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Probe of large scale structures and compact objects

GWs through the perturbed Universe

2
Propagation effects carry cosmological and astrophysical information
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Geometric vs Wave optics

Optical regimes

3

Ray description

High Frequency: ωRS ≫ 1

LISA CosGW: 2204.05434

Wave effects

Low Frequency: ωRS ≲ 1
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Diffraction integral for a scalar wave

4

1. Klein-Gordon Eq.:

2. Amplification Factor:

3. Eikonal approximation:

4. Schrödinger Eq.:

rL

rLO

rO

θO α U(x)

Analogy between wave and quantum effects: 
interference between all paths. 

Geometric optics = classical limit

Diffraction integral:

ω = 1/ℏ
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5

PROs
1. Wave optics effects are frequency dependent 

2. Easy high frequency limit

3. Non perturbative (strong lensing)

4. Already used for:  lens parameter estimation, 
constraints PBH abundance, matter PS at 
small scales,…

1. Eikonal: frequency lower bound 
 ω ≫ |∂2

rF | / |∂rF |

2. Scalar field: no polarization effects

Proper time path integrals 

2405.20208 

CONs
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Finding a Schrödinger equation without Eikonal approximation

Proper time path integral

6

1. Proper time:

2. Schrödinger Eq.:

Integrate away τ Sum over paths

Particle action
ω = 1/ℏ

Proper time path 
integral:

Exact particle-like solution WITHOUT the need of Eikonal approximation 
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1.  limit to recover geometric optics  
(  and )

ω → ∞
δ ̂S/δτ = 0 δ ̂S/δx = 0

2. Eikonal assumption a posteriori to recover diffraction integral of Nakamura&Deguchi 1999 
( )δ ̂S/δτ = 0

3. Perturbative expansion in  αU

4. First order solution for Coulomb-like potential

5. Massive scalar field: ωm = ω 1 −
m2

ω2

6. Polarization effects
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Polarization effects on a Kerr background

8

1. Lens = Kerr BH

2. Use BH perturbation theory long-standing 
results

3. Perturbations of spin  on Kerr BH 
satisfy Teukolsky Eq.:

s = 0, 1/2, 1, 2

Ô[M, a, ω, s] ψ s
ω(r, θ, φ) = 0

Differential 
operator ψ s=2

ω ⊃ {··h+ ± i ··h×}
Newman-Penrose scalar, e.g.:
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1. Decompose NP scalar:  ψ s
ω = e−imφ S(θ) R(r)

2. Radial part satisfies 1D Klein-Gordon equation:  
 
 
 

3. Same starting point, solve again with PPTI

4. In Newtonian limit: 

Helmholtz Eq.  for radial part  

Polarization effects on a Kerr background

9

Same as  
diffraction integral Angular momentum 

(decomposition)

Spin dependent terms:  
Negligible in  
limit

ω ≫ 1
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Summary

10

1. Numerical investigation: lens parameter estimation, constraints PBH abundance, matter 
PS at small scales… do they change with PPTI instead of Diffraction integral?

2. Connect NP scalars to metric perturbation

3. Other backgrounds

4. Many waves, many lenses Thank you!

1. PPTI: wave-optics description without eikonal approximation (no frequency lower bound)

2. For BH lenses: include polarization effect 

What’s next
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