# Pierre Auger Observatory Results

Ruben Conceição for the Pierre Auger Collaboration





# Ultra High Energy Cosmic Rays



# **Ultra High Energy Cosmic Rays**



# **Ultra High Energy Cosmic Rays**

### **Cosmic ray spectrum**



# Pierre Auger Observatory



# Pierre Auger Observatory



- ~ 1600 Surface Detector (SD) Stations
- 1.5 km spacing
- 3000 km<sup>2</sup>



- 4 Fluorescence Detectors (FD)
- 6 x 4 Telescopes

# Pierre Auger Observatory





- 1.5 km spacing
- 3000 km<sup>2</sup>



- 4 Fluorescence Detectors (FD)
- 6 x 4 Telescopes

## SD & FD

### **Surface Detector**

- Cherenkov water tanks
- Detect charge particles at the ground
- 100% duty cycle
- Provides large statistics



- Telescopes FoV 30° x 30°
- Only works in moonless nights
- ~ 13% duty cycle
- More direct information



### SD & FD

#### **Surface Detector**

- Cherenkov water tanks
- Detect charge particles at the ground
- 100% duty cycle
- Provides large statistics



- Telescopes FoV 30° x 30°
- Only works in moonless nights
- ~ 13% duty cycle
- Provides higher accuracy



### SD & FD

#### **Surface Detector**

- Cherenkov water tanks
- Detect charge particles at the ground
- 100% duty cycle
- Provides large ștatistics



- Telescopes FoV 30° x 30°
- Only works in moonless nights
- ~ 13% duty cycle
- Provides higher accuracy



### **Event Reconstruction**

### **Surface Detector**

- Tank hit time gives shower direction
- Energy is obtained using the signal measured at 1000 meters from the shower core S(1000)



- Evolution seen in camera gives the shower geometry
- Energy is calculated by integrating the longitudinal profile



# **Hybrid Technique**

- Better geometry reconstruction
  - Higher X<sub>max</sub> resolution
  - Better energy reconstruction





# **Hybrid Technique**

- Better geometry reconstruction
  - Higher X<sub>max</sub> resolution
  - Better energy reconstruction





# **Hybrid Technique**

- Better geometry reconstruction
  - Higher X<sub>max</sub> resolution
  - Better energy reconstruction



- Calibration of SD with FD
  - Reduced systematics (22 %)
  - Calibration done with data to be independ of hadronic interaction models
  - Energy resolution 17%



# **Energy Spectrum**



# **Energy Spectrum**



# **Energy Spectrum**

- Auger data shows a flux suppression at the highest energies
  - Cutoff significance  $> 20 \sigma$
- This feature is compatible with:
  - GZK cuttoff
    - Cosmic ray interaction with CMB through  $\Delta$  resonance
  - Sources running out of power



# Comparing energy spectrum



# Comparing energy spectrum



# **Composition Variables**



- The moments of the X<sub>max</sub> distribution (mean and RMS) are sensitive to primary composition
- As the iron showers spend more energy their mean X<sub>max</sub>
  and shower to shower flutuations are smaller

# Analysis procedure





- Shower reconstruction accounts for different types of light and propagation
  - Fluorescence light: isotropic emission
  - Cherenkov light: beamed emission
  - Cherenkov scattering
    - Rayleigh
    - Mie (aerosols)

# **Analysis procedure**



- Apply quality cuts to reconstructed events
  - Atmospheric monitoring
  - Good geometrical reconstruction
  - $-X_{max}$  in the FoV
  - **—** ...

# **Analysis procedure**







- Apply quality cuts to reconstructed events
  - Atmospheric monitoring
  - Good geometrical reconstruction
  - $-X_{max}$  in the FoV
  - **—** ...
- Apply anti-bias cuts (X<sub>low</sub>; X<sub>up</sub>)
  - Cuts derived from data

# Resolution of the reconstructed X<sub>max</sub>





- The detector resolution for X<sub>max</sub> has been estimated from MC simulations to be 20 g cm<sup>-2</sup>
- A cross-check has been done with stereo events

# Moments of the X<sub>max</sub> distribution



- As energy increases data seems to favour a heavier composition
- A change on the primary cross-section or on the hadronic models may produce the same effect

- Muons are very sensitive to hadronic interactions
  - Originated essentially from the decay of charged pions
  - Once produced they have a large probability to reach the ground



- Muons are very sensitive to hadronic interactions
  - Originated essentially from the decay of charged pions
  - Once produced they have a large probability to reach the ground
- Number of muons can be measured in:
  - Vertical showers (indirect)
    - $\theta < 60^{\circ}$
  - Inclined showers (direct)
    - R. Vázquez talk



- Muons are very sensitive to hadronic interactions
  - Originated essentially from the decay of charged pions
  - Once produced they have a large probability to reach the ground
- Number of muons can be measured in:
  - Vertical showers (indirect)
    - $\theta < 60^{\circ}$
  - Inclined showers (direct)
    - R. Vázquez talk
- Measurement of the muon density at a fixed core distance:
  - Analysis of the time trace:
    - Muon counting
      - Prompt peak signal
    - Smoothing method
      - Estimate the e.m. signal



 Exploit the universality features of the e.m. shower component

$$S_{\text{MC}}(E, \theta, \langle X_{\text{max}} \rangle) = S_{\text{EM}}(E, \theta, DX)$$
$$+ N_{\mu}^{\text{rel}} S_{\mu}^{\text{QGSII,p}} (10^{19} \,\text{eV}, \theta, DX)$$



 Exploit the universality features of the e.m. shower component

$$S_{\text{MC}}(E, \theta, \langle X_{\text{max}} \rangle) = S_{\text{EM}}(E, \theta, DX)$$
  
  $+N_{\mu}^{\text{rel}} S_{\mu}^{\text{QGSII,p}} (10^{19} \,\text{eV}, \theta, DX)$ 

### Hybrid events

- Reproduce the data e.m. longitudinal profile with simulation
- Compare signal at the ground MC/data





# Number of Muons in EAS



- All methods show that there is a muon deficit in MC simulations
  - E<sub>LAB</sub>≃10<sup>19</sup> eV (√s≈140 TeV for proton primaries)
- Additionally an increase on the FD energy scale of ~ 26% is prefered
  - Compatible with FD systematic uncertainty of 22%

### Conclusions

- The Pierre Auger Observatory is working smoothly at full acceptance.
- Energy spectrum measured with high statistics
  - Ankle structure determined with high definition
  - A suppression, compatible with the GZK cutoff, is observed at the highest energies (> 20  $\sigma$ )
- Observation of a change in the shower development with energy
  - Mass composition?
  - Cross-section or Hadronic models?
- Data shows a deficit of muons in Hadronic models
- An update of the Pierre Auger Observatory results will be shown in ICRC 2011 Beijing



# **BACKUP SLIDES**

# **FD** systematics

| Uncertainty (%) | Source                                              |
|-----------------|-----------------------------------------------------|
| 14              | Absolute fluorescence yield                         |
| 10              | Reconstruction of the longitudinal shower profile   |
| 9               | Absolute calibration of the fluorescence telescopes |
| 7               | Aerosol optical depth                               |
| 5               | Water vapour quenching                              |
| 4               | Invisible energy                                    |
| 3               | Wavelength dependent response                       |
| 1               | Molecular optical depth                             |
| 1               | Multiple scattering models                          |
| 22              | Total                                               |

# Composition from the energy spectrum



# **Experiments Exposure**



# Interactions parameters







# Changing interaction parameters



# Changing interactions parameters



# **GZK** effect





# Changing interactions parameters

