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Signal reconstruction with SGWBinner
• A handy tool to test your model!
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• Signal reconstruction by MC sampling
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for Bayesian analysis in cosmology

Interfacing Cobaya (Torrado & Lewis)

more accurate prediction! But...
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• Signal reconstruction by MC sampling
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- Can we further accelerate this code?

for Bayesian analysis in cosmology

Interfacing Cobaya (Torrado & Lewis)

more accurate prediction! But...

The most time-consuming part of Binner

⏳

total posterior for all bins and all channel 

running
over night...
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extra-galactic

noise foregrounds



Contents
ØSignal reconstruction with SGWBinner

ØHow can we use JAX?

ØNew results with the accelerated code

ØSummary & Discussion

“Accelerating SGWBinner code with the JAX framework” Junʼya Kume (UNIPD, INFN, RESCEU) 



How can we use JAX?
• Whatʼs JAX? Why JAX?
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“high-performance computing”
abc...

flexible but slower...

01001...

execute

Every time a function is called

!& “large-scale ML”
→ linear algebra with huge arrays

- Just-In-Time compile provided by XLA compiler

- jax.numpy & jax.scipy libraries for XLA

code optimization targeted on CPU, GPU & TPU

easy conversion of the existing code!

Appreciable features:
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• Embedding JAX into SGWBinner
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sgwb.binnersgwb.likelihood

sgwb.data sgwb.common
signal/foreground

utilities
noise PSDs

data handling
& generation

likelihood & posterior
Fisher matrix - semi-analytic forecast

binned analysis

template-based
- global MC

- binned MC

working with coarse-grained data

Make use of jax.jit
・What to do?

at likelihood computation

ℒ(#$!"(%#)|)⃗, +)
accelerate MC!

※NumPy fast enough for

semi-analytic forecast

→ keep the other parts
NumPy-based 

!"!"($#)
to compute likelihood ℒ(!"!"($#)|)⃗, +), posterior & Fisher matrix...

($% → TDI ch.)

Schematics of SGWBinner code
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• Accelerating the LISA likelihood
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ℒ(#$!"(%#)|)⃗, +) : a new class to JIT-compile this function
likelihood_jax/statistical_tools_jax

sgwb.likelihood

sgwb.common/jax
signal & foregroundsnoise

LISA_noise_jax templates
→ power spectrum computed with jax.numpy(scipy)

mostly numpy → jax.numpy

with a care on traceability
(see JAX documentation)

This JAXed class is called
at final MC/global MC
in sgwb.binner

scipy → jax.scipy

https://jax.readthedocs.io/en/latest/
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#loose gain if powers of arrays are involved in a complex way. But still 2-3 times faster.

Ex.) lognormal_bump:

ℒ(#$!"(%#)|)⃗, +) : a new class to JIT-compile this function
likelihood_jax/statistical_tools_jax

sgwb.likelihood mostly numpy → jax.numpy

with a care on traceability

sgwb.common/jax
signal & foregroundsnoise

LISA_noise_jax

speed measurement at Cobaya

(see JAX documentation)

This JAXed class is called
at final MC/global MC
in sgwb.binner

templates

ℎ$Ω%& $ = Ω∗exp(− log() $/$∗ /7 $ )

10 times faster!

scipy → jax.scipy

→ power spectrum computed with jax.numpy(scipy)

https://jax.readthedocs.io/en/latest/
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New results with the accelerated code
• MC sampling with more noise parameters
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i)foreground shape parameters:

ii)unequal noise level

ℎ!Ω"#"$% # ∼ #&!"# 1 + tanh #'&(( − #
#!

,)
*
*$

%

ℎ!Ω"$%
ℎ!Ω"#+,- # ∼ #&&'( ℎ!Ω+,-

- How does the constraint depend on the assumptions we made so far?

2 noise amplitudes (8, 9)

(Hartwig+ 2023)

8 parameters (2 + 6 for shape)

(equal noise: -./ = -, /./ = /)
※AET becomes

non-diagonal
for uneq. noise

2 amplitudes (Ω"$% , Ω+,-)

6 * 2 parameters

Acceleration noise

Opto-Mechanical-System
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• Foregrounds with more free parameters
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(~20min. on M1 Mac) (~1h.)
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signal noise foregrounds foregrounds

1-D posterior of signal parameters

foreground amplitudes



• Unequal noise level
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(~1.5h.)

signal unequal noise fgs

For simplicity, we only include
auto-correlation (AA, EE, TT)

→ degenerate combination
9(* & 9*( 8(* & 8*(
8$( & 8$* 8*$ & 8($
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(result consistent with Hartwig+ 2023)

signal parameters

foreground amplitudes (~1.5h.)

For simplicity, we only include
auto-correlation (AA, EE, TT)

→ degenerate combination
9(* & 9*(

signal unequal noise fgs

8(* & 8*(
8$( & 8$* 8*$ & 8($

The error sizes of signal parameters
& fg amplitudes donʼt change much!
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Summary
üJAX provides an easy way to accelerate your code  
- jax.jit speeds up repeated operations
- easy conversion of numpy-based code with jax.numpy & jax.scipy

üAccelerating likelihood → faster MC sampling
- a few to 10 times faster!! (depending on templates)

üBump signal reconstruction with more noise parameters
- unequal noise does not affect signal parameter estimate 
- foreground shape assumption does when the signal overlaps
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Discussion

• How to speed up your model?
‒ analytic: write codes with jax.numpy & jax.scipy
−numeric: interpolation with scipy & un-jax signal part...?

• Other JAX features to be utilized
−automatic differentiation

→ an easy way to get Fisher information (jax.hessian)

−running on GPU?
→ useful for larger arrays. anisotropy search/circular polarization
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※not all functions implemented...



only galactic amplitude affected much

・less degenerate signal with more fg parameters

{ "nlive" : 1000,
"num_repeats" : 4d,
"confidence_for_unbounded": 0.999,
"precision_criterion": 1e-4 }

setting for pypolychord



・Change prior of α in degenerate case:

new branch appears
→ fg has longer tail at high freq.

with suppressed signal amplitude

fg amplitudes
no difference in



・unequal noise data with weak signal

→ fit with equal & unequal noise spectrum

Again, the size of error
does not change much.



Auto-correlation with unequal noise

9(* & 9*(, 8(* & 8*(, 8$( & 8$*, 8*$ & 8($

9!"+,, $ ∝ 8!"$ , 9!"-./ $ ∝ 9!"$

: appear in the same way


