11th LISA CosWG Workshop

A tool for Cosmological Phase Transitions and GWs

Physics Department – University of Porto

2024-06-18

Marco Finetti

Project ID PRT/BD/154730/2023 Bolsas de Investigação para Doutoramento FCT-ECIU

Supervisors

António Morais University of Aveiro | Gr@v

Germano Nardini University of Stavanger

Contributors

Vedran Brdar (Oklahoma State U.) Marco Finetti (U. of Aveiro) Marco Matteini (Jožef Stefan Institute) António Morais (U. of Aveiro) Miha Nemevšek (Jožef Stefan Institute)

 $Gr \odot v$

BSM physics

BSM physics

• EW baryogenesis

BSM physics

- EW baryogenesis
- Allowing multiple vacuum directions (multi-field models)

& Single-Field Models

BSM physics

- EW baryogenesis
- Allowing multiple vacuum directions (multi-field models)
- Focus on single-field

I order phase transitions (FOPTs) Vtrematuctuation roll to true vacuum 9uantum tunnelling φ \bigcirc . \rightarrow

Cosmological Phase Transitions & Single-Field Models

BSM physics

- EW baryogenesis
- Allowing multiple vacuum directions (multi-field models)
- Focus on single-field
- strong vev hierarchy
 - \Rightarrow single-field approximation \checkmark

P.M. Schicho, T.V.I. Tenkanen and J. Östermana (JHEP06(2021)130)

GWCalc Paclet

P.M. Schicho, T.V.I. Tenkanen and J. Östermana (JHEP06(2021)130)

3

Collider BSM theory $(A) \rightarrow$ phenomenology Equilibrium (B) thermodynamics Bubble $(F) \longrightarrow Baryogenesis$ (C)dynamics Relativistic (D) hydrodynamics Gravitational (E)wave background

P.M. Schicho, T.V.I. Tenkanen and J. Östermana (JHEP06(2021)130)

GWCalc Paclet

- B. Characterize PTs
 - critical temperature
 - 1st, 2nd order, cross-over

P.M. Schicho, T.V.I. Tenkanen and J. Östermana (JHEP06(2021)130)

GWCalc Paclet

- B. Characterize PTs
 - critical temperature
 - 1st, 2nd order, cross-over
- C. Bubble dynamics (1st order)
 - T_n, T_p

. . .

٠

• strength α , duration β^{-1}

P.M. Schicho, T.V.I. Tenkanen and J. Östermana (JHEP06(2021)130)

GWCalc Paclet

- Β. Characterize PTs
 - critical temperature •
 - 1st, 2nd order, cross-over
- C. Bubble dynamics (1st order)
 - T_n, T_p •
 - strength α , duration β^{-1} •
 - . . .

٠

GWB templates D.

reduction

Outlook

Paclet FindBounce + action fit

• Pipeline requires to determine temperatures of

• Pipeline requires to determine temperatures of

• nucleation
$$\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$$

- Pipeline requires to determine temperatures of
 - nucleation $\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$
 - percolation $I(\Gamma, T_p) \approx 0.34$

Pipeline requires to determine temperatures of •

• nucleation
$$\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$$

• percolation $I(\Gamma, T) \approx 0.34$

$$\left\{ \Gamma(T) = A\left(\frac{S_3}{T}, T\right) e^{-\frac{S_3}{T}} \right\}$$

• percolation $I(\Gamma, T_p) \approx 0.34$

- Pipeline requires to determine temperatures of ٠
 - nucleation $\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$ percolation $I(\Gamma, T_p) \approx 0.34$ $\left\{ \Gamma(T) = A\left(\frac{S_3}{T}, T\right) e^{-\frac{S_3}{T}} \right\}$
- $\frac{S_3}{T}(T)$ numerical estimation: FindBounce

- Pipeline requires to determine temperatures of ٠
 - nucleation $\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$ percolation $I(\Gamma, T_p) \approx 0.34$ $\left\{ \Gamma(T) = A\left(\frac{S_3}{T}, T\right) e^{-\frac{S_3}{T}} \right\}$
- $\frac{S_3}{T}(T)$ numerical estimation: FindBounce •
 - implements polygonal bounces •

- Pipeline requires to determine temperatures of •
 - nucleation $\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$ percolation $I(\Gamma, T_p) \approx 0.34$ $\left\{ \Gamma(T) = A\left(\frac{S_3}{T}, T\right) e^{-\frac{S_3}{T}} \right\}$
- $\frac{S_3}{T}(T)$ numerical estimation: FindBounce •
 - implements polygonal bounces •
 - $4d(S_4)$ or $3d(S_3)$

0.10 0.05 0.00 -0.05-0.10-2.0-1.5-1.0-0.50.0

- Pipeline requires to determine temperatures of •
 - nucleation $\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$ percolation $I(\Gamma, T_p) \approx 0.34$ $\left\{ \Gamma(T) = A\left(\frac{S_3}{T}, T\right) e^{-\frac{S_3}{T}} \right\}$
- $\frac{S_3}{T}(T)$ numerical estimation: FindBounce •
 - implements polygonal bounces •
 - $4d(S_4)$ or $3d(S_3)$
 - ✓ thin-wall regime

0.10 0.05 0.00 -0.05-0.10-2.0-1.5-1.0-0.50.0

- Pipeline requires to determine temperatures of •
 - nucleation $\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$ percolation $I(\Gamma, T_p) \approx 0.34$ $\left\{ \Gamma(T) = A\left(\frac{S_3}{T}, T\right) e^{-\frac{S_3}{T}} \right\}$
- $\frac{S_3}{T}(T)$ numerical estimation: FindBounce •
 - implements polygonal bounces •
 - $4d(S_4)$ or $3d(S_3)$
 - ✓ thin-wall regime
 - efficient: $t \sim O(\# \text{ fields}), O(\# \text{ segments})$ •

Guada, Nemevšek, Pintar (CPC 256 (2020) 10748)

4

Paclet

- Pipeline requires to determine temperatures of •
 - nucleation $\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$ percolation $I(\Gamma, T_p) \approx 0.34$ $\left\{ \Gamma(T) = A\left(\frac{S_3}{T}, T\right) e^{-\frac{S_3}{T}} \right\}$
- $\frac{S_3}{T}(T)$ numerical estimation: FindBounce •
 - implements *polygonal bounces*
 - $4d(S_4)$ or $3d(S_3)$
 - ✓ thin-wall regime
 - efficient: $t \sim O(\# \text{ fields}), O(\# \text{ segments})$ •
- Method •

Paclet FindBounce + action fit

- Pipeline requires to determine temperatures of •
 - nucleation $\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$ percolation $I(\Gamma, T_p) \approx 0.34$ $\left\{ \Gamma(T) = A\left(\frac{S_3}{T}, T\right) e^{-\frac{S_3}{T}} \right\}$
- $\frac{S_3}{T}(T)$ numerical estimation: FindBounce
 - implements *polygonal bounces*
 - $4d(S_4)$ or $3d(S_3)$
 - ✓ thin-wall regime
 - efficient: $t \sim O(\# \text{ fields}), O(\# \text{ segments})$ •
- Method •
 - 1. \hat{T}_n estimate via $\Gamma/H^4 \sim 1$

4

Paclet FindBounce + action fit

- Pipeline requires to determine temperatures of •
 - nucleation $\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$ percolation $I(\Gamma, T_p) \approx 0.34$ $\left\{ \Gamma(T) = A\left(\frac{S_3}{T}, T\right) e^{-\frac{S_3}{T}} \right\}$
- $\frac{S_3}{T}(T)$ numerical estimation: FindBounce
 - implements *polygonal bounces*
 - $4d(S_4)$ or $3d(S_3)$
 - ✓ thin-wall regime
 - efficient: $t \sim O(\# \text{ fields}), O(\# \text{ segments})$ •
- Method •
 - 1. \hat{T}_n estimate via $\Gamma/H^4 \sim 1$
 - 2. S_3/T fit/interpolation about (~ \hat{T}_n, T_c)

Guada, Nemevšek, Pintar (CPC 256 (2020) 10748)

4

Paclet FindBounce + action fit

- Pipeline requires to determine temperatures of •
 - nucleation $\int_{T_n}^{T_c} dT \frac{\Gamma(T)}{T H^4(T)} \sim 1$ percolation $I(\Gamma, T_p) \approx 0.34$ $\left\{ \Gamma(T) = A\left(\frac{S_3}{T}, T\right) e^{-\frac{S_3}{T}} \right\}$
- $\frac{S_3}{T}(T)$ numerical estimation: FindBounce
 - implements *polygonal bounces*
 - $4d(S_4)$ or $3d(S_3)$
 - ✓ thin-wall regime
 - efficient: $t \sim O(\# \text{ fields}), O(\# \text{ segments})$ •
- Method •
 - 1. \hat{T}_n estimate via $\Gamma/H^4 \sim 1$
 - 2. S_3/T fit/interpolation about (~ \hat{T}_n, T_c)
 - T_n , T_p via above integrals 3.

Guada, Nemevšek, Pintar (CPC 256 (2020) 10748)

Dimensional

reduction

Outlook

• Scalar potential

$$V(\phi,T) = \frac{c_2}{2}(T^2 - T_0^2)\phi^2 - \frac{c_3}{3}T\phi^3 + \frac{c_4}{4}\phi^4$$

• Scalar potential

 $V(\phi, T) = \frac{c_2}{2} (T^2 - T_0^2) \phi^2 - \frac{c_3}{3} T \phi^3 + \frac{c_4}{4} \phi^4$

- Analytic derivation of the action
 - in thin/thick wall regimes
 - intermediate interpolation

Matteini, Nemevšek, Shoji, Ubaldi (2024, 2404.17632)

Example I Fluid-field model

• Scalar potential

 $V(\phi, T) = \frac{c_2}{2} (T^2 - T_0^2) \phi^2 - \frac{c_3}{3} T \phi^3 + \frac{c_4}{4} \phi^4$

- Analytic derivation of the action
 - in thin/thick wall regimes
 - intermediate interpolation

Matteini, Nemevšek, Shoji, Ubaldi (2024, 2404.17632)

\rightarrow Paclet

• Scalar potential

 $V(\phi,T) = \frac{c_2}{2}(T^2 - T_0^2)\phi^2 - \frac{c_3}{3}T\phi^3 + \frac{c_4}{4}\phi^4$

- Analytic derivation of the action
 - in thin/thick wall regimes
 - intermediate interpolation

Matteini, Nemevšek, Shoji, Ubaldi (2024, 2404.17632)

 \rightarrow Paclet

In[71]:= Trs = TBounce[V, vw, "TracingMethod" → NSolve, "PlotAction" → True, "PlotGWSpectrum" → True]

Determining phase structure

Example I Fluid-field model

Scalar potential

 $V(\phi,T) = \frac{c_2}{2}(T^2 - T_0^2)\phi^2 - \frac{c_3}{3}T\phi^3 + \frac{c_4}{4}\phi^4$

- Analytic derivation of the action
 - in thin/thick wall regimes
 - intermediate interpolation

Matteini, Nemevšek, Shoji, Ubaldi (2024, 2404.17632)

 \rightarrow Paclet

Background Paclet Dimensional reducti lon Outlook

Scalar potential

 $V(\phi,T) = \frac{c_2}{2}(T^2 - T_0^2)\phi^2 - \frac{c_3}{3}T\phi^3 + \frac{c_4}{4}\phi^4$

- Analytic derivation of the action
 - in thin/thick wall regimes
 - intermediate interpolation

Matteini, Nemevšek, Shoji, Ubaldi (2024, 2404.17632)

 \rightarrow Paclet

» α → 0.00154718

- » β/H → 1679.43
- » Percolation condition: satisfied (-2.34863 · 10⁻¹¹)

20.9534

P.M. Schicho, T.V.I. Tenkanen and J. Östermana (JHEP06(2021)130)

GWCalc Paclet

- B. Characterize PTs
 - critical temperature
 - 1st, 2nd order, cross-over
- C. Bubble dynamics (1st order)
 - T_n, T_p
 - strength α , duration β^{-1}
- D. GW templates

. . .

٠

P.M. Schicho, T.V.I. Tenkanen and J. Östermana (JHEP06(2021)130)

<u>GWCalc Paclet</u>

- B. Characterize PTs
 - critical temperature
 - 1st, 2nd order, cross-over
- C. Bubble dynamics (1st order)
 - T_n, T_p
 - strength α , duration β^{-1}
 - _

. . .

•

- D. GW templates
- B. Dimensional reduction
 - Interface with DRalgo

Dimensional Reduction An improved recipe for thermal EFTs

Dimensional Reduction An improved recipe for thermal EFTs

• Dimensional reduction (DR)

Dimensional Reduction An improved recipe for thermal EFTs

- Dimensional reduction (DR)
 - time \rightarrow temperature \Rightarrow high-*T* approach

Background

Paclet

Dimensional

reduction

Dimensional Reduction An improved recipe for thermal EFTs

- Dimensional reduction (DR)
 - time \rightarrow temperature \Rightarrow high-*T* approach
 - include systematically higher-order resummations

- Dimensional reduction (DR)
 - time \rightarrow temperature \Rightarrow high-*T* approach
 - include systematically higher-order resummations
- Narrower theoretical uncertainties

Jutlook

Dimensional Reduction An improved recipe for thermal EFTs

- Dimensional reduction (DR)
 - time \rightarrow temperature \Rightarrow high-*T* approach
 - include systematically higher-order resummations
- Narrower theoretical uncertainties
 - \Rightarrow narrower GWB uncertainties

Jutlook

Dimensional Reduction An improved recipe for thermal EFTs

- Dimensional reduction (DR)
 - time \rightarrow temperature \Rightarrow high-*T* approach
 - include systematically higher-order resummations
- Narrower theoretical uncertainties
 - \Rightarrow narrower GWB uncertainties
- DR implementation Automated extraction Dralgo $\rightarrow V_{eff}$, including

Dutlook

Dimensional Reduction An improved recipe for thermal EFTs

- Dimensional reduction (DR)
 - time \rightarrow temperature \Rightarrow high-*T* approach
 - include systematically higher-order resummations
- Narrower theoretical uncertainties
 - \Rightarrow narrower GWB uncertainties
- DR implementation Automated extraction Dralgo $\rightarrow V_{\rm eff}$, including
 - export of DR quantities

Dutlook

Dimensional Reduction An improved recipe for thermal EFTs

- Dimensional reduction (DR)
 - time \rightarrow temperature \Rightarrow high-T approach
 - include systematically higher-order resummations
- Narrower theoretical uncertainties
 - \Rightarrow narrower GWB uncertainties
- DR implementation Automated extraction Dralgo $\rightarrow V_{\rm eff}$, including
 - export of DR quantities
 - RG resolution

Dutlook

Dimensional Reduction An improved recipe for thermal EFTs

- Dimensional reduction (DR)
 - time \rightarrow temperature \Rightarrow high-T approach
 - include systematically higher-order resummations
- Narrower theoretical uncertainties
 - \Rightarrow narrower GWB uncertainties
- DR implementation Automated extraction Dralgo $\rightarrow V_{\rm eff}$, including
 - export of DR quantities
 - RG resolution
 - closed-form $V_{\rm eff}(\phi, T)$

Example II Dark photon model

• Dark U(1) gauge sector

- Dark U(1) gauge sector
- Scalar content:
 - $V(\phi,T) = \mu^2 \phi^2 + \lambda \phi^4$
 - + fermions

- Dark U(1) gauge sector
- Scalar content:
 - $V(\phi, \overline{T)} = \mu^2 \phi^2 + \lambda \phi^4$
 - + fermions
- $V_{\rm eff} @ NLO$

- Dark U(1) gauge sector
- Scalar content:
 - $V(\phi,T) = \mu^2 \phi^2 + \lambda \phi^4$
 - + fermions
- $V_{\rm eff}$ @ NLO
- \rightarrow Paclet

Found transition at critical temperature

» T_c → 121.823

Computing nucleation temperature via $\Gamma/H^4 \approx 1$ criterion and bisection method...

» $T_n^{\text{estimate}} \rightarrow 80.4891$ $S_3/T = 151.922$ $\Gamma/H^4 = 0.658416$

- Dark U(1) gauge sector
- Scalar content: $V(\phi,T) = \mu^2 \phi^2 + \lambda \phi^4$
 - + fermions
- $V_{\rm eff}$ @ NLO
- \rightarrow Paclet

Example II Dark photon model

» Action function \rightarrow ActionFunction \blacksquare Type: PWLaurent Domain: {75.7, 122.}

Computing nucleation temperature via $\int dT \Gamma / H^4 \approx 1$ criterion and action fit method...

» $T_n \rightarrow 80.0018$ S₃/T = 145.741 $\Gamma/H^4 = 304.47$ $\int_{T_n}^{T_c} \frac{dT}{T} \frac{\Gamma}{H^4} = 1.00087$

Computing phase transition parameters...

Solving $I_{\mathcal{F}}(T_p) = 0.34$ for Tp

Searching for Tp with FindRoot ...

» T_p → 78.8341

- Dark U(1) gauge sector
- Scalar content:

 $V(\phi,T) = \mu^2 \phi^2 + \lambda \phi^4$

- + fermions
- $V_{\rm eff}$ @ NLO
- \rightarrow Paclet

Example II Dark photon model

- Dark U(1) gauge sector
- Scalar content:
 - $V(\phi,T) = \mu^2 \phi^2 + \lambda \phi^4$
 - + fermions
- $V_{\rm eff}$ @ NLO
- \rightarrow Paclet

- » β /H → 1144.06
- » Percolation condition: satisfied (-3.46698 · 10⁻¹²)

Computing GW spectrum...

- Paclet current status
 - characterize of FOPTs and GWB
 - of single-field models
 - ✓ S_3/T via polygonal bounce (FindBounce)
 - ✓ optional, user-friendly interface with DRalgo
 - ✓ fully Mathematica-based

- Paclet current status
 - characterize of FOPTs and GWB
 - of single-field models
 - ✓ S_3/T via polygonal bounce (FindBounce)
 - ✓ optional, user-friendly interface with DRalgo
 - ✓ fully Mathematica-based
- Upcoming developments
 - multi-field
 - improved phase-tracing routine

<u>CPC 256 (2020) 10748</u>

- Paclet current status
 - characterize of FOPTs and GWB
 - of single-field models
 - ✓ S_3/T via polygonal bounce (FindBounce)
 - ✓ optional, user-friendly interface with DRalgo
 - ✓ fully Mathematica-based
- Upcoming developments
 - multi-field
 - improved phase-tracing routine
- Potential developments
 - ? v_w estimation in LTE
 - ? Decay rate prefactor $\Gamma = A e^{-S_3/T}$

CPC 256 (2020) 10748

 v_w ?

 $\langle \phi \rangle_{\text{FALSE}}$

 $\langle \phi \rangle_{\mathrm{TRUE}}$

- Paclet current status
 - characterize of FOPTs and GWB
 - of single-field models
 - ✓ S_3/T via polygonal bounce (FindBounce)
 - ✓ optional, user-friendly interface with DRalgo
 - ✓ fully Mathematica-based
- Upcoming developments
 - multi-field
 - improved phase-tracing routine
- Potential developments
 - ? v_w estimation in LTE
 - ? Decay rate prefactor $\Gamma = A e^{-S_3/T}$

<u>CPC 256 (2020) 10748</u>

 $v_w?$

 $\langle \phi \rangle_{\text{FALSE}}$

 $\langle \phi \rangle_{\mathrm{TRUE}}$

- Paclet current status
 - characterize of FOPTs and GWB
 - of single-field models
 - ✓ S_3/T via polygonal bounce (FindBounce)
 - ✓ optional, user-friendly interface with DRalgo
 - ✓ fully Mathematica-based
- Upcoming developments
 - multi-field
 - improved phase-tracing routine
- Potential developments
 - ? v_w estimation in LTE
 - ? Decay rate prefactor $\Gamma = A e^{-S_3/T}$

Suggestions are welcome!

<u>CPC 256 (2020) 10748</u>

 $v_w?$

 $\left<\phi\right>_{\text{FALSE}}$

 $\langle \phi \rangle_{\mathrm{TRUE}}$

- Fundamental problem: baryon asymmetry
- Sakharov conditions (1967) SM
 - 1. B-number violation
 - 2. C & P violation
 - 3. Departure from *T*-equilibrium

 $\checkmark \rightarrow$ weakly

 $\checkmark \rightarrow$ non-perturbatively

LQ Model

 $\checkmark \rightarrow LQs$ acquire vev

 $\checkmark \rightarrow \text{potential}$

```
\checkmark \rightarrow strong FOPTs
```

 $\langle \phi \rangle \neq 0$ $\langle \phi \rangle = 0$ $\chi_L + \chi_R$ χ_L \downarrow B^{*} B^{*} ψ_W $\phi \rangle = 0$

BSM physics required!

From Particle Physics to Cosmology

 $H(T)(TI'(T)+3)\Big|_{T_p} < 0$

• strength $\alpha = \frac{1}{\rho} \Delta \left[V - \frac{T}{4} \partial_T V \right]$

• duration⁻¹
$$\frac{\beta}{H} = T \frac{d}{dT} \left(\frac{S_3}{T} \right)$$

In[5]:= SetDirectory[NotebookDirectory[]];
LoadDRExpressions["ahDRExpressions.m"]

```
ComputeEffectivePotential[{gsq0,λ0,msq0},{μ0,μ0/10,100 μ0},
subRules,"OrderVeff"→"NLO","LoadDRFrom"→"ahDRExpressions.m"]
```


In[18]:= $V[\phi, \mu 0]$

 $Out[18] = -1.06103 \left((53.3507 - 0.00338267 \phi^2)^{3/2} + (53.3507 - 0.00112756 \phi^2)^{3/2} + 0.000265675 \phi^4 - 25.1409 \phi^2 + 0.118862 (\phi^2)^{3/2} \right)$

EW Baryogenesis The matter-antimatter problem

68