Decay of three-dimensional acoustic turbulence and the resulting power spectrum for cosmological gravitational waves

Jani Dahl

June 19, 2024

Primordial first order phase transitions

- Primordial gravitational waves could have been sourced by first order phase transitions, such as one associated with the generation of the masses of elementary particles.
- Such transitions proceed by nucleation, expansion and merger of phase bubbles. The phase transition comes to an end when all the bubbles have merged with neighboring ones, leaving behind a characteristic spectrum of sound waves, which are an important source of primordial GWs.
- Even if not already present by the end of the transition, shocks develop with time from the steepening sound waves. A statistically random field of shock waves is called acoustic turbulence.

Fluid equations

The starting point is the relativistic equations of motion

$$\nabla_{\nu}T^{\mu\nu} = 0 \tag{1}$$

$$T^{\mu\nu} = T^{\mu\nu}_{\mathsf{PF}} + T^{\mu\nu}_{\mathsf{NPF}} \tag{2}$$

$$T_{\mathsf{PF}}^{\mu\nu} = (\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$$
(3)

$$T^{\mu\nu}_{\mathsf{NPF}} = -2\tilde{\eta}\sigma^{\mu\nu} \tag{4}$$

Expanding these to second order while assuming all quantities with units of velocity to be small in comparison to the speed of light with the ultrarelativistic equation of state

$$p = c_s^2 \rho \tag{5}$$

and constant kinematic shear viscosity gives...

Continuity equation

$$\frac{\partial \ln \rho}{\partial t} + (1 + c_s^2) \nabla \cdot \mathbf{v} + (1 - c_s^2) \mathbf{v} \cdot \nabla \ln \rho = 0$$
(6)

Euler equation

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} - c_s^2 \mathbf{v} (\nabla \cdot \mathbf{v}) - c_s^2 \mathbf{v} (\mathbf{v} \cdot \nabla \ln \rho) + \frac{c_s^2}{1 + c_s^2} \nabla \ln \rho$$
$$= \frac{\eta}{1 + c_s^2} \left[\nabla^2 \mathbf{v} + \frac{1}{3} \nabla (\nabla \cdot \mathbf{v}) + 2\mathbf{S} \cdot \nabla \ln \rho \right] \quad (7)$$

where

$$S_{ij} = \frac{1}{2} \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \nabla \cdot \mathbf{v} \right)$$
(8)

Numerical simulations and initial conditions

- Self-made 3D parallel MPI Python simulation code.
- The phase transition that precedes acoustic turbulence is not simulated in order to save computation time, and to ensure that the observed effects are not special to phase transitions.
- Initial conditions given in terms of longitudinal and transverse spectral densities. $P_{\perp}(k) = 0$ so that the flow is dominated by shocks.
- Velocity Fourier components are given random phases that correspond to random initial conditions.
- The initial energy density is uniform.

Universal shape for the energy spectrum

- Solving fluid equations for a single 1D shock $\rightarrow tanh-profile.$
- The energy spectrum can be written as

$$E(\kappa, t) = L(t)\mathcal{E}(t)\Psi(\kappa), \quad \kappa = L(t)k$$
(9)

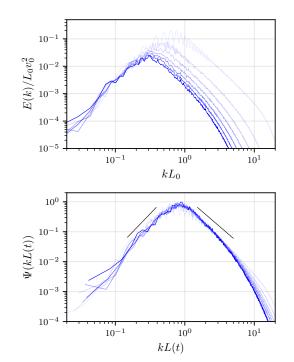
where $\mathcal{E} = \left< \mathbf{v}^2 \right> /2$ is the kinetic energy.

• Using the tanh-profile, the spectral shape function can be written as

$$\Psi(\kappa) = \widetilde{\Psi}_0 \frac{(\kappa/\kappa_p)^{\beta+4}}{1 + (\kappa/\kappa_p)^{\alpha}} \mathcal{I}\left(\frac{\pi\kappa}{2\kappa_s}\right)$$
(10)

where

$$\mathcal{I}(P) = \frac{1}{P} \frac{\cosh(P)}{\sinh^3(P)} \sim \begin{cases} \frac{1}{P^4}, & P \ll 1\\ \frac{4}{P} e^{-2P}, & P \gg 1 \end{cases}$$
(11)



The scaled energy spectrum from simulation data plotted at various times. Dark colors correspond to late times.

The same spectra collapsing into the function $\Psi(kL)$.

Kinetic energy decay

- Decay more complicated for acoustic turbulence than vortical. At late times, the mean decay rate set by the viscous dissipation.
- Solving the differential equation for the kinetic energy using the viscous dissipation term with the spectrum from previous slide and assuming a k^{-2} inertial range power law and stationarity of the spectrum at small wavenumbers gives

$$\mathcal{E}(t) = \frac{\mathcal{E}_0}{\left(1 + C\frac{t}{t_s}\right)^{\zeta}}, \quad \zeta = \frac{2(\beta + 1)}{\beta + 3} \tag{12}$$

and for the integral length scale it follows

$$L(t) = L_0 \left(1 + C \frac{t}{t_s} \right)^{\lambda}, \quad \lambda = \frac{2}{\beta + 3}$$
(13)

Power law	All runs	Selected runs	
E(k): Inertial range	-2.44 ± 0.02	-2.31 ± 0.02	
E(k): Low wavenumber	3.44 ± 0.21	$3.96 {\pm} 0.12$	
Kinetic energy	-1.30 ± 0.01	$-1.33 {\pm} 0.01$	

Table 1: The averaged power law values for the inertial range power law $k^{\beta-\alpha}$ and the low wavenumber power law k^{β} of the energy spectrum, and the kinetic energy decay power law $t^{-\zeta}$ obtained from the 1000^3 resolution numerical simulations. In the selected runs column, only runs with Re >40 have been taken into account for the inertial range, runs with Re <60 for the low-k power law, and Run II has been excluded in the case of the kinetic energy decay power law for more optimal measurements. The expected values are -2, 4, and -10/7.

GW power spectrum

- We have approximated the GW power spectrum for acoustic turbulence by using the Gaussian approximation for the fluid velocity correlations and assuming departures from Gaussianity to be small.
- We also assume that the transition completes in much less than a Hubble time, meaning that the expansion of the universe can be neglected.
- The GW spectrum has been integrated numerically using the universal shape of the energy spectrum and the model for the decay.

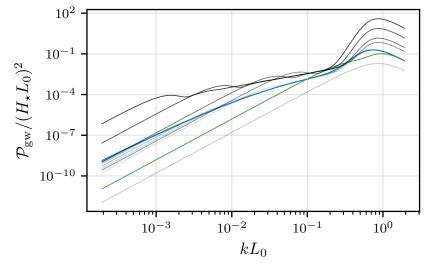


Figure 1: The converged spectra of the decaying case, colored in blue, plotted together with the stationary spectra (C = 0), colored in black, at times $t_{H_{\star}}/t_s \in [0.5, 2, 10, 20, 100, 520]$. The stationary spectrum at $t_{H_{\star}}/t_s = 2$ (green curve) coincides with the converged spectra of the decaying case at large wavenumbers. The chosen values for the free parameters are $\beta = 4$, $\bar{v}_0 = 0.2$, and C = 0.2.

$t_{H_{\star}}/t_s$	$L(t_{H_{\star}})/L_0$	p
21	1.60	4.66 ± 0.08
52	2.00	4.54 ± 0.05
104	2.41	4.24 ± 0.05
260	3.10	4.03 ± 0.03
520	3.78	3.99 ± 0.03
1039	4.60	3.98 ± 0.03
1559	5.16	3.98 ± 0.02
2078	5.60	3.98 ± 0.03

Table 2: The measured power law index p in the power law range k^p below the peak for the GW power spectrum $\mathcal{P}_{\rm gw}$ for different GW source durations. The fitting range is $kL_0 \in [0.28, 0.45]$. The measurements indicate a convergence in the power law towards k^4 at times for which $L(t_{H_\star})/L_0 \gtrapprox 3.0.$

Summary

- The found decay properties $(\rightarrow t^{-10/7})$ and the universal shape of the fluid energy spectrum (broken power law with k^4, k^{-2}) are used to approximate the GW power spectrum of decaying acoustic turbulence.
- The decay is found to bring about a convergence in the spectral amplitude and the peak power law that leads to a shallower power law than the k^9 of the stationary case.
- For $\bar{v}_0 = 0.2$, C = 0.2 the power law has converged to k^4 at times for which $L(t_{H_{\star}})/L_0 > 3.0$.
- More careful study of the parameter space in terms of \bar{v}_0 and C and their potential effects on the power law value and convergence time, along with generalizing the calculation for the expanding universe case, is left as future work.

Backup slides

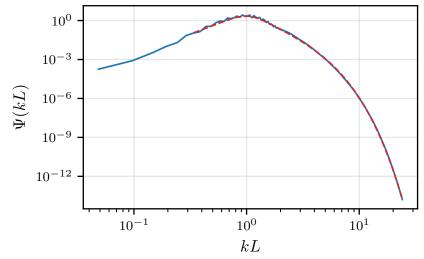


Figure 2: Fit (dashed red line) on the function $\Psi(\kappa)$ obtained from the longitudinal energy spectrum data of a Re₀ = 10 run at $t = 20t_s$ using the previous equation as a fitting function. The obtained fit parameters are $\tilde{\Psi}_0 = 0.61, \beta = 3.31, \alpha = 7.72, \kappa_p = 1.03$, and $\kappa_s = 2.65$.

ID	β_0	$\beta_0 - \alpha_0$	$\left<\beta\right>_t$	σ_eta	$\left< \alpha \right>_t$	σ_{lpha}	$\left<\beta-\alpha\right>_t$	$\sigma_{\beta-lpha}$
I	5	-7	4.053	0.032	7.173	0.194	-3.120	0.213
П	4	-2	3.074	0.411	5.240	0.303	-2.165	0.124
111	4	-8	3.400	0.326	6.321	0.221	-2.920	0.125
IV	5	-4	3.959	0.181	6.442	0.185	-2.483	0.018
V	6	-14	4.270	0.187	6.875	0.192	-2.605	0.024
VI	6	-4	4.356	0.172	6.819	0.175	-2.463	0.013
VII	7	-19	4.384	0.432	6.766	0.428	-2.382	0.017
VIII	10	-5	4.178	0.541	6.572	0.509	-2.394	0.061
IX	3	-8	2.668	1.345	4.998	1.251	-2.330	0.102
Х	5	-15	3.715	0.724	6.048	0.695	-2.333	0.043
XI	4	-12	3.184	0.908	5.521	0.865	-2.338	0.051
XII	2	-19	1.575	0.792	3.924	0.772	-2.349	0.034
XIII	3	-29	3.638	1.493	5.858	1.463	-2.220	0.050
XIV	2	-31	1.934	1.387	4.160	1.361	-2.227	0.034
XV	4	-48	3.231	1.120	5.439	1.105	-2.208	0.037

Table 3: Measured power laws and their time fluctuations from the simulations.

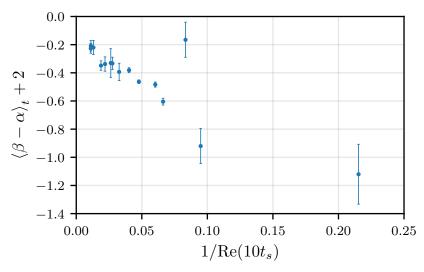


Figure 3: The scaled inertial range power law values $\langle \beta - \alpha \rangle_t$ of the previous table plotted against the Reynolds number at the middle of the averaging interval at $t = 10t_s$. The standard deviations resulting from the time fluctuations are shown as error bars for each case.

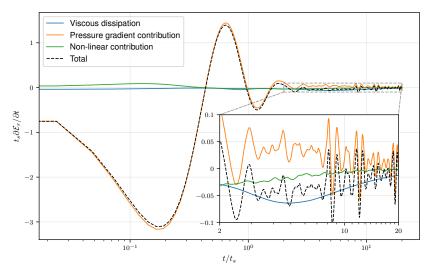
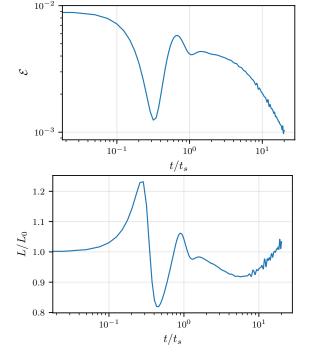


Figure 4: The dissipation rate of the kinetic energy fraction $\mathcal{E}_r(t) = \mathcal{E}(t)/\mathcal{E}_0$ resulting from the viscous dissipation, the pressure gradient, and the non-linear contributions measured in a simulation run.

ID	$\langle \zeta \rangle_t$	σ_{ζ}	ζ	$\langle C \rangle_t$	σ_C
Ι	1.497	0.019	$1.433 {\pm} 0.003$	0.240	0.006
П	0.891	0.016	$1.341{\pm}0.045$	0.517	0.023
111	1.257	0.014	$1.375{\pm}0.032$	0.243	0.005
IV	1.172	0.022	$1.425{\pm}0.015$	0.257	0.010
V	1.447	0.019	$1.450{\pm}0.014$	0.177	0.004
VI	1.313	0.022	$1.456{\pm}0.013$	0.206	0.006
VII	1.438	0.028	$1.458{\pm}0.032$	0.176	0.006
VIII	1.258	0.028	$1.443{\pm}0.042$	0.204	0.009
IX	1.059	0.031	$1.294{\pm}0.167$	0.289	0.019
Х	1.318	0.034	$1.404{\pm}0.064$	0.193	0.010
XI	1.283	0.029	$1.353{\pm}0.095$	0.201	0.009
XII	1.317	0.043	$1.126{\pm}0.151$	0.200	0.013
XIII	1.448	0.074	$1.397{\pm}0.136$	0.169	0.016
XIV	1.402	0.101	$1.189{\pm}0.228$	0.186	0.026
XV	1.359	0.100	$1.358{\pm}0.115$	0.198	0.028

Table 4: Time averaged fit parameters for the kinetic energy power laws, and the decay constant C for each of the simulation runs.



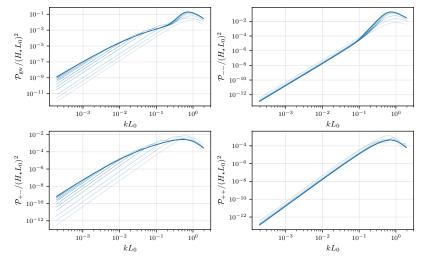


Figure 5: The total gravitational wave power spectrum and the components for various times obtained by numerical integration. The times in question are approximately $t_{H_*}/t_s \in [0.5, 1, 2, 5, 10, 21, 52, 104, 260, 520, 1039, 1559, 2078]$, with dark lines corresponding to late times. The chosen values for the free parameters are $\beta = 4$, $\bar{v}_0 = 0.2$, and C = 0.2.