Proper time path integrals for GWs An improved wave optics framework

Alice Garoffolo aligaro@sas.upenn.edu

Based on: 2405.20208 G. Braga, AG, A. Ricciardone, N. Bartolo, S. Matarrese

GWs through the perturbed Universe

Probe of large scale structures and compact objects

Propagation effects carry cosmological and astrophysical information

Geometric vs Wave optics

High Frequency: $\omega R_S \gg 1$

Ray description

Wave effects **3.4**

GWs can be emitted at low frequencies ($w \lesssim 1$), allowing the observation of wave diffractive phenomena. For typical $\frac{3}{10}$ LISA sources, wave optics as in Eq. (15) needs to be considered for lenses with masses $M_L \sim 10^6 - 10^9 M_{\odot}$, cf. Eq. (13).

Low Frequency: $\omega R_S \lesssim 1$

Wave effects

Nakamura&Deguchi 1999

Nakamura&Deguchi 1999

1. Klein-Gordon Eq.: $\left[\nabla^2 + \omega^2(1 - 4\alpha U)\right] \tilde{\Psi}_{\omega}(\mathbf{x}) = 0$

Nakamura&Deguchi 1999

- 1. Klein-Gordon Eq.: $\left[\nabla^2 + \omega^2(1 4\alpha U)\right] \tilde{\Psi}_{\omega}(\mathbf{x}) = 0$
- 2. Amplification Factor: $F(\mathbf{x}) = \tilde{\Psi}_{\omega} / \tilde{\Psi}_{\omega}^{NL}$

Nakamura&Deguchi 1999

- 1. Klein-Gordon Eq.: $\left[\nabla^2 + \omega^2(1 4\alpha U)\right] \tilde{\Psi}_{\omega}(\mathbf{x}) = 0$
- 2. Amplification Factor: $F(\mathbf{x}) = \tilde{\Psi}_{\omega} / \tilde{\Psi}_{\omega}^{NL}$
- 3. Eikonal approximation: $|\partial_r^2 F| \ll |2i\omega\partial_r F|$

Nakamura&Deguchi 1999

- 1. Klein-Gordon Eq.: $\left[\nabla^2 + \omega^2(1 4\alpha U)\right] \tilde{\Psi}_{\omega}(\mathbf{x}) = 0$
- 2. Amplification Factor: $F(\mathbf{x}) = \tilde{\Psi}_{\omega} / \tilde{\Psi}_{\omega}^{NL}$
- 3. Eikonal approximation: $|\partial_r^2 F| \ll |2i\omega\partial_r F|$
- 4. Schrödinger Eq.: $i\partial_r F = -\frac{1}{2\omega}\partial_{\theta}^2 F + 2\alpha\omega UF$

Nakamura&Deguchi 1999

- 1. Klein-Gordon Eq.: $\left[\nabla^2 + \omega^2(1 4\alpha U)\right] \tilde{\Psi}_{\omega}(\mathbf{x}) = 0$
- 2. Amplification Factor: $F(\mathbf{x}) = \tilde{\Psi}_{\omega} / \tilde{\Psi}_{\omega}^{NL}$
- 3. Eikonal approximation: $|\partial_r^2 F| \ll |2i\omega\partial_r F|$
- 4. Schrödinger Eq.: $i\partial_r F = -\frac{1}{2\omega}\partial_{\theta}^2 F + 2\alpha\omega UF$

Diffraction integral: $F(\vec{r}_O) = \int$

$$\mathcal{D}oldsymbol{ heta}(r) \exp\left\{i\omega\int_{0}^{r_{O}}dr\left[rac{r^{2}}{2}|\dot{oldsymbol{ heta}}|^{2}-2lpha U(r,oldsymbol{ heta})
ight]$$

Nakamura&Deguchi 1999

- 1. Klein-Gordon Eq.: $\left[\nabla^2 + \omega^2(1 4\alpha U)\right] \tilde{\Psi}_{\omega}(\mathbf{x}) = 0$
- 2. Amplification Factor: $F(\mathbf{x}) = \tilde{\Psi}_{\omega} / \tilde{\Psi}_{\omega}^{NL}$
- 3. Eikonal approximation: $|\partial_r^2 F| \ll |2i\omega\partial_r F|$
- 4. Schrödinger Eq.: $i\partial_r F = -\frac{1}{2\omega}\partial_{\theta}^2 F + 2\alpha\omega UF$

Diffraction integral for a scalar wave Nakamura&Deguchi 1999 1. Klein-Gordon Eq.: $\left[\nabla^2 + \omega^2(1 - 4\alpha U)\right] \tilde{\Psi}_{\omega}(\mathbf{x}) = 0$ 2. Amplification Factor: $F(\mathbf{x}) = \tilde{\Psi}_{\omega} / \tilde{\Psi}_{\omega}^{NL}$ 3. Eikonal approximation: $|\partial_r^2 F| \ll |2i\omega\partial_r F|$ 4. Schrödinger Eq.: $i\partial_r F = -\frac{1}{2\omega}\partial_{\theta}^2 F + 2\alpha\omega UF$ $\omega = 1/\hbar$ Diffraction integral: $F(\vec{r}_O) = \int \mathcal{D}\boldsymbol{\theta}(r) \exp\left\{i\omega \int_0^{r_O} dr \left[\frac{r^2}{2}|\dot{\boldsymbol{\theta}}|^2 - 2\alpha U(r,\boldsymbol{\theta})\right]\right\}$ Name of Street, or other states of the state

PROs

PROs

1. Wave optics effects are frequency dependent

PROs

- 1. Wave optics effects are frequency dependent
- 2. Easy high frequency limit

PROs

- 1. Wave optics effects are frequency dependent
- 2. Easy high frequency limit
- 3. Non perturbative (strong lensing)

- 1. Wave optics effects are frequency dependent
- 2. Easy high frequency limit
- 3. Non perturbative (strong lensing)
- 4. Already used for: lens parameter estimation, constraints PBH abundance, matter PS at small scales,...

Citation per year of Nakamura&Deguchi 1999

- Wave optics effects are frequency dependent
- 2. Easy high frequency limit
- 3. Non perturbative (strong lensing)
- 4. Already used for: lens parameter estimation, constraints PBH abundance, matter PS at small scales,...

Citation per year of Nakamura&Deguchi 1999

1.

5/10

VS

Eikonal: frequency lower bound $\omega \gg |\partial_r^2 F| / |\partial_r F|$

- Wave optics effects are frequency dependent
- 2. Easy high frequency limit
- 3. Non perturbative (strong lensing)
- 4. Already used for: lens parameter estimation, constraints PBH abundance, matter PS at small scales,...

Citation per year of Nakamura&Deguchi 1999

1.

Eikonal: frequency lower bound $\omega \gg |\partial_r^2 F| / |\partial_r F|$

2. Scalar field: no polarization effects

- Wave optics effects are frequency dependent
- 2. Easy high frequency limit
- 3. Non perturbative (strong lensing)
- 4. Already used for: lens parameter estimation, constraints PBH abundance, matter PS at small scales,...

Citation per year of Nakamura&Deguchi 1999

Eikonal: frequency lower bound $\omega \gg |\partial_r^2 F| / |\partial_r F|$

2. Scalar field: no polarization effects

Proper time path integrals 2405.20208

Proper time path integral

Finding a Schrödinger equation without Eikonal approximation

Proper time path integral

Finding a Schrödinger equation without Eikonal approximation

1. Proper time:

$$ilde{\Psi}_{\omega}(\mathbf{x}) = -rac{i}{\omega} \int_{0}^{+\infty} d au \, e^{i\omega au} \psi_{\omega}(au,\mathbf{x})$$

1. Proper time:

$$ilde{\Psi}_{\omega}(\mathbf{x}) = -rac{i}{\omega} \int_{0}^{+\infty} d au \, e^{i\omega au} \psi_{\omega}(au,\mathbf{x})$$

2. Schrödinger Eq.:

$$\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^2}{\omega^2} + 4\alpha U \right]$$

Proper time path integralFinding a Schrödinger equation without Eikonal approximationProper time:
$$\tilde{\Psi}_{\omega}(\mathbf{x}) = -\frac{i}{\omega} \int_{0}^{+\infty} d\tau e^{i\omega\tau} \psi_{\omega}(\tau, \mathbf{x})$$
2. Schrödinger Eq.: $\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^2}{\omega^2} + 4\alpha U\right] \psi_{\omega}(\tau, \mathbf{x})$

time path integral
dinger equation without Eikonal approximation

$$\tilde{\Psi}_{\omega}(\mathbf{x}) = -\frac{i}{\omega} \int_{0}^{+\infty} d\tau \, e^{i\omega\tau} \psi_{\omega}(\tau, \mathbf{x})$$
Eq.:
$$\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^{2}}{\omega^{2}} + 4\alpha U \right] \psi_{\omega}(\tau, \mathbf{x})$$

me path integral
ger equation without Eikonal approximation
$$\mathbf{x}) = -\frac{i}{\omega} \int_{0}^{+\infty} d\tau \, e^{i\omega\tau} \psi_{\omega}(\tau, \mathbf{x})$$
$$\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^{2}}{\omega^{2}} + 4\alpha U \right] \psi_{\omega}(\tau, \mathbf{x})$$

$$\tilde{\Psi}_{\omega}(\mathbf{x}_{f}) = -\frac{i}{\omega} \int_{0}^{+\infty} d\tau \, e^{i\omega\tau} \, \int_{\mathbf{x}(\tau'=0)=\mathbf{x}_{i}}^{\mathbf{x}(\tau'=\tau)=\mathbf{x}_{f}} \mathcal{D}\mathbf{x}(\tau') \, e^{i\omega\int_{0}^{\tau} d\tau' \left[\frac{\dot{\mathbf{x}}^{2}}{4} - 4\alpha U\right]}$$

Proper time path integralFinding a Schrödinger equation without Eikonal approximation. Proper time:
$$\tilde{\Psi}_{\omega}(\mathbf{x}) = -\frac{i}{\omega} \int_{0}^{+\infty} d\tau e^{i\omega\tau} \psi_{\omega}(\tau, \mathbf{x})$$
2. Schrödinger Eq.: $\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^{2}}{\omega^{2}} + 4\alpha U\right] \psi_{\omega}(\tau, \mathbf{x})$

time path integral
dinger equation without Eikonal approximation

$$\tilde{\Psi}_{\omega}(\mathbf{x}) = -\frac{i}{\omega} \int_{0}^{+\infty} d\tau \, e^{i\omega\tau} \psi_{\omega}(\tau, \mathbf{x})$$
Eq.:
$$\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^{2}}{\omega^{2}} + 4\alpha U \right] \psi_{\omega}(\tau, \mathbf{x})$$

me path integral
ger equation without Eikonal approximation
$$\mathbf{x}) = -\frac{i}{\omega} \int_{0}^{+\infty} d\tau \, e^{i\omega\tau} \psi_{\omega}(\tau, \mathbf{x})$$
$$\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^{2}}{\omega^{2}} + 4\alpha U \right] \psi_{\omega}(\tau, \mathbf{x})$$

$$\tilde{\Psi}_{\omega}(\mathbf{x}_{f}) = -\frac{i}{\omega} \int_{0}^{+\infty} d\tau \, e^{i\omega\tau} \int_{\mathbf{x}(\tau'=0)=\mathbf{x}_{i}}^{\mathbf{x}(\tau'=\tau)=\mathbf{x}_{f}} \mathcal{D}\mathbf{x}(\tau') \, e^{i\omega\int_{0}^{\tau} d\tau' \left[\frac{\dot{\mathbf{x}}^{2}}{4} - 4\alpha U\right]}$$

Sum over paths

1. Proper time:

$$ilde{\Psi}_{\omega}(\mathbf{x}) = -rac{i}{\omega} \, \int_{0}^{+\infty} d au \, e^{i\omega au} \psi_{\omega}(au,\mathbf{x})$$

2. Schrödinger Eq.:

$$\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^2}{\omega^2} + 4\alpha U \right]$$

$$ilde{\Psi}_{\omega}(\mathbf{x}_f) = -rac{i}{\omega}\int_0^{+\infty}$$

1. Proper time:

$$ilde{\Psi}_{\omega}(\mathbf{x}) = -rac{i}{\omega} \, \int_{0}^{+\infty} d au \, e^{i\omega au} \psi_{\omega}(au,\mathbf{x})$$

2. Schrödinger Eq.:

$$\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^2}{\omega^2} + 4\alpha U \right]$$

$$ilde{\Psi}_{\omega}(\mathbf{x}_f) = -rac{i}{\omega}\int_0^{+\infty}$$

1. Proper time:

$$ilde{\Psi}_{\omega}(\mathbf{x}) = -rac{i}{\omega} \, \int_{0}^{+\infty} d au \, e^{i\omega au} \psi_{\omega}(au,\mathbf{x})$$

2. Schrödinger Eq.:

$$\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^2}{\omega^2} + 4\alpha U \right]$$

Proper time path integral:

$$ilde{\Psi}_{\omega}(\mathbf{x}_f) = -rac{i}{\omega} \int_0^{+\infty}$$

Integrate away au

Proper time: 1.

$$ilde{\Psi}_{\omega}(\mathbf{x}) = -rac{i}{\omega} \int_{0}^{+\infty} d au \, e^{i\omega au} \psi_{\omega}(au,\mathbf{x})$$

2. Schrödinger Eq.:

$$\frac{i}{\omega} \frac{\partial \psi_{\omega}(\tau, \mathbf{x})}{\partial \tau} = \left[-\frac{\nabla^2}{\omega^2} + 4\alpha U \right]$$

Proper time path integral:

$$ilde{\Psi}_{\omega}(\mathbf{x}_f) = -rac{i}{\omega}\int_0^{+\infty}$$

Integrate away au

Exact particle-like solution WITHOUT the need of Eikonal approximation

- 1. $\omega \to \infty$ limit to recover geometric optics
 - $(\delta \hat{S} / \delta \tau = 0 \text{ and } \delta \hat{S} / \delta \mathbf{x} = 0)$

- 1. $\omega \to \infty$ limit to recover geometric optics $(\delta \hat{S} / \delta \tau = 0 \text{ and } \delta \hat{S} / \delta \mathbf{x} = 0)$
- $(\delta \hat{S} / \delta \tau = 0)$

- 1. $\omega \to \infty$ limit to recover geometric optics $(\delta \hat{S} / \delta \tau = 0 \text{ and } \delta \hat{S} / \delta \mathbf{x} = 0)$
- $(\delta \hat{S} / \delta \tau = 0)$
- 3. Perturbative expansion in αU

- 1. $\omega \to \infty$ limit to recover geometric optics $(\delta \hat{S} / \delta \tau = 0 \text{ and } \delta \hat{S} / \delta \mathbf{x} = 0)$
- $(\delta \hat{S} / \delta \tau = 0)$
- 3. Perturbative expansion in αU
- 4. First order solution for Coulomb-like potential

- 1. $\omega \to \infty$ limit to recover geometric optics $(\delta \hat{S}/\delta \tau = 0 \text{ and } \delta \hat{S}/\delta \mathbf{x} = 0)$
- $(\delta \hat{S} / \delta \tau = 0)$
- 3. Perturbative expansion in αU
- 4. First order solution for Coulomb-like potential

5. Massive scalar field:
$$\omega_m = \omega \sqrt{1 - \frac{m^2}{\omega^2}}$$

- 1. $\omega \to \infty$ limit to recover geometric optics $(\delta \hat{S}/\delta \tau = 0 \text{ and } \delta \hat{S}/\delta \mathbf{x} = 0)$
- $(\delta \hat{S} / \delta \tau = 0)$
- 3. Perturbative expansion in αU
- 4. First order solution for Coulomb-like potential

5. Massive scalar field:
$$\omega_m = \omega \sqrt{1 - \frac{m^2}{\omega^2}}$$

6. Polarization effects

S. Teukolsky (1973)

S. Teukolsky (1973)

1. Lens = Kerr BH

S. Teukolsky (1973)

- 1. Lens = Kerr BH
- 2. Use BH perturbation theory long-standing results

S. Teukolsky (1973)

- 1. Lens = Kerr BH
- 2. Use BH perturbation theory long-standing results
- 3. Perturbations of spin s = 0, 1/2, 1, 2 on Kerr BH satisfy Teukolsky Eq.:

$$\hat{O}[M, a, \omega, s] \psi^s_{\omega}(r, \theta, \varphi) = 0$$

S. Teukolsky (1973)

Ο

- 1. Lens = Kerr BH
- 2. Use BH perturbation theory long-standing results
- 3. Perturbations of spin s = 0, 1/2, 1, 2 on Kerr BH satisfy Teukolsky Eq.:

$$\hat{O}[M, a, \omega, s] \psi_{\omega}^{s}(r, \theta, \varphi) = 0$$

$$\downarrow$$
Differential
operator

S. Teukolsky (1973)

- 1. Lens = Kerr BH
- 2. Use BH perturbation theory long-standing results
- 3. Perturbations of spin s = 0, 1/2, 1, 2 on Kerr BH satisfy Teukolsky Eq.:

 $\hat{O}[M, a, \omega, s] \psi^s_{\omega}(r, \theta, \varphi) = 0$

Differential operator Newman-Penrose scalar, e.g.: $\psi_{\omega}^{s=2} \supset \{\ddot{h}_{+} \pm i \ddot{h}_{\times}\}$

Helmholtz Eq. for radial part

Helmholtz Eq. for radial part

1. Decompose NP scalar: $\psi_{\omega}^{s} = e^{-im\varphi} S(\theta) R(r)$

Helmholtz Eq. for radial part

- 1. Decompose NP scalar: $\psi_{\omega}^{s} = e^{-im\varphi} S(\theta) R(r)$
- 2. Radial part satisfies 1D Klein-Gordon equation:

$$\frac{d^2 \tilde{R}}{dr^2} + \omega^2 \left[1 - 4 \tilde{U}^s_{\ell m}(\omega, r) \right] \tilde{R} = 0$$

Helmholtz Eq. for radial part

- 1. Decompose NP scalar: $\psi_{\omega}^{s} = e^{-im\varphi} S(\theta) R(r)$
- 2. Radial part satisfies 1D Klein-Gordon equation:

$$\frac{d^2 \tilde{R}}{dr^2} + \omega^2 \left[1 - 4 \tilde{U}^s_{\ell m}(\omega, r)\right] \tilde{R} = 0$$

3. Same starting point, solve again with PPTI

Helmholtz Eq. for radial part

- 1. Decompose NP scalar: $\psi_{\omega}^{s} = e^{-im\varphi} S(\theta) R(r)$
- 2. Radial part satisfies 1D Klein-Gordon equation:

$$\frac{d^2 \tilde{R}}{dr^2} + \omega^2 \left[1 - 4 \tilde{U}^s_{\ell m}(\omega, r) \right] \tilde{R} = 0$$

- 3. Same starting point, solve again with PPTI
- 4. In Newtonian limit:

$$4\tilde{U}^s_{\ell m}(\omega,r) \approx -4\frac{M}{r}$$

$$+ \frac{\ell(\ell+1) + s(s+1)}{\omega^2 r^2} - \frac{2is}{\omega r}$$

Helmholtz Eq. for radial part

- 1. Decompose NP scalar: $\psi_{\omega}^{s} = e^{-im\varphi} S(\theta) R(r)$
- 2. Radial part satisfies 1D Klein-Gordon equation:

$$\frac{d^2 \tilde{R}}{dr^2} + \omega^2 \left[1 - 4 \tilde{U}^s_{\ell m}(\omega, r) \right] \tilde{R} = 0$$

- 3. Same starting point, solve again with PPTI
- 4. In Newtonian limit:

 $4\tilde{U}^s_{\ell m}(\omega,r) \approx -4\frac{M}{r} +$

Same as diffraction integral

$$+ \frac{\ell(\ell+1) + s(s+1)}{\omega^2 r^2} - \frac{2is}{\omega r}$$

Helmholtz Eq. for radial part

- 1. Decompose NP scalar: $\psi_{\omega}^{s} = e^{-im\varphi} S(\theta) R(r)$
- 2. Radial part satisfies 1D Klein-Gordon equation:

$$\frac{d^2 \tilde{R}}{dr^2} + \omega^2 \left[1 - 4 \tilde{U}^s_{\ell m}(\omega, r) \right] \tilde{R} = 0$$

- 3. Same starting point, solve again with PPTI
- 4. In Newtonian limit:

Same as diffraction integral

 $4\tilde{U}^s_{\ell m}(\omega,r) \approx -4\frac{M}{r} + \frac{\ell(\ell+1) + s(s+1)}{\omega^2 r^2} - \frac{2is}{\omega r}$ Angular momentum (decomposition)

Helmholtz Eq. for radial part

- 1. Decompose NP scalar: $\psi_{\omega}^{s} = e^{-im\varphi} S(\theta) R(r)$
- 2. Radial part satisfies 1D Klein-Gordon equation:

$$\frac{d^2 \tilde{R}}{dr^2} + \omega^2 \left[1 - 4 \tilde{U}^s_{\ell m}(\omega, r) \right] \tilde{R} = 0$$

- 3. Same starting point, solve again with PPTI
- 4. In Newtonian limit:

 $4\tilde{U}^s_{\ell m}(\omega,r) \approx -4\frac{M}{r} + \frac{\ell(\ell+1) + s(s+1)}{\omega^2 r^2} - \frac{2is}{\omega r}$ Same as Angular momentum diffraction integral (decomposition)

Spin dependent terms: Negligible in $\omega \gg 1$ limit

What's next

What's next

1. PPTI: wave-optics description without eikonal approximation (no frequency lower bound)

2. For BH lenses: include polarization effect

What's next

1. PPTI: wave-optics description without eikonal approximation (no frequency lower bound)

- 1.
- 2. For BH lenses: include polarization effect

What's next

1. PS at small scales... do they change with PPTI instead of Diffraction integral?

PPTI: wave-optics description without eikonal approximation (no frequency lower bound)

Numerical investigation: lens parameter estimation, constraints PBH abundance, matter

- 1.
- 2. For BH lenses: include polarization effect

What's next

- 1. PS at small scales... do they change with PPTI instead of Diffraction integral?
- 2. Connect NP scalars to metric perturbation

PPTI: wave-optics description without eikonal approximation (no frequency lower bound)

Numerical investigation: lens parameter estimation, constraints PBH abundance, matter

- 1.
- 2. For BH lenses: include polarization effect

What's next

- 1. PS at small scales... do they change with PPTI instead of Diffraction integral?
- 2. Connect NP scalars to metric perturbation
- 3. Other backgrounds

PPTI: wave-optics description without eikonal approximation (no frequency lower bound)

Numerical investigation: lens parameter estimation, constraints PBH abundance, matter

- 1.
- 2. For BH lenses: include polarization effect

What's next

- 1. PS at small scales... do they change with PPTI instead of Diffraction integral?
- 2. Connect NP scalars to metric perturbation
- 3. Other backgrounds
- 4. Many waves, many lenses

PPTI: wave-optics description without eikonal approximation (no frequency lower bound)

Numerical investigation: lens parameter estimation, constraints PBH abundance, matter

- 1.
- 2. For BH lenses: include polarization effect

What's next

- PS at small scales... do they change with PPTI instead of Diffraction integral?
- 2. Connect NP scalars to metric perturbation
- 3. Other backgrounds
- 4. Many waves, many lenses

PPTI: wave-optics description without eikonal approximation (no frequency lower bound)

Numerical investigation: lens parameter estimation, constraints PBH abundance, matter

Thank you!

Geometric vs Wave optics

High Frequency: $\omega R_S \gg 1$

Ray description

Low Frequency: $\omega R_S \lesssim 1$

Geometric vs Wave optics

High Frequency: $\omega R_S \gg 1$

Wave effects 3.4

GWs can be emitted at low frequencies ($w \leq 1$), allowing the observation of wave diffractive phenomena. For typical LISA sources, wave optics as in Eq. (15) needs to be considered for lenses with masses $M_L \sim 10^6 - 10^9 M_{\odot}$, cf. Eq. (13).

Geometric vs Wave optics

High Frequency: $\omega R_S \gg 1$

Wave effects 3.4

GWs can be emitted at low frequencies ($w \leq 1$), allowing the observation of wave diffractive phenomena. For typical LISA sources, wave optics as in Eq. (15) needs to be considered for lenses with masses $M_L \sim 10^6 - 10^9 M_{\odot}$, cf. Eq. (13).

Geometric vs Wave optics

High Frequency: $\omega R_S \gg 1$

Wave effects 3.4

GWs can be emitted at low frequencies ($w \leq 1$), allowing the observation of wave diffractive phenomena. For typical LISA sources, wave optics as in Eq. (15) needs to be considered for lenses with masses $M_L \sim 10^6 - 10^9 M_{\odot}$, cf. Eq. (13).

Geometric vs Wave optics

High Frequency: $\omega R_S \gg 1$

Wave effects 3.4

GWs can be emitted at low frequencies ($w \leq 1$), allowing the observation of wave diffractive phenomena. For typical LISA sources, wave optics as in Eq. (15) needs to be considered for lenses with masses $M_L \sim 10^6 - 10^9 M_{\odot}$, cf. Eq. (13).

