Vector Meson Production at HERA

On behalf of the H1 and Zeus Collaborations

Low X meeting 2011 Santiago de Compostela, Spain June 06, 2011

Florian Huber Physikalisches Institut Heidelberg

Outline:

🚺 Introduction

- 2 Overview of $W_{\gamma p}$, t and Q^2 Dependence
- 3 New Results
- 4 Summary

Introduction

Exclusive Vector Meson Production

• VM = $(\rho, \omega, \phi, J/\psi, \psi', \Upsilon)$

 Diffractive process characterised by exchange of object with vacuum quantum numbers.

The proton stays intact (Y = P) or dissociates.

Overview of $W_{\gamma p}$, t and Q^2 Dependence

$W_{\gamma p}$ Dependence for Elastic VM Photoproduction

LowX 2011, Santiago de Compostela, 06/06/2011

δ Fit Parameter $(\sigma \propto W^{\delta}_{\gamma p})$ for Light and Heavy VM

- For ρ Cross section as function of $W_{\gamma p}$ gets steeper from soft to hard region in Q^2 . (Same for ϕ , not shown)
- For $J/\psi = W_{\gamma p}$ cross section dependence is constant w.r.t. Q^2 and δ is compatible to values extracted from photoproduction.
 - $ightarrow J/\psi$ already in hard region at low Q^2 because of mass.

Summary of δ Fit Parameter ($\sigma \propto W^{\delta}_{\gamma \rho}$)

Good scale for observing
 transition from soft to hard region: Q² + M²

- Same behaviour for ρ and ϕ
- J/ψ and Υ (not shown) for $Q^2 \sim 0 \ {
 m GeV}^2$ already in hard region

LowX 2011, Santiago de Compostela, 06/06/2011

Q^2 Dependence at the Example of ho and ϕ Production

- Good agreement between Zeus and H1 measurement.
- Elastic and proton dissociative have same behaviour. (Note: Proton dissociative is scaled by factor 0.5)
- Fit with $\sigma_{\gamma p} \propto (M_V^2 + Q^2)^n$ and $n = c_1 + c_2(M_V^2 + Q^2)$ produces better results than a constant n.
- c_1 is consistent within errors to 2, which is predicted by VDM model in the limit $Q^2 \rightarrow 0$.

t Dependence at the Example of Elastic Produced ρ Meson

- Fitting differential cross sections with an exponential: $\frac{d\sigma}{dt} \propto e^{bt}$
- b characterize the size of transverse interaction
- Exponential behavior in t is equivalent with a Gaussian proton radius shape.
- b decreases to $\sim 5\,{
 m GeV}$ in soft region, which is expected by pQCD.

Summary t Dependence of VM

• Scale
$$\mu^2 = (Q^2 + M_V^2)/4$$

Similar behaviour of slope b for ρ , ϕ , J/ψ (and DVCS) as function of μ^2 .

- b decreases with μ from \sim 10 GeV⁻² (soft) to \sim 5 GeV⁻² (soft)
- *b* parameter connected to the transverse gluonic dipole size. Can be written as $b = b_P + b_V$ with
 - $b_V \sim \frac{1}{Q^2 + M_V^2}$ connected to the vector meson transverse size.
 - $b_p \sim 5 \,\mathrm{GeV}^{-2}$ connected to the proton transverse size. Which corresponds to $R_{\mathrm{gluon}} = \sqrt{(2b)} \sim 0.6 \,\mathrm{fm}$. Radius smaller then charged radius of proton $\approx 0.9 \,\mathrm{fm}$.

Pomeron Trajectory

- Global fit to ρ⁰ photoproduction data from H1, Omega and Zeus.
 - Linear Pomeron trajectory: $\alpha_{\mathbb{P}}(t) = \alpha_0 + \alpha' t$ $\alpha_0 = 1.0871 \pm 0.0026 \pm 0.0030$ $\alpha' = 0.126 \pm 0.013 \pm 0.012$
 - Donnachie and Landshoff (DL) fit to pp scattering gives soft pomeron trajectory of 1.08 + 0.25t.
 ⇒ α₀ consistent with DL
 - $\Rightarrow \alpha'$ twice smaller than DL

Summary of Pomeron Slope Parameter α'

- As a reminder: $d\sigma/dt \propto e^{-b(W)|t|}$ with $b(W) = b_0 + 4\alpha' \log\left(\frac{W}{W_0}\right)$
- α' for ho, ϕ and J/ψ below 0.25 GeV⁻² (DL)
- α' for J/ψ in DIS seems consistent with 0.

New Results

Upsilon (1S) photoproduction t-slope measurement at HERA ZEUS-prel-10-020

$\Upsilon(1S)$ t Dependence

- Integrated luminosity: 486 pb⁻¹
- Kinematic range: $Q^2 < 1~{
 m GeV^2},$ $60 < W_{\gamma p} < 220~{
 m GeV}$
- dN/dt distribution in mass range (9.33 - 9.66) GeV is fitted with exponential.

 $b = 4.3^{+1.7}_{-1.1} \pm 0.5 \,\mathrm{GeV}^{-2}$

$\Upsilon(1S)$ t Dependence

• New data point at $Q^2+M^2=89.5~{
m GeV}^2$

• Range in $Q^2 + M^2$ is extended by about a factor of 2.

New Results

Exclusive diffractive J/ψ production at low $W_{\gamma\rho}$ with the H1 detector at HERA H1prelim-11-011

Experimental Aspects

Experimentally always overlap of two processes: elastic and proton dissociative J/ψ production.

To disentangle them and measure them separately, two steps are done:

• A tag flag, composed of signals from forward detectors, splits the sample in two groups of enriched elastic (no tag) and enriched proton dissociative (tagged) events.

• Unfolding uses information from tagging and returns as a result the number of elastic and proton dissociative events.

In addition the unfolding allows also correct treatment of migration effects. \Rightarrow Improved uncertainty treatment.

t Slope Measurement

• Elastic cross section follows an exponential function. $d\sigma/dt \propto e^{-b|t|}$ with $b = 5.77 \pm 0.19 \text{ GeV}^{-2}$ (Error includes statistical and systematic uncertainty.)

 Proton dissociative cross section fitted with function proportional to (1 + b/n|t|)⁻ⁿ, which behaves like an exponential at small |t| an like a power law at large |t| values.

$W_{\gamma p}$ Measurement

- Two data sets with different center of mass energy are used.
- Fit with $\sigma \propto W^{\delta}$ gives for elastic $\delta = 0.81 \pm 0.08$ and for proton dissociative $\delta = 0.55 \pm 0.09$.
- Elastic δ slope in agreement with H1 (HERA I) measurement (DESY-05-161): $\delta = 0.75 \pm 0.03 \pm 0.03$. Zeus measurement (DESY-02-008): $\delta = 0.60 \pm 0.02 \pm 0.02$
 - $\delta = 0.69 \pm 0.02 \pm 0.03$

New Results

Exclusive electroproduction of two pions at HERA ZEUS-prel-10-012

Fitting ρ , ρ' , ρ'' Resonances

• Fitting ho, ho' and ho'' resonances with

$$\frac{dN(M_{\pi\pi})}{dM_{\pi\pi}} = N \left[\left| F_{\pi}(M_{\pi\pi}) \right|^2 + \frac{B}{M_{\pi\pi}^n} \right]$$

with pion form factor

$$F_{\pi}(M_{\pi\pi}) = rac{BW(
ho) + eta BW(
ho') + \gamma BW(
ho'')}{1 + eta + \gamma}$$

(Kuhn-Santamaria parametrisation)

β and γ relative amplitudes
 BW: Breit-Wigner distributions

Result from the Fit

Parameter	ZEUS	PDG
$M_{ ho}[MeV]$	$772\pm2^{+2}_{-1}$	775.49 ± 0.34
$\Gamma_{ ho}[MeV]$	$155\pm5\pm2$	149.4 ± 1.0
β	$-0.27 \pm 0.02 \pm 0.02$	
$M_{ ho'}[MeV]$	$1360 \pm 20^{+20}_{-30}$	1465 ± 25
$\Gamma_{ ho'}[MeV]$	$460\pm 30^{+40}_{-45}$	400 ± 60
γ	$0.10\pm0.02^{+0.02}_{-0.01}$	
$M_{ ho^{\prime\prime}}[MeV]$	$1770 \pm 20^{+15}_{-20}$	1720 ± 20
$\Gamma_{ ho^{\prime\prime}}[MeV]$	$310\pm 30^{+25}_{-35}$	250 ± 100

• Relative sign pattern +-+. Behaviour is the same as in $e^+e^- \to \pi^+\pi^-.$

Cross Section Ratios as Function of Q^2

- HERA provides a large amount of vector meson data in a wide kinematic range.
- Interplay of soft and hard region can extensively be tested.
- New measurements of Υ , J/ψ and ho, ho', ho''.

Backup

High |t| analysis (DESY-09-137)

- Elastic process heavily suppressed for |t| > 2 GeV²
- Hard scale provided by |t| and J/ψ mass.

• No exponential behaviour anymore, but power law $\left(\frac{d\sigma}{d|t|} \propto |t|^{-n}\right)$ does well describe the data.

$$n = 1.9 \pm 0.1, \quad 2 < |t| < 5 \,\mathrm{GeV}^2$$

$$n = 3.0 \pm 0.1, \quad 5 < |t| < 20 \, \text{GeV}^2$$

- No given model is able to describe the data in the full shown phase space:
 - GLMN (DGLAP) description well up to $t = 5 \, {
 m GeV}^2$
 - EMP (BFKL) lies below the data
 - FSZ describes data up do to $t=12\,{\rm GeV^2}$, but fails to describe the $W_{\gamma {\it p}}$ dependence.

LowX 2011, Santiago de Compostela, 06/06/2011

Helicity

- Complex helicity amplitudes: $T_{\lambda_{V}\lambda_{p},\lambda_{\gamma}\lambda_{Y}}$
- Helicity of Y not measured and Proton not polarised $ightarrow extsf{T}_{\lambda_{oldsymbol{V}},\lambda_{\gamma}}$

 \Rightarrow 15 independent spin matrix elements r_{ik}^{i} measurable

- Natural parity exchange (NPE): $T_{-\lambda_{V}\lambda_{p},-\lambda_{\gamma}\lambda_{Y}} = (-1)^{\lambda_{V}-\lambda_{\gamma}} T_{\lambda_{V}\lambda_{p},\lambda_{\gamma}\lambda_{Y}}$
- s-channel helicity conservation (SCHC) Helicity of virtual photon is transferred to the VM. \Rightarrow Single and double flip amplitudes are zero. Only T_{00} and T_{11} are non-zero.
- For NPE and SCHC: Only two independent parameters left. Can be chosen as: $R = \sigma_L / \sigma_T$ and phase δ between T_{00} and T_{11}

Helicity Amplitudes

- Significant violation of SCHC, because of non-zero values of r_{00}^5 , especially at large |t|
- T_{11}/T_{00} decrease consistent with increase of R in Q^2
- T₀₁/T₀₀ increases with |t| ⇒ SCHC is increasing with |t|
- Non-zero values for double flip amplitude *T*₋₁₁

Florian Huber

LowX 2011, Santiago de Compostela, 06/06/2011

- *R* sensitive to interacting dipole size and VM wave function.
- *R* behaviour consistent with theory.
- Q^2/M_V^2 provides common scale for ρ , ϕ and J/ψ .