

SMEFT predictions for triboson

Based on a work with Gauthier Durieux, Ken Mimasu, Eleni Vryonidou

Joint WG1+WG3 meeting on triple vector-boson production, COMETA COST action, 10/04/24

Eugenia Celada University of Manchester

The University of Manchester

The SMEFT

Dimension-6 operators Warsaw basis

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} O_i^{(6)} + \mathcal{O}(\Lambda^{-3})$$

$$\sigma \sim |\mathcal{M}_{\rm SM}|^2 + \frac{1}{\Lambda^2} \left(\sum c^{(6)} 2 \operatorname{Re}[\mathcal{M}_{\rm SM}^* \mathcal{M}_{\rm EFT}^{(6)}] \right) + \frac{1}{\Lambda^4} \left(\sum c^{(6)} \mathcal{M}_{\rm EFT}^{(6)} \right)^2$$

Triboson production at the LHC

 Triboson have small cross sections, only accessible with LHC run 2 (total cross sections, fully leptonic)

Why triboson?

- Tree-level access to TGC and QGC
- Interplay with the Higgs sector

What information?

Sensitivity to light quark Yukawa in longitudinal VVV production

 off-shell Higgs production in WWW and ZZZ

$$\mathcal{L} \supset -rac{h}{v} \sum_{q=u,d,s} m_q ig(1+\delta y_qig) ar q q \qquad \delta y_q = -rac{Y_q}{y_q^{
m SM}}$$

- energy enhancements of the longitudinally polarised cross sections in the high-energy limit: $\sigma(qq \rightarrow V_L V_L V_L) \sim s$
- projected sensitivity at HL-LHC and FCC-hh in triboson channel comparable to total Higgs signal strength

[Falkowski et al.; 2011.09551]

What information?

Sensitivity to TGC and Higgs-gauge couplings

- Differential analysis
- Large quadratic contribution (secondary minima)
- Highest sensitivity in semileptonic $VZ\gamma$
- Individual bounds competitive with VBS

↓ Processes	Operators \rightarrow	Q_W	\mathbf{Q}_{HB}	Q_{HW}	Q_{HWB}	Q_{HD}
Combination	68% C.L.	[-0.18,0.19]	[-0.37, 0.37]	[-0.40,0.40]	[-0.11,0.11]	[-0.17,0.17]
	95% C.L.	[-0.27,0.28]	[-0.53, 0.53]	[-0.57,0.57]	[-0.21, 0.21]	[-0.33,0.33]
VBS	95% C.L.	[-0.19,0.18]	-	[-1.02,1.08]	[-1.34,0.96]	[-1.98,1.74]

5

Triboson in global fits

- Triboson is sensitive to a variety of anomalous effects
- Sensitivity studies are promising compared to other probes
- ... time to go global!
- We incorporate triboson in a global EW fit

What's triboson constraining power? Any additional information?

Operator	Definition			
bosonic				
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$			
$\mathcal{O}_{\phi WB}$	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$			
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^{I}_{\mu u}W^{J, u ho}W^{K,\mu}_{ ho}$			
two-fermion				
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{q}\gamma^{\mu}q)$			
${\cal O}_{\phi q}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu} au_{I}\phi)(\bar{q}\gamma^{\mu} au^{I}q)$			
$\mathcal{O}_{\phi u}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{u}\gamma^{\mu}u)$			
${\cal O}_{\phi d}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{d}\gamma^{\mu}d)$			
$\mathcal{O}_{\phi\ell}^{(1)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{\ell}\gamma^{\mu}\ell)$			
${\cal O}_{\phi\ell}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\tau_{I}\phi)(\bar{\ell}\gamma^{\mu}\tau^{I}\ell)$			
${\cal O}_{\phi e}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{e}\gamma^{\mu}e)$			
four-fermion				
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}\gamma_\mu\ell)(ar{\ell}\gamma^\mu\ell)$			

- Subset of 11 EW&Higgs operators
- flavour universality, $U(3)^5$

Operator	Definition			
bosonic				
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$			
$\mathcal{O}_{\phi WB}$	$(\phi^{\dagger} au_{I}\phi)B^{\mu u}W^{I}_{\mu u}$			
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$			
two-fermion				
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{q}\gamma^{\mu}q)$			
${\cal O}_{\phi q}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\tau_{I}\phi)(\bar{q}\gamma^{\mu}\tau^{I}q)$			
${\cal O}_{\phi u}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{u}\gamma^{\mu}u)$			
${\cal O}_{\phi d}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{d}\gamma^\mu d)$			
${\cal O}_{\phi\ell}^{(1)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{\ell}\gamma^{\mu}\ell)$			
${\cal O}_{\phi\ell}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu} au_{I}\phi)(\bar{\ell}\gamma^{\mu} au^{I}\ell)$			
${\cal O}_{\phi e}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{e}\gamma^{\mu}e)$			
four-fermion				
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}\gamma_\mu\ell)(ar{\ell}\gamma^\mu\ell)$			

 $pp \rightarrow W^+W^-Z$

E. Celada - WG1+WG3 COMETA Meeting

Operator	Definition			
bosonic				
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$			
$\mathcal{O}_{\phi WB}$	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$			
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^I_{\mu u}W^{J, u ho}W^{K,\mu}_{ ho}$			
two-fermion				
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{q}\gamma^{\mu}q)$			
$\mathcal{O}_{\phi q}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\tau_{I}\phi)(\bar{q}\gamma^{\mu}\tau^{I}q)$			
$\mathcal{O}_{\phi u}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{u}\gamma^{\mu}u)$			
${\cal O}_{\phi d}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{d}\gamma^{\mu}d)$			
$\mathcal{O}_{\phi\ell}^{(1)}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(ar{\ell} \gamma^\mu \ell)$			
${\cal O}_{\phi\ell}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu} au_{I}\phi)(\bar{\ell}\gamma^{\mu} au^{I}\ell)$			
$\mathcal{O}_{\phi e}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{e}\gamma^{\mu}e)$			
four-fermion				
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}\gamma_\mu\ell)(ar{\ell}\gamma^\mu\ell)$			

 $pp \rightarrow W^+W^-Z$

Operator	Definition			
bosonic				
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$			
$\mathcal{O}_{\phi WB}$	$(\phi^{\dagger} au_{I}\phi)B^{\mu u}W^{I}_{\mu u}$			
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$			
two-fermion				
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{q}\gamma^{\mu}q)$			
$\mathcal{O}_{\phi q}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu} au_{I}\phi)(\bar{q}\gamma^{\mu} au^{I}q)$			
${\cal O}_{\phi u}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{u}\gamma^{\mu}u)$			
${\cal O}_{\phi d}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{d}\gamma^{\mu}d)$			
$\mathcal{O}_{\phi\ell}^{(1)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{\ell}\gamma^{\mu}\ell)$			
$\mathcal{O}_{\phi\ell}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu} au_{I}\phi)(\bar{\ell}\gamma^{\mu} au^{I}\ell)$			
${\cal O}_{\phi e}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{e}\gamma^{\mu}e)$			
four-fermion				
${\cal O}_{\ell\ell} ~~(ar \ell \gamma_\mu \ell) (ar \ell \gamma^\mu \ell)$				

 $pp \rightarrow W^+W^-Z$

 $pp \rightarrow W^+W^-Z$

Going NLO

$$K = \frac{\sigma_{\rm NLO}}{\sigma_{\rm LO}}$$

- NLO QCD effects are seizable in VV and VVV: $K \sim 1 2$
- significant variations between operators, processes and EFT orders

• $K(O_W/\Lambda^{-2}) \sim O(10)$: LO suppression lifted at NLO [Azatov et al.; 1607.05236] [Dixon and Shadmi; 9312363]

[Degrande and Maltoni; 2012.06595, 2403.16894]

Going NLO

NLO QCD corrections are large in triboson processes

E. Celada - WG1+WG3 COMETA Meeting

[EC, Durieux, Mimasu, Vryonidou; to appear]

Operators and observables

EWPOs and
$$\alpha_{\rm EW}\sqrt{s} = m_Z$$

 $\Gamma_Z = 2.495 \pm 0.0023 \text{ GeV}$ $\sigma_{\rm had.} = 41.54 \pm 0.0037 ~\rm nb$ $R_{\ell}^0 = 20.77 \pm 0.025$ $A_{FB}^{\ell} = 0.00171 \pm 0.001$ $A_{\ell}(\text{SLD}) = 0.147 \pm 0.003$ $A_{\ell}(\text{Pt}) = 0.151 \pm 0.002$ $R_b^0 = 0.2163 \pm 0.0007$ $A^b_{FB} = 0.099 \pm 0.0016$ $A_b = 0.923 \pm 0.02$ $R_c^0 = 0.172 \pm 0.003$ $A_{FB}^{c} = 0.0707 \pm 0.0035$ $A_c = 0.67 \pm 0.027$

LEP $WW\sqrt{s} = 183 - 209 \text{ GeV}$ $\sigma(WW \to \ell \nu \ell \nu, qqqq) \qquad \frac{d\sigma}{d\cos(\theta)}(WW \to \ell \nu qq)$

[LEP; 1302.3415]

LHC VV $\sqrt{s} = 13 \text{ TeV}$

 $\frac{d\sigma}{dm_{e\mu}}(WW \to e\nu\mu\nu) \qquad \frac{a\sigma}{dp_1}$

$$\frac{d\sigma}{dp_T^Z}(WZ \to \ell \nu \ell \nu)$$

[ATLAS: 1905.04242]

$$\frac{d\sigma}{dp_T^Z}(WZ \to \ell \nu \ell \nu)$$

[ATLAS; 1902.05759]

$$\frac{d\sigma}{d\Delta\phi_{jj}}(Zjj \rightarrow \ell\ell jj)$$
[ATLAS; 2006.15458]

[LEP; 0509008]

 $\frac{\alpha(M_Z)}{\alpha(M_Z)_{SM}}\bigg|_{\overline{MS}} = 0.998 \pm 0.0011$

[PDG; 20-21]

LHC VVV $\sqrt{s} = 13 \text{ TeV}$

 $\sigma(WWW, WWZ, WZZ, ZZZ, WZ\gamma, WW\gamma, W\gamma\gamma)$

[ATLAS; 2201.13045, 2305.16994, 2308.03041] [CMS; 2006.11191, 2310.05164, 2105.12780]

Operators and observables

Operator	Definition	EWPOs	LEP WW	LHC VV	$VVV, VV\gamma, V\gamma\gamma$
	bosonic				
$\mathcal{O}_{\phi D}$	$(\phi^\dagger D^\mu \phi)^\dagger (\phi^\dagger D_\mu \phi)$	1	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{\phi WB}$	$(\phi^\dagger au_I \phi) B^{\mu u} W^I_{\mu u}$	~	\checkmark	\checkmark	\checkmark
\mathcal{O}_{WWW}	$\epsilon_{IJK}W^{I}_{\mu\nu}W^{J,\nu\rho}W^{K,\mu}_{\rho}$		\checkmark	\checkmark	\checkmark
two-fermion					
$\mathcal{O}_{\phi q}^{(1)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{q}\gamma^{\mu}q)$	1		✓	\checkmark
${\cal O}_{\phi q}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\tau_{I}\phi)(\bar{q}\gamma^{\mu}\tau^{I}q)$	1	\checkmark	\checkmark	\checkmark
${\cal O}_{\phi u}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu}\phi)(\bar{u}\gamma^{\mu}u)$	\checkmark		\checkmark	\checkmark
${\cal O}_{\phi d}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{d}\gamma^\mu d)$	~		\checkmark	\checkmark
${\cal O}_{\phi\ell}^{(1)}$	$i(\phi^\dagger \overleftarrow{D}_\mu \phi)(\bar{\ell}\gamma^\mu \ell)$	~	\checkmark	\checkmark	\checkmark
${\cal O}_{\phi\ell}^{(3)}$	$i(\phi^{\dagger}\overleftrightarrow{D}_{\mu} au_{I}\phi)(\bar{\ell}\gamma^{\mu} au^{I}\ell)$	~	\checkmark	\checkmark	\checkmark
$\mathcal{O}_{\phi e}$	$i(\phi^\dagger \overleftrightarrow{D}_\mu \phi)(\bar{e}\gamma^\mu e)$	~	\checkmark	✓	\checkmark
four-fermion					
$\mathcal{O}_{\ell\ell}$	$(ar{\ell}\gamma_\mu\ell)(ar{\ell}\gamma^\mu\ell)$	1	\checkmark	\checkmark	\checkmark

E. Celada - WG1+WG3 COMETA Meeting

[EC, Durieux, Mimasu, Vryonidou; to appear]

Fit results

Fitmaker [Ellis et al.; 2012.02779]

- LHC VV & VVV appear to improve significantly the bounds from EWPOs & LEP VV
- Biggest impact from LHC VV compared to LEP VV
- 50% improvement from VVV wrt VV on $c_{\phi D}, c_{\phi WB}, c_{\phi \ell}, c_{\phi e}$
- Bounds dominated by quadratic

[EC, Durieux, Mimasu, Vryonidou; to appear]

Interpretation

• Two EWPOs unconstrained directions: $w_B, w_W + c_W$

$$g_{1}^{2} w_{B} = g_{1}^{2} \frac{\bar{v}_{T}^{2}}{\Lambda^{2}} \left(-\frac{1}{3} C_{Hd} - C_{He} - \frac{1}{2} C_{Hl}^{(1)} + \frac{1}{6} C_{Hq}^{(1)} + \frac{2}{3} C_{Hu} + 2C_{HD} - \frac{1}{2t_{\hat{\theta}}} C_{HWB} \right),$$

$$g_{2}^{2} w_{W} = g_{2}^{2} \frac{\bar{v}_{T}^{2}}{\Lambda^{2}} \left(\frac{C_{Hq}^{(3)} + C_{Hl}^{(3)}}{2} - \frac{t_{\bar{\theta}}}{2} C_{HWB} \right).$$
[Brivio and Trott; 1701.06424]

- 3/11 directions unconstrained in a EWPOs only fit
- additional data is needed (multiboson)

2 possible origins of the improvement

- 1. constraints in EWPOs blind space + marginalisation
- 2. genuine effect of higher sensitivity in all directions

Where do VV & VVV help?

Three EWPOs unconstrained parameters: $\hat{e}_1, \hat{e}_2, c_W$

- Large $\mathcal{O}(\Lambda^{-4})$ effect (also for LEP VV!)
- LHC VV dominates over LEP
- VVV at $\mathcal{O}(\Lambda^{-2})$ doesn't help
- VVV constrains the $\{\hat{e}_1, \hat{e}_2\}$ space

- Quadratic corrections are important
- VVV improves in EWPOs flat directions
- E. Celada WG1+WG3 COMETA Meeting

What about the other directions?

Does multiboson help EWPOs in the directions orthogonal to $\{\hat{e}_1, \hat{e}_2, O_{WWW}\}$?

 in general, EWPOs constraints are dominant

[EC, Durieux, Mimasu, Vryonidou; to appear]

What about the other directions?

Does multiboson help EWPOs in the directions orthogonal to $\{\hat{e}_1, \hat{e}_2, O_{WWW}\}?$

- in general, EWPOs constraints are dominant
- mild improvement from quadratics (even EWPOs) on some directions

What about the other directions?

Does multiboson help EWPOs in the directions orthogonal to $\{\hat{e}_1, \hat{e}_2, O_{WWW}\}$?

- in general, EWPOs constraints are dominant
- mild improvement from quadratics (even EWPOs) on some directions
- secondary minima in EWPOs+LEP lifted by LHC VV

[EC, Durieux, Mimasu, Vryonidou; to appear]

Summary & conclusions

- Multiboson is multi-purpose: sensitivity to TGC, Higgs-gauge and light quark Yukawa couplings
- Complementarity to EWPOs
- Triboson improves the bounds of up to a factor 2 compared to diboson in directions unconstrained by EWPOs
- Quadratic EFT contributions are sizeable for all the processes, from EWPO leading to secondary minima, to LEP diboson, and the LHC VV&VVV