρLO)



Because the Bessel function Iν(σ) has the ν-independent asymp-

totic behavior !!! eσ/
√

σ at σ → ∞ (i.e. x → 0), the second

term is O(ρ) and must be kept only !!! when ε+
ab = 0. This is the

case for the quark distribution at the LO approximation.

Using the concrete AD values, one has

f+
g (x,Q2) = (Ag +

4

9
Aq)I0(σLO)e−d+(1)sLO + O(ρLO) and

f+
q (x,Q2) =

f

9
(Ag +

4

9
Aq)ρLOI1(σLO)e−d+(1)sLO + O(ρLO)

where d+(1) = 1 + 20f/(27β0).



2.2 the “−” component

In this case the anomalous dimension is regular !!! and one has

ε−ab(n)Abe
−d−(n)s M−1

−→ ε−ab(1)Abe
−d−(1)sLO + O(x)

Using the concrete AD values !!! , we have

f−g (x,Q2) = −4

9
Aqe

−d−(1)sLO + O(x) and

f−q (x,Q2) = Aqe
−d−(1)sLO + O(x),

where d−(1) = 16f/(27β0).



Finally we present the full small x asymptotic results for PD and

F2 structure function at LO of perturbation theory:

fa(x,Q2) = f+
a (x,Q2) + f−a (x,Q2) and

F2(x,Q2) = e · fq(z,Q
2)

where f+
q ,f+

g , f−q and f−g were already given before and e =
∑f
1 e2

i/f is the average charge square of the f active quarks.

Extension to NLO is trivial and can be found in (A.V.K. and

G.Parente, 1998)



So, we resume the steps we have followed to reach the small x

approximate solution of DGLAP shown above:

• Use the n-space exact solution.

• Expand the perturbatively calculated parts (AD and coefficient

functions) in the vicinity of the point n = 1.

• The singular part with the form

Aa(n − 1)ke−d̂sLO/(n−1)

leads to Bessel functions in the x-space in the form

Aa(
d̂sLO

lnx
)

(k+1)/2

Ik+1(2
√√√√d̂sLOlnx)



• The regular part B(n) exp (−d(n)sLO) leads to the additional

coefficient

B(1)exp(−d(1)sLO) + O(
√√√√d̂sLO/lnx)

behind of the Bessel function !!! in the x-space. Because

the accuracy is O(
√√√√d̂sLO/lnx), it is necessary to use only the

first nonzero term !!! , i.e. all terms (n − 1)k in front of

exp (−d̂/(n − 1)), with the exception of one with the smaller k

value, can be neglected.

• If the singular part at n → 1 is absent, i.e. d̂ = 0, the re-

sult in the x-space is determined by B(1)exp(−d(1)sLO) with

accuracy O(x).



4. Fits of HERA data

At low x, the structure function F2(x,Q2) is related to parton

densities as (A.V.K. and G.Parente, 1998)

at LO

F2(x,Q2) =
5

18
fq(x,Q2)

at NLO

F2(x,Q2) =
5

18


fq(x,Q2) +

2f

3
as(Q

2)fg(x,Q2)


 .

Fits of HERA experimental data of the structure function F2(x,Q2)

(A.Yu.Illarionov, A.V.K. and G.Parente, 2004)

!!! Only two parameters: Aq and Ag

ΛQCD cannon be extract in small x Physics.
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5. Analytical and “frozen” coupling constants

Two modifications of the coupling constant (G.Cvetic,

A.Yu.Illarinov, B.A. Kniehl, and A.V.Kotikov, 2009)

A. More phenomenological.

(G.Curci, M.Greco and Y.Sristava, 1979), (M.Greco, G. Penso and

Y.Sristava, 1980), (N.N.Nikolaev and B.M.Zakharov, 1991,1992),

(B.Badelek,J.Kwiecinski and A.Stasto, 1997), (A.M.Badalian and

Yu.A.Simonov, 1997)

We introduce freezing of the coupling constant by changing its

argument Q2 → Q2 + M2
ρ , where Mρ is sually the ρ-meson mass.

Thus, in the formulae of the previous Sections we should do the

following replacement

as(Q
2) → afr(Q

2) ≡ as(Q
2 + M2

ρ) (6)



B. Theoretical approach.

Incorporates the Shirkov-Solovtsov idea (D.V.Shirkov and L.I.Solovtsov,

1997), about analyticity of the coupling constant that leads to the

additional its power dependence.

(K.A.Milton, A.V. Nesterenko, O.Solovtsova, G. Svetic, C. Valen-

zuela, I. Schmidt, O. Teryaev, N. Stefanis, A. Bakulev, S. Mikhailov,

... )



Then, in the formulae of the previous Section the coupling con-

stant as(Q
2) should be replaced as follows

aLO
an (Q2) = as(Q

2) − 1

β0

Λ2
LO

Q2 − Λ2
LO

(7)

at the LO approximation and

aan(Q2) = as(Q
2) − 1

2β0

Λ2

Q2 − Λ2 + ... (8)

at the NLO approximation, where the symbol ... marks numerically

small terms.



Table 1: The result of the LO and NLO fits to H1 and ZEUS data for different low Q2 cuts. In the fits f is fixed to 4 flavors.

Ag Aq Q2

0
[GeV2] χ2/n.o.p.

Q2 ≥ 1.5GeV2

LO 0.784±.016 0.801±.019 0.304±.003 754/609

LO&an. 0.932±.017 0.707±.020 0.339±.003 632/609

LO&fr. 1.022±.018 0.650±.020 0.356±.003 547/609

NLO -0.200±.011 0.903±.021 0.495±.006 798/609

NLO&an. 0.310±.013 0.640±.022 0.702±.008 655/609

NLO&fr. 0.180±.012 0.780±.022 0.661±.007 669/609

Q2 ≥ 0.5GeV2

LO 0.641±.010 0.937±.012 0.295±.003 1090/662

LO&an. 0.846±.010 0.771±.013 0.328±.003 803/662

LO&fr. 1.127±.011 0.534±.015 0.358±.003 679/662

NLO -0.192±.006 1.087±.012 0.478±.006 1229/662

NLO&an. 0.281±.008 0.634±.016 0.680±.007 633/662

NLO&fr. 0.205±.007 0.650±.016 0.589±.006 670/662

• Usage of the analytical and “frozen” coupling constants leads

to improvement with data: χ2 decreased twicely

• Really, no difference between results based on the analytical and

“frozen” coupling constants.

!!! One example of application the analytical and “frozen” cou-

pling constants: (A.V.Kotikov, A.V.Lipatov and N.P.Zotov, 2004)



The results for F2 and for the slope of the SF F2

The double-logarithmic behaviour can mimic a power law shape

over a limited region of x,Q2.

fa(x,Q2) ∼ x−λeff
a (x,Q2) and F2(x,Q2) ∼ x−λ

eff
F 2 (x,Q2)









6. Cross section of neutrino-nucleon scattering at high energy

(A.Yu.Illarinov, B.A. Kniehl, and A.V.Kotikov, 2011)

Charged-current (CC) and neutral-current (NC) DIS processes:

ν(k) + N (P ) → ℓ(k′) + X,

ν(k) + N (P ) → ν(k′) + X, (9)

N = (p + n)/2 denotes an isoscalar nucleon target of mass M .

Familiar kinematic variables

s = (k + P )2, Q2 = −q2, x =
Q2

2q · P , y =
q · P
k · P , (10)

where q = k − k′.
In the target rest frame, we have s = M (2Eν + M ) and xy =

Q2/(2MEν).



Inclusive spin-averaged double-differential cross sections:

d2σνN
i

dx dy
=

G2
FMEν

2π
Ki




M2
V

Q2 + M2
V




2

K(y)F νN
2 , (11)

where i = CC, NC; V = W,Z,

GF is Fermi’s constant, K(y) = 2 − 2y + y2.

KCC = 1, KNC = 1/2 − xw + (10/9)x2
w, where xw = sin2 θw,

with θw being the weak mixing angle. Using xw = 0.231, we have

KNC = 0.328.

The contributions due to the structure functions F νN
L and F νN

3

to the r.h.s. of Eq. (11) are negligibly small.



Impose the lower cut-off Q2
0 on Q2:

σνN
i (Eν) =

1

2MEν

∫ 2MEν
Q2

0
dQ2 ∫ 1

x̂
dx

x

d2σνN
i

dx dy
, (12)

where x̂ = Q2/(2MEν).

σνN
i (Eν) =

G2
F

4π
Ki

∫ 2MEν
Q2

0
dQ2




M2
V

Q2 + M2
V




2

× ∫ 1
x̂

dx

x
K




x̂

x


 F i

2(x,Q2). (13)

The inner integral can be rewritten as the Mellin convolution

K(x̂) ⊗ F νN
2 (x̂, Q2).



Explore the low-x asymptotic form F νN
2 (x,Q2) ≃ x−δF̃ νN

2 (x,Q2):

K(x̂) ⊗ F νN
2 (x̂, Q2) ≃ M̃(x̂, Q2, 1 + δ)F νN

2 (x̂, Q2) (14)

at small values of x̂.

Here,

M̃(x̂, Q2, 1 + δ) = 2




1

δ̃(x̂, Q2)
− 1

δ


 + M (1 + δ), (15)

where
1

δ̃(x,Q2)
=

1

F̃ νN
2 (x,Q2)

∫ 1
x

dy

y
F̃ νN

2 (y,Q2) (16)

and M (1 + δ) is the analytic continuation of the Mellin moment

M (n) =
∫ 1
0 dx xn−2K(x) =

2

n − 1
− 2

n
+

1

n + 1
(17)

for integer values of n.



So,

σνN
i (Eν) ≃ G2

F

4π
Ki

∫ 2MEν
Q2

0
dQ2




M2
V

Q2 + M2
V




2

×M̃(x̂, Q2, 1 + δ)F νN
2 (x̂, Q2). (18)

Because the Q2 dependence of F νN
2 (x̂, Q2) is twist-2 like one,

the factor [M2
V /(Q2 +M2

V )]2 essentially fixes the scale Q2 = M2
V :

σνN
i (Eν) ≃ G2

F

4π
KiM

2
V M̃ (x̃,M2

V , 1 + δ)F νN
2 (x̃,M2

V ), (19)

where x̃ = M2
V /(2MEν).



(1) If δ is not too small: x̃δ << Const

M̃(x̃, Q2, 1 + δ) = M (1 + δ) =
4 + 3δ + δ2

δ(δ + 1)(δ + 2)
(20)

becomes independent of x̃ and Q2.

(2) If δ ≪ 1,

M̃ (x̃, Q2, 1 + δ) =
2

δ̃(x̃, Q2)
− 3

2
, (21)

where δ̃ is determined by the asymptotic low-x behavior of F̃ νN
2 :

if F̃ νN
2 (x,Q2) ∝ lnp(1/x) for x → 0, then

1/δ̃(x,Q2) = ln(1/x)/(p + 1).



3 forms of F νN
2 (x,Q2):

(1) HERAPDF1.0 set

In the low-x regime, it may be well approximated by the following

ansatz:

F ℓN
2,PM (x,Q2) = CPM (Q2)x−δPM(Q2), (22)

From our fit:

δPM (M2
Z) ≈ δPM (M2

W ) ≈ 0.37, (23)



(2) Berger, Block, and Tan (BBT) form

F ℓN
2,BBT (x,Q2) = (1 − x)


A0 + A1(Q

2) ln
xP (1 − x)

x(1 − xP )

+ A2(Q
2) ln2 xP (1 − x)

x(1 − xP )


 , (24)

where A0 = FP/(1 − xP ), with FP = 0.413 and xP = 0.11.

We have

1

δ̃BBT (x,Q2)
≃

∑2
i=0 Ai lni+1(xP/x)/(i + 1)

∑2
i=0 Ai lni(xP/x)

≃ 1

3
ln

xP

x
.

(25)

So, F ℓN
2,BBT (x̃,M2

V ) ∝ ln2 s, 1/δ̃BBT (x̃,M2
V ) ∝ ln s.

This leads us to the important observation that σνN
BBT ∝ ln3 s,

which manifestly violates the Froissart bound in contrast to what

is stated in BBT papers.



(3) Improved Haidt (H) ansatz

F ℓN
2,H(x,Q2) = B0 + B1(Q

2) ln
x0

x
,

B1(Q
2) =

2∑

i=0
bi lni



1 +

Q2

Q2
0



. (26)

We have

1

δ̃H(x,Q2)
≃

∑1
i=0 Bi lni+1(x0/x)/(i + 1)

∑1
i=0 Bi lni(x0/x)

≃ 1

2
ln

x0

x
, (27)

with x0 = 0.06.

So that σνN
H ∝ ln2 s as it should.
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Conclusion

• I have demonstrated the low x asymptotics of parton densities

and SF F2.

• Low x asymptotics of F2 are in good agreement with data from

HERA at Q2 ≥ 2.5 GeV2.

• Usage of the analytical and “frozen” coupling constants leads

to improvement with data from HERA at Q2 ≤ 2.5 GeV2.

• For quite flat F2(x,Q2) (i.e. F2(x,Q2)/x−δ → 0 for any δ

values)

σνN
i (Eν)/F νN

2 (x̃,M2
V ) contains ln(1/x̃),

where x̃ = M2
V /(2MEν).

So BBT form of F2(x,M2
V ) violates the Froissart bound.



Next steps:

• To consider the models of F2(x,Q2) with saturation.

[preliminary] For quite flat F2(x,Q2)

(i.e. F2(x,Q2)/x−δ → 0 for any δ values)

σνN
i (Eν)/F νN

2 (x̃,M2
V ) ∼ ln2(1/x̃),

because F2(x,Q2) ∼ Q2.

• To analyse of some LHC processes using the analytic and “frozen”

coupling constants.


