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Primordial first order phase transitions

• Primordial gravitational waves could have been sourced by
first order phase transitions, such as one associated with the
generation of the masses of elementary particles.

• Such transitions proceed by nucleation, expansion and merger
of phase bubbles. The phase transition comes to an end when
all the bubbles have merged with neighboring ones, leaving
behind a characteristic spectrum of sound waves, which are an
important source of primordial GWs.

• Even if not already present by the end of the transition,
shocks develop with time from the steepening sound waves. A
statistically random field of shock waves is called acoustic
turbulence.
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Fluid equations

The starting point is the relativistic equations of motion

∇νT µν = 0 (1)

T µν = T µν
PF + T µν

NPF (2)

T µν
PF = (ρ + p)uµuν + pgµν (3)

T µν
NPF = −2η̃σµν (4)

Expanding these to second order while assuming all quantities with
units of velocity to be small in comparison to the speed of light
with the ultrarelativistic equation of state

p = c2
sρ (5)

and constant kinematic shear viscosity gives. . .
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Continuity equation

∂ ln ρ

∂t
+ (1 + c2

s)∇ · v + (1 − c2
s)v · ∇ ln ρ = 0 (6)

Euler equation

∂v
∂t

+ (v · ∇)v − c2
sv(∇ · v) − c2

sv(v · ∇ ln ρ) + c2
s

1 + c2
s

∇ ln ρ

= η

1 + c2
s

[
∇2v + 1

3∇(∇ · v) + 2S · ∇ ln ρ

]
(7)

where
Sij = 1

2

(
∂vi

∂xj
+ ∂vj

∂xi
− 2

3δij∇ · v
)

(8)
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Numerical simulations and initial conditions

• Self-made 3D parallel MPI Python simulation code.

• The phase transition that precedes acoustic turbulence is not
simulated in order to save computation time, and to ensure
that the observed effects are not special to phase transitions.

• Initial conditions given in terms of longitudinal and transverse
spectral densities. P⊥(k) = 0 so that the flow is dominated by
shocks.

• Velocity Fourier components are given random phases that
correspond to random initial conditions.

• The initial energy density is uniform.
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Universal shape for the energy spectrum
• Solving fluid equations for a single 1D shock → tanh-profile.

• The energy spectrum can be written as

E(κ, t) = L(t)E(t)Ψ(κ), κ = L(t)k (9)

where E =
〈
v2〉 /2 is the kinetic energy.

• Using the tanh-profile, the spectral shape function can be
written as

Ψ(κ) = Ψ̃0
(κ/κp)β+4

1 + (κ/κp)α
I
(

πκ

2κs

)
(10)

where

I(P ) = 1
P

cosh(P )
sinh3(P )

∼


1

P 4 , P ≪ 1

4
P

e−2P , P ≫ 1
(11)
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The scaled energy
spectrum from
simulation data plotted
at various times. Dark
colors correspond to
late times.

The same spectra
collapsing into the
function Ψ(kL).
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Kinetic energy decay
• Decay more complicated for acoustic turbulence than vortical.

At late times, the mean decay rate set by the viscous
dissipation.

• Solving the differential equation for the kinetic energy using
the viscous dissipation term with the spectrum from previous
slide and assuming a k−2 inertial range power law and
stationarity of the spectrum at small wavenumbers gives

E(t) = E0(
1 + C t

ts

)ζ
, ζ = 2(β + 1)

β + 3 (12)

and for the integral length scale it follows

L(t) = L0

(
1 + C

t

ts

)λ

, λ = 2
β + 3 (13)
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Power law All runs Selected runs

E(k): Inertial range −2.44 ± 0.02 −2.31±0.02

E(k): Low wavenumber 3.44 ± 0.21 3.96±0.12

Kinetic energy −1.30 ± 0.01 −1.33±0.01

Table 1: The averaged power law values for the inertial range power law
kβ−α and the low wavenumber power law kβ of the energy spectrum, and
the kinetic energy decay power law t−ζ obtained from the 10003 resolution
numerical simulations. In the selected runs column, only runs with Re > 40
have been taken into account for the inertial range, runs with Re < 60
for the low-k power law, and Run II has been excluded in the case of
the kinetic energy decay power law for more optimal measurements. The
expected values are -2, 4, and -10/7.
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GW power spectrum

• We have approximated the GW power spectrum for acoustic
turbulence by using the Gaussian approximation for the fluid
velocity correlations and assuming departures from
Gaussianity to be small.

• We also assume that the transition completes in much less
than a Hubble time, meaning that the expansion of the
universe can be neglected.

• The GW spectrum has been integrated numerically using the
universal shape of the energy spectrum and the model for the
decay.
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Figure 1: The converged spectra of the decaying case, colored in blue, plot-
ted together with the stationary spectra (C = 0), colored in black, at times
tH⋆/ts ∈ [0.5, 2, 10, 20, 100, 520]. The stationary spectrum at tH⋆/ts = 2
(green curve) coincides with the converged spectra of the decaying case at
large wavenumbers. The chosen values for the free parameters are β = 4,
v̄0 = 0.2, and C = 0.2.
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tH⋆/ts L(tH⋆)/L0 p

21 1.60 4.66 ± 0.08

52 2.00 4.54 ± 0.05

104 2.41 4.24 ± 0.05

260 3.10 4.03 ± 0.03

520 3.78 3.99 ± 0.03

1039 4.60 3.98 ± 0.03

1559 5.16 3.98 ± 0.02

2078 5.60 3.98 ± 0.03

Table 2: The measured power law index p in the power law range kp

below the peak for the GW power spectrum Pgw for different GW source
durations. The fitting range is kL0 ∈ [0.28, 0.45]. The measurements
indicate a convergence in the power law towards k4 at times for which
L(tH⋆

)/L0 ⪆ 3.0.
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Summary

• The found decay properties (→ t−10/7) and the universal
shape of the fluid energy spectrum (broken power law with
k4, k−2) are used to approximate the GW power spectrum of
decaying acoustic turbulence.

• The decay is found to bring about a convergence in the
spectral amplitude and the peak power law that leads to a
shallower power law than the k9 of the stationary case.

• For v̄0 = 0.2, C = 0.2 the power law has converged to k4 at
times for which L(tH⋆)/L0 > 3.0.

• More careful study of the parameter space in terms of v̄0 and
C and their potential effects on the power law value and
convergence time, along with generalizing the calculation for
the expanding universe case, is left as future work.
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Figure 2: Fit (dashed red line) on the function Ψ(κ) obtained from the
longitudinal energy spectrum data of a Re0 = 10 run at t = 20ts using the
previous equation as a fitting function. The obtained fit parameters are
Ψ̃0 = 0.61, β = 3.31, α = 7.72, κp = 1.03, and κs = 2.65.
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ID β0 β0 − α0 ⟨β⟩t σβ ⟨α⟩t σα ⟨β − α⟩t σβ−α

I 5 −7 4.053 0.032 7.173 0.194 −3.120 0.213
II 4 −2 3.074 0.411 5.240 0.303 −2.165 0.124
III 4 −8 3.400 0.326 6.321 0.221 −2.920 0.125
IV 5 −4 3.959 0.181 6.442 0.185 −2.483 0.018
V 6 −14 4.270 0.187 6.875 0.192 −2.605 0.024
VI 6 −4 4.356 0.172 6.819 0.175 −2.463 0.013
VII 7 −19 4.384 0.432 6.766 0.428 −2.382 0.017
VIII 10 −5 4.178 0.541 6.572 0.509 −2.394 0.061
IX 3 −8 2.668 1.345 4.998 1.251 −2.330 0.102
X 5 −15 3.715 0.724 6.048 0.695 −2.333 0.043
XI 4 −12 3.184 0.908 5.521 0.865 −2.338 0.051
XII 2 −19 1.575 0.792 3.924 0.772 −2.349 0.034
XIII 3 −29 3.638 1.493 5.858 1.463 −2.220 0.050
XIV 2 −31 1.934 1.387 4.160 1.361 −2.227 0.034
XV 4 −48 3.231 1.120 5.439 1.105 −2.208 0.037

Table 3: Measured power laws and their time fluctuations from the
simulations.
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Figure 3: The scaled inertial range power law values ⟨β − α⟩t of the pre-
vious table plotted against the Reynolds number at the middle of the
averaging interval at t = 10ts. The standard deviations resulting from the
time fluctuations are shown as error bars for each case.
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Figure 4: The dissipation rate of the kinetic energy fraction Er(t) = E(t)/E0
resulting from the viscous dissipation, the pressure gradient, and the non-
linear contributions measured in a simulation run.
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ID ⟨ζ⟩t σζ ζ ⟨C⟩t σC

I 1.497 0.019 1.433±0.003 0.240 0.006
II 0.891 0.016 1.341±0.045 0.517 0.023
III 1.257 0.014 1.375±0.032 0.243 0.005
IV 1.172 0.022 1.425±0.015 0.257 0.010
V 1.447 0.019 1.450±0.014 0.177 0.004
VI 1.313 0.022 1.456±0.013 0.206 0.006
VII 1.438 0.028 1.458±0.032 0.176 0.006
VIII 1.258 0.028 1.443±0.042 0.204 0.009
IX 1.059 0.031 1.294±0.167 0.289 0.019
X 1.318 0.034 1.404±0.064 0.193 0.010
XI 1.283 0.029 1.353±0.095 0.201 0.009
XII 1.317 0.043 1.126±0.151 0.200 0.013
XIII 1.448 0.074 1.397±0.136 0.169 0.016
XIV 1.402 0.101 1.189±0.228 0.186 0.026
XV 1.359 0.100 1.358±0.115 0.198 0.028

Table 4: Time averaged fit parameters for the kinetic energy power laws,
and the decay constant C for each of the simulation runs.
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Figure 5: The total gravitational wave power spectrum and
the components for various times obtained by numerical inte-
gration. The times in question are approximately tH⋆/ts ∈
[0.5, 1, 2, 5, 10, 21, 52, 104, 260, 520, 1039, 1559, 2078], with dark lines
corresponding to late times. The chosen values for the free parameters
are β = 4, v̄0 = 0.2, and C = 0.2.
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