## Proton-proton cross-sections The interplay between density and radius

R. Conceição, J. Dias de Deus, M. Pimenta





### The grey disk model

$$\sigma_{tot}(s) = 2\pi \int d^2 b F(s,b) \to 2\pi (1 - e^{-\overline{\Omega}(s)}) R^2(s)$$
  
$$\sigma_{el}(s) = \pi \int d^2 b \left( F(s,b) \right)^2 \to \pi (1 - e^{-\overline{\Omega}(s)^2}) R^2(s)$$

$$\sigma_{inel}(s) = \sigma_{tot}(s) - \sigma_{el}(s) = \pi (1 - e^{-2\overline{\Omega}(s)})R^2(s)$$

$$\frac{\sigma_{el}(s)}{\sigma_{tot}(s)} = \frac{1}{2} \left( 1 - e^{-\overline{\Omega}(s)} \right)$$

Is just a function of  $\Omega$  !!!

 $\frac{\sigma_{el}(s)}{\sigma_{tot}(s)}$ 







 $\overline{\nu}(s) = e^{k\overline{\Omega}(s)} \simeq 1 + k\overline{\Omega}(s) + \dots \qquad \overline{\Omega}(s) = \frac{2}{k}\lambda Y_{1}$ 

 $\frac{\sigma_{el}(s)}{\sigma_{tot}(s)}$ 



 $\frac{\sigma_{el}(s)}{\sigma_{tot}(s)}$ 



 $\sigma_{tot}(s)$ 

$$\sigma_{tot}(s) = 2\pi (1 - e^{-\Omega(s)}) R^2(s)$$



(s)  

$$\sigma_{tot}(s) = 2\pi (1 - e^{-\overline{\Omega}(s)}) R^2(s)$$

$$R(s) = R_0 + \beta \log\left(\frac{s}{s_0}\right)$$

 $\sigma_{tot}$ 



 $\sigma_{inel}(s)$ 

$$\sigma_{inel}(s) = \pi (1 - e^{-2\Omega(s)}) R^2(s)$$



## **Pierre Auger Observatory**

### results



#### Longitudinal shower profile



# Pierre Auger Observatory results





Ralph Ulrich

### Towards the black disk



Without a fast transition at the cosmic rays energy the disk should became black at  $\sqrt{s} = 10^{19}$  GeV

 $\sigma_{tot}(s)$ 



The Proton  $(\sqrt{s})$  – Low energy



## The Proton ( $\sqrt{s}$ ) – Intermediate energy



## The Proton $(\sqrt{s})$ – High energy



### Conclusions

• A simple grey disk model is able to reproduce all cross section data ( $\sigma_{tot}, \sigma_{in}, \sigma_{elas}$ )

- $\mathbf{R} = \mathbf{R}_0 + \beta \log(s/s_0)$
- $\Omega$  is constant for  $\sqrt{s} \sim 110 130 \text{ GeV}$
- $\Omega \propto \lambda \ln(\sqrt{s})$  for  $\sqrt{s} > 110 130$  GeV
- A fast transition to the black disk at  $\sqrt{s} \sim 100$  TeV can accommodate an  $\sim 80\%$  increase in the total cross-section





