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• UHECRs
• What is the flux composition?

• Where/how are they produced?

• How do they interact?

• Hadronic Interactions

• √s  ~ 400 TeV

• Forward regime
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• ~ 1600 Surface 
Detector (SD) Stations
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Data taking since 2004
Installation completed in 2008



SD & FD

Surface Detector

• Cherenkov water tanks

• Detect charge particles at 
the ground

• 100% duty cycle

• Provides large statistics

Fluorescence Detector

• Telescopes FoV 30° x 30°

• Only works in moonless 
nights

• ~ 13% duty cycle

• More direct information
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Event Reconstruction

Surface Detector

• Tank hit time gives shower 
direction

• Energy is obtained using

the signal measured at 1000 
meters from the shower 
core S(1000)

Fluorescence Detector

• Evolution seen in camera 
gives the shower geometry

• Energy is calculated by 
integrating  the longitudinal 
profile

Xmax
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SD

FD

Hybrid Technique 

• Better geometry 
reconstruction
– Higher Xmax resolution

– Better energy reconstruction

• Calibration of SD with FD
– Reduced systematics (22 %)

– Calibration done with data to 
be independ of hadronic 
interaction models

– Energy resolution 17%



Energy Spectrum
– SD

• higher exposure

– FD
• Lower energy range
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Energy Spectrum

• Auger data shows a flux 
suppression at the highest 
energies

– Cutoff significance > 20 σ

• This feature is compatible 
with:

– GZK cuttoff
• Cosmic ray interaction with 

CMB through  Δ resonance

– Sources running out of 
power
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Composition Variables

• The moments of the Xmax distribution (mean and RMS) 
are sensitive to primary composition

• As the iron showers spend more energy their mean Xmax

and shower to shower flutuations are smaller



Analysis procedure

• Shower reconstruction accounts for different types of 
light and propagation
– Fluorescence light: isotropic emission

– Cherenkov light: beamed emission

– Cherenkov scattering
• Rayleigh

• Mie (aerosols)
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• Apply quality cuts to reconstructed events
– Atmospheric monitoring
– Good geometrical reconstruction
– Xmax in the FoV
– …

• Apply anti-bias cuts (Xlow ; Xup)
– Cuts derived from data
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1018.1 < E < 1018.2 eV



Resolution of the reconstructed Xmax

• The detector resolution for Xmax has been 
estimated from MC simulations to be 20 g cm-2

• A cross-check has been done with stereo events



Moments of the Xmax distribution

• As energy increases data seems to favour a heavier composition

• A change on the primary cross-section or on the hadronic models 
may produce the same effect



Other shower observables
• Muons are very sensitive to hadronic 

interactions

– Originated essentially from the 
decay of charged pions

– Once produced they have a large 
probability to reach the ground

• Number of muons can be measured in:

– Vertical showers (indirect)
• θ < 60º

– Inclined showers (direct)
• R. Vázquez talk

• Measurement of the muon density at a 
fixed core distance:

– Analysis of the time trace:
• Muon counting

– Prompt peak signal

• Smoothing method

– Estimate the e.m. signal
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Other shower observables

– Exploit the universality
features of the e.m. shower 
component

– Hybrid events
• Reproduce the data  e.m. 

longitudinal profile  with 
simulation

• Compare signal at the ground 
MC/data
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Number of Muons in EAS

• All methods show that there is a muon deficit in MC simulations

– ELAB≃1019 eV (√s≈140 TeV for proton primaries)

• Additionally an increase on the FD energy scale of ~ 26% is prefered

– Compatible with FD systematic uncertainty of 22%



Conclusions

• The Pierre Auger Observatory is working smoothly at 
full acceptance.

• Energy spectrum measured with high statistics
– Ankle structure determined with high definition
– A suppression, compatible with the GZK cutoff, is 

observed at the highest energies (> 20 σ)

• Observation of a change in the shower development 
with energy
– Mass composition?
– Cross-section or Hadronic models?

• Data shows a deficit of muons in Hadronic models

• An update of the Pierre Auger Observatory results will 
be shown in ICRC 2011 Beijing
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FD systematics



Composition from the energy spectrum



Experiments Exposure



Interactions parameters



Changing interaction parameters
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GZK effect



Changing interactions parameters

Proton Iron


