
Junʼya Kume (UNIPD, INFN, RESCEU)

Accelerating
SGWBinner code with
the JAX framework

In collaboration with
Marco Peloso (UNIPD, INFN),

Mauro Pieroni (CERN),
Angelo Ricciardone (U. Pisa, INFN)

Contents
ØSignal reconstruction with SGWBinner

ØHow can we use JAX?

ØNew results with the accelerated code

ØSummary & Discussion

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

Signal reconstruction with SGWBinner
• A handy tool to test your model!

1/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

(Caprini+ 2019, Flauger+ 2021)

BH

BH

-Can LISA detect signals?
constrain models?

!

"[!]
%!

Δ"∗

"∗
bubble size

fluid shell

inflation FOPT

expected SGWB sources

foregrounds

noise

Signal reconstruction with SGWBinner
• A handy tool to test your model!

1/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

(Caprini+ 2019, Flauger+ 2021)

BH

BH

-Can LISA detect signals?
constrain models?

!

"[!]
%!

Δ"∗

"∗
bubble size

fluid shell

inflation FOPT

expected SGWB sources

- simulate LISA TDI data stream with signal & foregrounds

On your laptop!

- semi-analytic forecast on “binned” signal reconstruction

foregrounds

noise

- signal reconstruction with MC sampling (binned/template)

Signal reconstruction with SGWBinner
• A handy tool to test your model!

1/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

(Caprini+ 2019, Flauger+ 2021)

BH

BH

-Can LISA detect signals?
constrain models?

!

"[!]
%!

Δ"∗

"∗
bubble size

fluid shell

inflation FOPT

expected SGWB sources

- simulate LISA TDI data stream with signal & foregrounds

On your laptop!

- semi-analytic forecast on “binned” signal reconstruction

foregrounds

noise

- signal reconstruction with MC sampling (binned/template)

• Signal reconstruction by MC sampling

2/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

for Bayesian analysis in cosmology

Interfacing Cobaya (Torrado & Lewis)

more accurate prediction! But...
total posterior for all bins and all channel

signal

galactic
extra-galactic

noise foregrounds

• Signal reconstruction by MC sampling

2/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

- Can we further accelerate this code?

for Bayesian analysis in cosmology

Interfacing Cobaya (Torrado & Lewis)

more accurate prediction! But...

The most time-consuming part of Binner

⏳

total posterior for all bins and all channel

running
over night...

signal

galactic
extra-galactic

noise foregrounds

Contents
ØSignal reconstruction with SGWBinner

ØHow can we use JAX?

ØNew results with the accelerated code

ØSummary & Discussion

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

How can we use JAX?
• Whatʼs JAX? Why JAX?

3/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

(Bradbury+ 2018)

“high-performance computing”
abc...

flexible but slower...

01001...

execute

Every time a function is called

!& “large-scale ML”
→ linear algebra with huge arrays

- Just-In-Time compile provided by XLA compiler

- jax.numpy & jax.scipy libraries for XLA

code optimization targeted on CPU, GPU & TPU

easy conversion of the existing code!

Appreciable features:

How can we use JAX?
• Whatʼs JAX? Why JAX?

3/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

(Bradbury+ 2018)

“high-performance computing”
abc...

flexible but slower...

01001...

execute

Every time a function is called

abc...

!

"

Compile at the first call
01001...

fast execution afterwards!

JIT-compile

& “large-scale ML”
→ linear algebra with huge arrays

- Just-In-Time compile provided by XLA compiler

- jax.numpy & jax.scipy libraries for XLA

code optimization targeted on CPU, GPU & TPU

easy conversion of the existing code!

Appreciable features:

• Embedding JAX into SGWBinner

4/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

sgwb.binnersgwb.likelihood

sgwb.data sgwb.common
signal/foreground

utilities
noise PSDs

data handling
& generation

likelihood & posterior
Fisher matrix - semi-analytic forecast

binned analysis

template-based
- global MC

- binned MC

working with coarse-grained data

Make use of jax.jit
・What to do?

at likelihood computation

ℒ(#$!"(%#)|)⃗, +)
accelerate MC!

※NumPy fast enough for

semi-analytic forecast

→ keep the other parts
NumPy-based

!"!"($#)
to compute likelihood ℒ(!"!"($#)|)⃗, +), posterior & Fisher matrix...

($% → TDI ch.)

Schematics of SGWBinner code

• Embedding JAX into SGWBinner

4/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

sgwb.binnersgwb.likelihood

sgwb.data sgwb.common
signal/foreground

utilities
noise PSDs

data handling
& generation

likelihood & posterior
Fisher matrix - semi-analytic forecast

binned analysis

template-based
- global MC

- binned MC

working with coarse-grained data !"!"($#)
to compute likelihood ℒ(!"!"($#)|)⃗, +), posterior & Fisher matrix...

($% → TDI ch.)

Schematics of SGWBinner code

Make use of jax.jit
・What to do?

at likelihood computation

ℒ(#$!"(%#)|)⃗, +)
accelerate MC!

※NumPy fast enough for

semi-analytic forecast

→ keep the other parts
NumPy-based

• Accelerating the LISA likelihood

5/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

ℒ(#$!"(%#)|)⃗, +) : a new class to JIT-compile this function
likelihood_jax/statistical_tools_jax

sgwb.likelihood

sgwb.common/jax
signal & foregroundsnoise

LISA_noise_jax templates
→ power spectrum computed with jax.numpy(scipy)

mostly numpy → jax.numpy

with a care on traceability
(see JAX documentation)

This JAXed class is called
at final MC/global MC
in sgwb.binner

scipy → jax.scipy

https://jax.readthedocs.io/en/latest/

• Accelerating the LISA likelihood

5/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

#loose gain if powers of arrays are involved in a complex way. But still 2-3 times faster.

Ex.) lognormal_bump:

ℒ(#$!"(%#)|)⃗, +) : a new class to JIT-compile this function
likelihood_jax/statistical_tools_jax

sgwb.likelihood mostly numpy → jax.numpy

with a care on traceability

sgwb.common/jax
signal & foregroundsnoise

LISA_noise_jax

speed measurement at Cobaya

(see JAX documentation)

This JAXed class is called
at final MC/global MC
in sgwb.binner

templates

ℎ$Ω%& $ = Ω∗exp(− log() $/$∗ /7 $)

10 times faster!

scipy → jax.scipy

→ power spectrum computed with jax.numpy(scipy)

https://jax.readthedocs.io/en/latest/

Contents
ØSignal reconstruction with SGWBinner

ØHow can we use JAX?

ØNew results with the accelerated code

ØSummary & Discussion

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

New results with the accelerated code
• MC sampling with more noise parameters

6/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

i)foreground shape parameters:

ii)unequal noise level

ℎ!Ω"#"$% # ∼ #&!"# 1 + tanh #'&((− #
#!

,)
*
*$

%

ℎ!Ω"$%
ℎ!Ω"#+,- # ∼ #&&'(ℎ!Ω+,-

- How does the constraint depend on the assumptions we made so far?

2 noise amplitudes (8, 9)

(Hartwig+ 2023)

8 parameters (2 + 6 for shape)

(equal noise: -./ = -, /./ = /)
※AET becomes

non-diagonal
for uneq. noise

2 amplitudes (Ω"$% , Ω+,-)

6 * 2 parameters

Acceleration noise

Opto-Mechanical-System

,!"

defined at each link -!"
.!"

!!" !"!
!!#
!#! !#"

!"#

XY

Z

• Foregrounds with more free parameters
7/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

1h w/ M1-mac 2020

(~20min. on M1 Mac) (~1h.)

signal noise foregrounds foregrounds

• Foregrounds with more free parameters
7/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

1h w/ M1-mac 2020

(~20min. on M1 Mac) (~1h.)

signal noise foregrounds foregrounds

1-D posterior of signal parameters

foreground amplitudes

• Unequal noise level

8/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

(~1.5h.)

signal unequal noise fgs

For simplicity, we only include
auto-correlation (AA, EE, TT)

→ degenerate combination
9(* & 9*(8(* & 8*(
8$(& 8$* 8*$ & 8($

• Unequal noise level

8/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

(result consistent with Hartwig+ 2023)

signal parameters

foreground amplitudes (~1.5h.)

For simplicity, we only include
auto-correlation (AA, EE, TT)

→ degenerate combination
9(* & 9*(

signal unequal noise fgs

8(* & 8*(
8$(& 8$* 8*$ & 8($

The error sizes of signal parameters
& fg amplitudes donʼt change much!

Contents
ØSignal reconstruction with SGWBinner

ØHow can we use JAX?

ØNew results with the accelerated code

ØSummary & Discussion

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

Summary
üJAX provides an easy way to accelerate your code
- jax.jit speeds up repeated operations
- easy conversion of numpy-based code with jax.numpy & jax.scipy

üAccelerating likelihood → faster MC sampling
- a few to 10 times faster!! (depending on templates)

üBump signal reconstruction with more noise parameters
- unequal noise does not affect signal parameter estimate
- foreground shape assumption does when the signal overlaps

9/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

Discussion

• How to speed up your model?
‒ analytic: write codes with jax.numpy & jax.scipy
−numeric: interpolation with scipy & un-jax signal part...?

• Other JAX features to be utilized
−automatic differentiation

→ an easy way to get Fisher information (jax.hessian)

−running on GPU?
→ useful for larger arrays. anisotropy search/circular polarization

10/10

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU)

※not all functions implemented...

only galactic amplitude affected much

・less degenerate signal with more fg parameters

{ "nlive" : 1000,
"num_repeats" : 4d,
"confidence_for_unbounded": 0.999,
"precision_criterion": 1e-4 }

setting for pypolychord

・Change prior of α in degenerate case:

new branch appears
→ fg has longer tail at high freq.

with suppressed signal amplitude

fg amplitudes
no difference in

・unequal noise data with weak signal

→ fit with equal & unequal noise spectrum

Again, the size of error
does not change much.

Auto-correlation with unequal noise

9(* & 9*(, 8(* & 8*(, 8$(& 8$*, 8*$ & 8($

9!"+,, $ ∝ 8!"$, 9!"-./ $ ∝ 9!"$

: appear in the same way

