Precise Standard-Model predictions for tri-boson

Mathieu PELLEN

University of Freiburg

Joint WG1+WG3 meeting on triple vector-boson production, COMETA COST action $5^{\rm th}$ of April 2024

Triboson

Motivation

- Quartic gauge coupling (like in VBS)
 - \rightarrow Another test of the EWSB mechanism and SM

History

- NLO QCD \sim 2007 [Lazopoulos, Melnikov, Petriello; hep-ph/0703273]
 - + EW \sim 2013 [Dao Thi, Le Duc, Weber; 1307.7403]
 - \rightarrow NLO QCD + NLO EW for ON-shell for all processes (see [Huss, Huston, Jones, MP; 2207.02122])

State of the art

NLO QCD + NLO EW for OFF-shell for WWW

[Schönherr; 1806.00307], [Dittmaier, Knippen, Schwan; 1912.04117]

- NLO QCD + NLO EW for OFF-shell for $V\gamma\gamma$ [Greiner, Schönherr; 1710.11514]
- NLO QCD + NLO EW for OFF-shell for WZ γ [Cheng, Wackeroth; 2112.12052] \bigwedge only leptonic decays considered

Mathieu PELLEN

Triboson - [Denner, MP, Schönherr, Schumann; to appear]

Signature: W⁺W⁺jj ... golden channel for vector-boson scattering

 \rightarrow Full NLO EW+QCD [Biedermann, Denner, MP; 1708.00268]

Mathieu PELLEN

Triboson - [Denner, MP, Schönherr, Schumann; to appear]

Signature: W^+W^+jj ... golden channel for vector-boson scattering

• EW process

- \rightarrow Measurement by ATLAS [ATLAS; 2201.13045]
- \rightarrow Investigation of EW corrections [Biedermann, Denner, MP; 1611.02951]
- \rightarrow Full NLO QCD+EW + PS corrections using SHERPA

Mathieu PELLEN

 \rightarrow Typical phase space (inspired by [ATLAS; 2201.13045]):

$$\begin{array}{ll} p_{\mathsf{T},\ell^+} > 20 \, {\rm GeV} & \mbox{ and } & |y_{\ell^+}| < 2.5 \\ p_{\mathsf{T},j} > 20 \, {\rm GeV} & \mbox{ and } & |y_j| < 4.5 \\ m_{jj} < 160 \, {\rm GeV} & \mbox{ and } & |\Delta y_{jj}| < 1.5 \end{array}$$

 $40\,{
m GeV} < m_{\ell^+\ell^+} < 400\,{
m GeV}$

 \rightarrow Typical phase space (inspired by [ATLAS; 2201.13045]):

$$\begin{array}{ll} p_{\mathsf{T},\ell^+} > 20 \, {\rm GeV} & \mbox{ and } & |y_{\ell^+}| < 2.5 \\ p_{\mathsf{T},j} > 20 \, {\rm GeV} & \mbox{ and } & |y_j| < 4.5 \\ m_{jj} < 160 \, {\rm GeV} & \mbox{ and } & |\Delta y_{jj}| < 1.5 \end{array}$$

 $40\,{
m GeV} < m_{\ell^+\ell^+} < 400\,{
m GeV}$

$\mathcal{O}(lpha^{6})$	off-shell	on-shell	on-shell subprocess			
Process	$\mu^+ u_\mu e^+ u_e jj$	sum	$W^+W^+W^-$	W^+H	W ⁺ Z	W^+W^+
						VBS
$\sigma_{\sf LO}[\sf fb]$	0.7917	0.7738	0.4207	0.3265	$5 \cdot 10^{-7}$	0.0266
$\sigma/\sigma_{ m LO}^{ m off-shell}$ [%]	100	97.7	53.1	41.2	$7 \cdot 10^{-5}$	3.3

▲ Large contribution from WH! ▲ preliminary

Mathieu PELLEN

[Denner, MP, Schönherr, Schumann] A preliminary -> More complex picture with higher-orders

Mathieu PELLEN

NLO QCD + EW to pp $\rightarrow e^- \bar{\nu}_e \mu^+ \nu_\mu \tau^+ \nu_\tau$ [Dittmaier, Knippen, Schwan; 1912.04117]

 \rightarrow Excellent approximation of full process where VH not relevant!

NLO QCD + EW to pp $ightarrow { m e}^+ u_{ m e} \mu^+ \mu^- \gamma$ [Cheng, Wackeroth; 2112.12052]

• Off-shell effects, spin correlations, and non-resonance contributions accounted

$\sigma_{\rm LO}$ [fb]	$\sigma_{\rm QCD}$ [fb]	K-factor	$\sigma_{\rm EW}$ [fb]	$\delta_{\rm EW}$ [%]	$\delta^{q\bar{q}}_{\mathrm{EW}}$ [%]	$\delta_{\mathrm{EW}}^{\gamma q(ar{q})}$ [%]
0.20869(5)	$0.3588^{+3.90\%}_{-3.23\%}(2)$	1.719(1)	0.2101(1)	0.97(1)	-3.99(4)	+4.96(1)

 \rightarrow At NLO EW:

large cancellation between $q\bar{q}$ and photon-induced contributions

$\sigma_{\rm LO} ~[{\rm fb}]$	$\sigma_{ m QCD}$ [fb]	K-factor	$\sigma_{\rm EW}$ [fb]	$\delta_{\rm EW}$ [%]	$\delta^{q\bar{q}}_{\mathrm{EW}}$ [%]	$\delta_{\mathrm{EW}}^{\gamma q(\bar{q})}$ [%]
0.20869(5)	$0.3588^{+3.90\%}_{-3.23\%}(2)$	1.719(1)	0.2101(1)	0.97(1)	-3.99(4)	+4.96(1)

\rightarrow At NLO EW:

large cancellation between $q ar{q}$ and photon-induced contributions

Mathieu PELLEN

Sudakov logarithms vs. photon-induced

 \rightarrow Large effect of photon-induced contributions also in pp \rightarrow W γ

[Denner, Dittmaier, Hecht, Pasold; 1412.7421]

• Dim-8 operator in SMEFT:

$$\mathcal{O}_{\mathrm{M},5} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}, \quad \mathcal{O}_{\mathrm{T},1} = \mathrm{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \mathrm{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$

 \rightarrow Missing EW corrections can mimic dim-8 operator ... if looking at single distributions

Mathieu PELLEN

Summary

Recent computations:

- $pp \rightarrow$ WWW with hadronic decays [Denner, MP, Schönherr, Schumann; to appear]
- $pp \rightarrow WWW$ with leptonic decays [Dittmaier, Knippen, Schwan; 1912.04117]
- ${
 m pp}
 ightarrow {
 m WZ}\gamma$ [Cheng, Wackeroth; 2112.12052]

Recent computations:

- pp \rightarrow WWW with hadronic decays [Denner, MP, Schönherr, Schumann; to appear]
- $pp \rightarrow WWW$ with leptonic decays [Dittmaier, Knippen, Schwan; 1912.04117]
- ${
 m pp}
 ightarrow {
 m WZ}\gamma$ [Cheng, Wackeroth; 2112.12052]
- Decisive information for SM tests
 - \rightarrow Precision programme at the LHC
- Crucial interplay between theory and experiment
 - \rightarrow Big impact on physics results

Recent computations:

- pp \rightarrow WWW with hadronic decays [Denner, MP, Schönherr, Schumann; to appear]
- $pp \rightarrow WWW$ with leptonic decays [Dittmaier, Knippen, Schwan; 1912.04117]
- ${
 m pp}
 ightarrow {
 m WZ}\gamma$ [Cheng, Wackeroth; 2112.12052]
- Decisive information for SM tests
 - \rightarrow Precision programme at the LHC
- Crucial interplay between theory and experiment
 - \rightarrow Big impact on physics results

Thank you