

Accelerating SGWBinner code with the **JAX** framework

Jun'ya Kume (UNIPD, INFN, RESCEU)

In collaboration with Marco Peloso (UNIPD, INFN), Mauro Pieroni (CERN), Angelo Ricciardone (U. Pisa, INFN)

▶Signal reconstruction with SGWBinner

EXAMPLE 2018 WE USE JAX?

ØNew results with the accelerated code

≻Summary & Discussion

Signal reconstruction with SGWBinner

• A handy tool to test your model! (Caprini+ 2019, Flauger+ 2021)

1/10

Signal reconstruction with SGWBinner

• A handy tool to test your model! (Caprini+ 2019, Flauger+ 2021)

- simulate LISA TDI data stream with signal & foregrounds
- semi-analytic forecast on "binned" signal reconstruction
- signal reconstruction with MC sampling (binned/template)

Signal reconstruction with SGWBinner

• A handy tool to test your model! (Caprini+ 2019, Flauger+ 2021)

- simulate LISA TDI data stream with signal & foregrounds
- semi-analytic forecast on "binned" signal reconstruction
- signal reconstruction with MC sampling (binned/template)

• Signal reconstruction by MC sampling

for Bayesian analysis in cosmology Interfacing Cobaya (Torrado & Lewis)

total posterior for all bins and all channel

more accurate prediction! But...

• Signal reconstruction by MC sampling

for Bayesian analysis in cosmology Interfacing Cobaya (Torrado & Lewis)

more accurate prediction! But... total posterior for all bins and all channel

The most time-consuming part of Binner

running over night...

- Can we further accelerate this code?

≻Signal reconstruction with SGWBinner

SHow can we use JAX?

ØNew results with the accelerated code

≻Summary & Discussion

How can we use JAX?

• What's JAX? Why JAX?

(Bradbury+ 2018)

"high-performance computing"

- & "large-scale ML"
- \rightarrow linear algebra with huge arrays

flexible but slower...

Appreciable features:

- **Just-In-Time compile** provided by XLA compiler

code optimization targeted on CPU, GPU & TPU

- jax.numpy & jax.scipy libraries for XLA

easy conversion of the existing code!

How can we use JAX?

• What's JAX? Why JAX?

(Bradbury+ 2018)

"high-performance computing"

- & "large-scale ML"
- \rightarrow linear algebra with huge arrays

Appreciable features:

- **Just-In-Time compile** provided by XLA compiler code optimization targeted on CPU, GPU & TPU
- jax.numpy & jax.scipy libraries for XLA

easy conversion of the existing code!

fast execution afterwards!

"Accelerating SGWBinner code with the JAX framework" Jun'ya Kume (UNIPD, INFN, RESCEU)

OpenXLA

working with coarse-grained data $\,\overline{\!D}_{ij}(f_k)\,\,$ ($\!$ \rightarrow TDI ch.) to compute likelihood $\mathcal{L}(\overline{D}_{ij}(f_k)|\vec{\theta},\vec{n})$, posterior & Fisher matrix... \rightarrow keep the other parts NumPy-based

working with coarse-grained data $\,\overline{\!D}_{ij}(f_k)\,\,$ ($\!$ \rightarrow TDI ch.) to compute likelihood $\mathcal{L}(\overline{D}_{ij}(f_k)|\vec{\theta},\vec{n})$, posterior & Fisher matrix...

NumPy-based

mostly numpy \rightarrow jax.numpy $scipy \rightarrow$ jax.scipy

5/10

with a care on traceability (see [JAX documentation\)](https://jax.readthedocs.io/en/latest/)

This JAXed class is called at final MC/global MC in sgwb.binner

Ex.) lognormal_bump: $h^2 \Omega_{gw}(f) = \Omega_* \exp(-[\log_{10}(f/f_*)/\rho]^2)$

≻Signal reconstruction with SGWBinner

EXAMPLE 2018 WE USE JAX?

ØNew results with the accelerated code

≻Summary & Discussion

New results with the accelerated code

• MC sampling with more noise parameters

i)foreground shape parameters:

2 amplitudes $(\Omega_{Gal}, \Omega_{Ext})$

8 parameters (2 + 6 for shape)

$$
h^2 \Omega_{GW}^{Gal}(f) \sim f^{n_{Gal}} \left[1 + \tanh \left(\frac{f_{knee} - f}{f_2} \right) \right] e^{-\left(\frac{f}{f_1} \right)^{\alpha}} h^2 \Omega_{Gal}
$$

$$
h^2 \Omega_{GW}^{Ext}(f) \sim f^{n_{Ext}} h^2 \Omega_{Ext}
$$

ii)unequal noise level (Hartwig+ 2023)

2 noise amplitudes
$$
(A, P)
$$

(equal noise: $A_{ij} = A, P_{ij} = P$)
6 * 2 parameters

※AET becomes non-diagonal for uneq. noise

- How does the constraint depend on the assumptions we made so far?

• Foregrounds with more free parameters

• Foregrounds with more free parameters

• Unequal noise level Reconstruction $\begin{array}{c}\log_{10}(f_{*}/\mathrm{Hz})\\ \mathrm{1}\\\mathrm{1}\end{array}$ $\frac{1}{\text{S}}$ -0.5
 $\frac{1}{\text{S}}$ -1.0 10^{-1} 3.05 $\frac{1}{10}$ – 2 f [Hz] ≈ 3.00 2.95 15.005 $4, 15,000$ 14.995

 $-1.0 -0.5$

 $log_{10}(\rho)$

 $\log_{10}(h^2\Omega_{\rm Gal})$

 $\log_{10}(h^2\Omega_{\rm Ext})$

 -7.84 -7.86 -7.88

 -12.35

 -12.40

 $-12.0 -11.3$

 -4

 $\log_{10}(\Omega_*)$ $\log_{10}(f_*/\mathrm{Hz})$

 -3

 $\frac{1}{10}$ is $h^2 \Omega_{\rm GW}$

 -11

 -12

"Accelerating SGWBinner code with the JAX framework" Jun'ya Kume (UNIPD, INFN, RESCEU)

2.95 3.00

 \boldsymbol{A}

 $15\,$

 \boldsymbol{P}

 $-7.87 -7.84 -12.4$

 $\log_{10}(h^2\Omega_{\text{Gal}})\log_{10}(h^2\Omega_{\text{Ext}})$

(result consistent with Hartwig+ 2023) The error sizes of signal parameters & fg amplitudes don't change much!

≻Signal reconstruction with SGWBinner

EXAMPLE 2018 WE USE JAX?

ØNew results with the accelerated code

▶Summary & Discussion

Summary

- \checkmark JAX provides an easy way to accelerate your code
- jax.jit speeds up repeated operations
- easy conversion of numpy-based code with jax.numpy & jax.scipy
- \checkmark Accelerating likelihood \rightarrow faster MC sampling
- **a few to 10 times faster!!** (depending on templates)
- \checkmark Bump signal reconstruction with more noise parameters
- unequal noise does not affect signal parameter estimate
- foreground shape assumption does when the signal overlaps

Discussion

- How to speed up your model?
- ‒ analytic: write codes with jax.numpy & jax.scipy ※not all functions implemented...
- −numeric: interpolation with scipy & un-jax signal part...?
- Other JAX features to be utilized
- −automatic differentiation
	- \rightarrow an easy way to get Fisher information (jax.hessian)
- −running on GPU?
	- \rightarrow useful for larger arrays. anisotropy search/circular polarization

 -10

 -2.3

 $\log_{10}(\Omega \otimes_{10} (f_{*}/\text{Hk})\text{g}_{10}(\rho))$

 -0.8

-3

 \boldsymbol{A}

15

 -8

 $0.6\,$

 -2.8

 -3.1

 $P \log_{10}(h^2 \Omega_{\text{Gal}})_{\text{Gal}} \log_{10}(f_{\text{ref}} \log_{10}(f_{\text{ref}}))_{\text{GL}_1}(f_k) \quad \alpha \log_{10}(h^2 \Omega_{\text{Ext}})_{\text{Ext}}$

 -2.6 1.5 2.5

 $-12\;0.6$

 $\log_{10}\,h^2\Omega_{\rm GW}$

```
"confidence_for_unbounded": 0.999,
"precision_criterion": 1e-4 }
```


・unequal noise data with weak signal

 $A_{ij} = \{3.61, 3.02, 2.87, 3.43, 2.65, 3.45\}$ $P_{ij} = \{14.00, 16.93, 9.43, 21.55, 17.04, 20.83\}$

 \rightarrow fit with equal & unequal noise spectrum

Auto-correlation with unequal noise $P_{(ij)}^{\text{acc/IMS}} \equiv P_{ij}^{\text{acc/IMS}} + P_{ji}^{\text{acc/IMS}}.$ $P_{ij}^{\text{acc}}(f) \propto A_{ij}^2,$ $P_{ij}^{\text{IMS}}(f) \propto P_{ij}^2$

$$
N_{\rm AA}(f) = \left\{ 4 \left[(P_{21}^{\rm acc} + P_{23}^{\rm acc} + P_{(31)}^{\rm acc}) + 2P_{(31)}^{\rm acc} \cos\left(\frac{2\pi fL}{c}\right) + (P_{12}^{\rm acc} + P_{32}^{\rm acc} + P_{(31)}^{\rm acc}) \cos^2\left(\frac{2\pi fL}{c}\right) \right] + \left[(P_{(12)}^{\rm IMS} + P_{(23)}^{\rm IMS} + 2P_{(31)}^{\rm IMS}) + 2P_{(31)}^{\rm IMS} \cos\left(\frac{2\pi fL}{c}\right) \right] \right\} \times 2 \sin^2\left(\frac{2\pi fL}{c}\right) ,
$$

$$
N_{\text{EE}}(f) = \left\{ 4 \left[(4P_{12}^{\text{acc}} + P_{21}^{\text{acc}} + P_{23}^{\text{acc}} + 4P_{32}^{\text{acc}} + P_{(31)}^{\text{acc}}) + 2(2P_{(12)}^{\text{acc}} + 2P_{(23)}^{\text{acc}} - P_{(31)}^{\text{acc}}) \cos\left(\frac{2\pi fL}{c}\right) \right. \\ \left. + (P_{12}^{\text{acc}} + 4P_{21}^{\text{acc}} + P_{32}^{\text{acc}} + 4P_{23}^{\text{acc}} + P_{(31)}^{\text{acc}}) \cos^{2}\left(\frac{2\pi fL}{c}\right) \right] \\ \left. + (5P_{(12)}^{\text{IMS}} + 5P_{(23)}^{\text{IMS}} + 2P_{(31)}^{\text{IMS}}) + 2(2P_{(12)}^{\text{IMS}} + 2P_{(23)}^{\text{IMS}} - P_{(31)}^{\text{IMS}}) \cos\left(\frac{2\pi fL}{c}\right) \right\} \times \frac{2}{3} \sin^{2}\left(\frac{2\pi fL}{c}\right)
$$

$$
N_{\text{TT}}(f) = \left\{ 2(P_{(12)}^{\text{acc}} + P_{(23)}^{\text{acc}} + P_{(31)}^{\text{acc}}) \left[1 - \cos\left(\frac{2\pi fL}{c}\right) \right]^2 + (P_{(12)}^{\text{IMS}} + P_{(23)}^{\text{IMS}} + P_{(31)}^{\text{IMS}}) \left[1 - \cos\left(\frac{2\pi fL}{c}\right) \right] \right\} \times \frac{8}{3} \sin^2\left(\frac{2\pi fL}{c}\right)
$$

 $P_{13} \& P_{31}, A_{13} \& A_{31}, A_{21} \& A_{23}, A_{32} \& A_{12}$: appear in the same way