

Hit time computed with the Silicon Vertex Detector (SVD) of Belle II

4D Track Reconstruction

May 8th, 2024, online

Luigi Corona - INFN Pisa luigi.corona@pi.infn.it

Belle II SVD paper: JINST, 17, 2022

Outline

- Introduction to Belle II at SuperKEKB
- Introduction to SVD
- SVD time
- SVD time applications
- Conclusions

4D Track Reconstruction SVD Hit Time. May 8th, 2024. Luigi Corona

Introduction to Belle II

Belle II at SuperKEKB

SuperKEKB

- Asymmetric e⁺e⁻ collider operated at √s = 10.58 GeV [Y(4S)]
- Well know initial-state condition and low multiplicity environment

Belle II

- Hermetic detector with high performances (upgrade of Belle at KEKB)
- **Run1** (2019-2022) → **424 fb**⁻¹, Run2 just started
- **Dedicated low-multiplicity trigger** → Belle II dataset unique

Typical event at Belle II

- Average multiplicty in a Y(4S) event
 - 11 charged tracks
 - 5 neutral pions
 - 1 neutral kaon
- Few tracks with small momentum to reconstruct
 - They are significantly affected by multiple scattering
- Signal hits in VXD are overwhelmed by beam-background hits
- SuperKEKB nominal luminosity: 6x10³⁵ cm⁻²s⁻¹

p [GeV/c]

3

S.KEKB nominal luminosity	Layer 1 of pixels		Layer 3 of strips	
	Number of hits	Occupancy	Number of hits	Occupancy
Y(4S)	11	5 · 10 ⁻⁶	11	0.2%
beam bkg	50000	3%	3200	3%

Introduction to SVD

Silicon Vertex Detector (SVD)

þ310

SVD structure:

- **172 sensors**, 1.2 m² of sensitive area, **224k readout** strips \rightarrow grouped into ladders
- Slanted forward sensors \rightarrow maximize acceptance with smaller incidence angle
- **Low material budget** of 0.7% X₀/layer
- Diamond sensors for radiation monitor and beam abort

Main SVD functions:

- Standalone tracking for low *p*_T tracks
- Extrapolate tracks to PXD
- Precise and efficient vertexing of K_s
- Provide **particle identification** with dE/dx

Layer	Ladder/Layer	Sensor/Ladder	Slant angle
3	7	2	0^{o}
4	10	3	11.9^{o}
5	12	4	17.2^{o}
6	16	5	21.1^{o}

SVD sensors

- Double-Sided Strip Detector (DSSD)
 - Provide 2D spatial information

- Sensor thickness: 300–320 μm
- Depletion voltage: 20-60 V
- Operation voltage: 100 V

SVD readout system

Front-end ASIC: APV25 chip

- Radiation hardness > 100 Mrad
- Shaping time of 50 ns
- 128 channel inputs
- Operated in multi-peak mode at 32 MHz
 - Collision frequency 256 MHz and **clock not synchronous with** → collisions
 - 6 samples recorded, 3/6 samples in future to reduce data size →
- Physics events are triggered at maximum 30kHz

600

SVD Hit Time

SVD hit time

- Precise determination of the SVD hit time is crucial to significantly reduce the occupancy by rejecting off-time particles
- Physics events are triggered at maximum 30kHz, while the frequency of bunch crossing is 256 MHz

Off-time and on-time particle signals

SVD hit time determined using the sampling of the signal response and the information of the trigger arrival

ON-time particle noiseless response

SVD hit time computation

- Default algorithm in reconstruction:
 - Sum the SVD cluster strips → a single strip where the amplitude of the 6 samples is the sum of the amplitudes of the samples of the strips
 - Find the best three samples and take the weighted average
 - Max sum of samples taken 2-by-2 + the sample before

n: sample *A_n*: ampltude of the sample *t_n*: time of the sample

ON-time particle noiseless response

• Estimate the position of the peak in the SVD reference frame (*t*=0 at first sample)

Hit time calibration

- Use CDC Event Time to calibrate SVD Time \rightarrow from SVD reference frame to trigger reference frame
 - → CDC and SVD times are not synchronized → we exploit the info about trigger arrival to synchronize them
 - Exploit the correlation between CDC and SVD times to calibrate SVD time \rightarrow fit with a polynomial function

Performed sensor/side-by-sensor/side

⁴D Track Reconstruction SVD Hit Time. May 8th, 2024. Luigi Corona

Calibrated SVD time

 Peak below < 50 ns: accumulation of off-time partcles hitting the sensor before the beginning of the acquisition window

4D Track Reconstruction SVD Hit Time. May 8th, 2024. Luigi Corona

Calibrated SVD time: resolution

- Resolution is smaller than 3 ns in L3 in both SVD sides → Can be used to reject off-time hits, estimate Event Time
 and Track Time
- Excellent hit time resolution allows efficient removal of off-time tracks
 - Efficient to remove 50% off-time hits, keeping 99% signal efficiency

Cluster time - CDC Event Time L3 u/P side

4D Track Reconstruction SVD Hit Time. May 8th, 2024. Luigi Corona

SVD Hit Time Applications

Event Time with SVD

- Event time (EventTO): time of the collision w.r.t. to the arrival of the trigger signal
- EventTO is used to reduce the impact of beam background in the reconstruction
 - In a quasi-continuous machine, background hit time distribution is flat, while the signal hit time distribution of peaks around EventTO
 - Average of cluster times associated to tracks with p_T > 250 MeV/c
- SVD EventT0 performance is excellent
 - Similar resolution o(1ns) to CDC on hadronic data
 - Higher efficiency than CDC (>98.5%), especially in low-multiplicity events
 - TOP has a better resolution, but a much lower efficiency

SVD EventT0 o(1000) times faster computation time w.r.t. the CDC EventT0 \rightarrow Speed up online reconstruction

Track time with SVD

Fake rate: tracks reconstructed with hits from beam-induced background or originating from wrong combinations of hits

- Average of the time of SVD hits associated to tracks referred to EventT0
 - **t**SVD *t*_{track} **Belle II** (Preliminary) MC total + Data $\tau\tau$ 10^{6} bucket36: 17.82 fb⁻¹ other qq 10⁵ 10^{4} 10^{3} 10² 10 -100-80-60-20 0 20 40 60 80 100 probe track time [ns]
- Can be used for **background rejection**. From preliminary studies, **cuttng at 20 ns wi**
 - Almost no impact on tracking efficiency in data
 - Fake rate by a factor 1.5 on high-background data
- **Provide track time to analysts** to reject background

Hit time selections

4D Track Reconstruction SVD Hit Time. May 8th, 2024. Luigi Corona

SVD hit-time grouping

- Further decrease of fake rate will come from SVD cluster-time grouping and selection based on "track time"
- Grouping
 - Exploit SVD hit-time to implement a event-by-event classification of groups of hits (clusters)
 - Clusters belonging to tracks coming from the same collision belong to the same group
 - The other ones are probably from tracks from different collisions/beam background
- Selection on track-time to remove off-time tracks
 - Further reduce the fake rate by a factor 1.5 on high-background data (from preliminary studies)
- The limit of 5% occupancy can be further increased to ~6%

Summary and conclusions

SVD is the Silicon Strip Detector of the VXD

- One of the tracking system detectors (PXD, SVD, CDC)
- Several functions: standalone tracking and particle identification of low p_T tracks, extrapolate tracks to PXD
- It can do more than what was designed for \rightarrow excellent performance of SVD Hit Time
 - SVD Event Time estimation → similar resolution (1 ns), higher efficiency, much faster execution time w.r.t. CDC
 - → Track Time \rightarrow interesting tool to reduce fake rate
 - → Hit time selections → reduce fake rate significantly

Belle II SVD paper: JINST, 17, 2022

4D Track Reconstruction SVD Hit Time. May 8th, 2024. Luigi Corona

