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SEARCHING BACKGROUND IN LISA -CHALLENGES

NOISE  SIGNAL
C(f) = Su(f) + R(S)Sn(f)




SEARCHING BACKGROUND IN LISA -CHALLENGES

CUf) = Su()|+ RU)ISH)

e Non-Stationarity (gaps, glitches, ...)
e Noise Uncertainties
e (Correlation between TDI channels

e likely non-existing null channel



SEARCHING BACKGROUND IN LISA -CHALLENGES

C(f) = S5u(f) + R(f)

e Non-stationarity, Anisotropy, Non-Gaussianity
e (Overlapping signals
e Astrophysical Models depend on populations

e Cosmological Models depend on fundamental physics
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What do we propose?
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MODELLING WITH GP - PRELIMINARY ASSUMPTION

= Fourier Domain
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MODELLING WITH GP - PRELIMINARY ASSUMPTION

Fourier Domain

GENERATION 15 TDI (Unequal and constants LISA arms) and AET variables
Whittle Likelihood

Gaussian, Isotropic and stationary SGWB

Model Signal and Noise strain:

XXX

+  We assume perfect knowledge of TDI transfer matrix (*)

Sn,a'ﬁ (f) = %Sn (.f)j\{[ai,TDI (f)j\ :B,TDI(f)

*Note: OMS and Acceleration noise components have different transfer function



MODELLING WITH GP - PRELIMINARY ASSUMPTION

Fourier Domain

GENERATION 15 TDI (Unequal and constants LISA arms) and AET variables
Whittle Likelihood

Gaussian, Isotropic and stationary SGWB

Model Signal and Noise strain:

XXX

+  We assume perfect knowledge of TDI transfer matrix

Sn,a'ﬁ (f) = %Sn (.f)j\{[ai,TDI (f)j\ :B,TDI(f)

+  We assume perfect knowledge of LISA response function




MODELLING WITH GP - PRELIMINARY ASSUMPTION

Fourier Domain

GENERATION 15 TDI (Unequal and constants LISA arms) and AET variables
Whittle Likelihood

Gaussian, Isotropic and stationary SGWB

Model Signal and Noise strain:

XXX

+  We assume perfect knowledge of TDI transfer matrix
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MODELLING WITH GP

We employ the expectation value of Gaussian Process to model the PSD
u(XX) = pu(X.) + 2(X., X)Z(X, X)™ (g(X) = u(X))
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MODELLING WITH GP

We employ the expectation value of Gaussian Process to model the PSD
u(X1X) = p(X.) + 2(X., X)X, X)™ (g(X) — u(X))

DEVIATION FROM THE
BASELINE AT KNOTS
where




MODELLING WITH GP

We employ the expectation valve of Gaussian Process (EGP) to model the PSD
u(X | X) = pu(X.) + (X, X)X, X) ™ (g(X) — u(X))

L I

BASELINE DEVIATION FROM THE
BASELINE AT KNOTS

The model depends on 2 hyperparameters:
the number of knots
kernel lengthscale



MODELLING WITH GP

We employ the expectation valve of Gaussian Process (EGP) to model the PSD
u(Xo | X) = (X)) + (X, X)X, X)™' (8(X) — (X))

SIGNAL with power-law as NOISE with fixed baseline at
baseline SciRD level

*Number of knots can be different for noise and signal









RESULTS - APPLICATION TO EMRI
The largest majority of EMRISs will be undetectable ———» Possible SGWB

EMRI are extremely complex objects, both for the GW waveform and population
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RESULTS - APPLICATION TO EMRI
- The largest majority of EMRIs will be undetectable = Possible SGWB

- EMRI are extremely complex objects, both for the GW waveform and population

- Alot of uncertainties in the SGWB
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RESULTS - APPLICATION TO EMRI

p [ree Template algorithm is necessary to study this kind
of SGWB

e Weinject noise + EMRI realization M1 from Pozzoli et al 23
e Werecover noise with EGP using 3 knots

e We recover signal exploring different combination of hyperparameters



RESULTS - APPLICATION TO EMRI
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RESULTS - APPLICATION TO EMRI
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RESULTS - APPLICATION TO EMRI
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CONCLUSIONS & OUTLOOKS

In this work, we introduce a new flexible method for the simultaneous
inference of SGWB and LISA noise.

FUTURE EXTENSIONS:

Multiple Backgrounds Injection

Include correlation terms in TDI matrix
Transdimensional Sampler

Non-Stationary Signal (e.g, MW Foreground)



THANK YOU!
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