Positron $P_T = 30 \text{ GeV}$

Experimental Status of tribosons in CMS (and ATLAS)

Saptaparna Bhattacharya Humboldt Fellow, Wayne State Pathway-to-faculty Fellow

Alexander von Humboldt Stiftung/Foundation

Standard Model Total Production Cross Section Measurements

Status: October 2023

Overview of CMS cross section results

		CMS preliminary	
7 TeV	PRD 90 (2014) 072006		
7 TeV	PRD 84 052011 (2011)		
2.76 TeV	PLB 715 (2012) 66		
5.02 TeV	SMP-20-004		
7 TeV	JHEP 10 (2011) 132		
8 TeV	PRL 112 (2014) 191802		
13 TeV	SMP-20-004		
2.76 TeV	JHEP 03 (2015) 022		
5.02 TeV	SMP-20-004		
7 TeV	JHEP 10 (2011) 132		
8 TeV	PRL 112 (2014) 191802		
13 TeV	SMP-20-004		
13.6 TeV	SMP-22-017		
7 TeV	PRD 89 (2014) 092005		
13 TeV	PRL 126 252002 (2021)		
7 TeV	PRD 89 (2014) 092005		
8 TeV	IHEP 04 (2015) 164		
5.02 TeV	PRL 127 (2021) 191801		
7 TeV	EPIC 73 (2013) 2610		
8 TeV	EPJC 76 (2016) 401		
13 TeV	PRD 102 092001 (2020)		
5.02 TeV	PRL 127 (2021) 191801		
7 TeV	EPIC 77 (2017) 236		
8 TeV	EPIC 77 (2017) 236		
13 TeV	JHEP 07 (2022) 032		
5.02 TeV	PRL 127 (2021) 191801		
7 TeV	JHEP 01 (2013) 063		
8 TeV	PLB 740 (2015) 250		
13 TeV	EPJC 81 (2021) 200		
13 TeV	PRL 125 151802 (2020)		$\sigma(VVV) =$
13 TeV	PRL 125 151802 (2020)	$\sigma(WWW) =$	5.9e+02
13 TeV	PRL 125 151802 (2020)	$\sigma(WWZ) = 3e+0$	2 fb 📕
13 TeV	PRL 125 151802 (2020)	$\sigma(WZZ) = 2e + 02 \text{ fb}$	
13 TeV	PRL 125 151802 (2020)		
8 TeV	PRD 90 032008 (2014)		-
13 TeV	SMP-22-006	$\sigma(WW\gamma) = 6 \text{ fb}$	
8 TeV	JHEP 10 (2017) 072	$\sigma(W\gamma\gamma) = 4.9 \text{ fb}$	
13 TeV	JHEP 10 (2021) 174	$\sigma(W\gamma\gamma) = 14 \text{ fb}$	
8 TeV	JHEP 10 (2017) 072	$\sigma(Z\gamma\gamma) = 13 \text{ fb}$	
13 TeV	JHEP 10 (2021) 174	$\sigma(Z\gamma\gamma) = 5.4 \text{ fb}$	
8 TeV	IHEP 11 (2016) 147	$\sigma(VBF W) = 4$	2e+02 fł
13 TeV	EPIC 80 (2020) 43		
7 TeV	IHEP 10 (2013) 101	$\sigma(VBFZ) = 1.5e+02 \text{ fb}$	
8 TeV	EPIC 75 (2015) 66	$\sigma(VBF Z) = 1.7e + 02 \text{ fb}$	
13 TeV	EPIC 78 (2018) 589	$\sigma(VBFZ)$	= 5.3e+
13 TeV	PLB 834 (2022) 137438		σ (EW V

Electroweak

let

W

W

W

W

W

Ζ

Ζ

Ζ

Ζ

Ζ

Ζ

Wγ

Wγ

Zγ

Zγ

WW

WW

WW

WW

WZ

WZ

WZ

WZ

ZZ

ZZ

ΖZ

ZZ

VVV

WWW

WWZ

WZZ

ZZZ

WVγ

WWγ

Wγγ

Wγγ

Ζγγ

Ζγγ

VBF W

VBF W

VBF Z

VBF Z

VBF Z

EW WV

ex. $\gamma\gamma \rightarrow WW$

EW qqW γ

EW qqW γ

EW os WW

EW ss WW

EW ss WW

EW qqZ γ

EW qqZ γ

EW qqWZ

EW qqZZ

8 TeV

8 TeV

13 TeV

13 TeV

8 TeV

13 TeV

13 TeV

8 TeV

JHEP 08 (2016) 119

JHEP 06 (2017) 106

PLB 841 (2023) 137495

PRL 114 051801 (2015)

PLB 809 (2020) 135710

PRD 104 072001 (2021)

PLB 770 (2017) 380

13 TeV PLB 809 (2020) 135710

13 TeV PLB 812 (2020) 135992

PRD 108 032017

di-Boson

tri-Bos

and VBS

 $\sigma(\text{ex. } \gamma \gamma \rightarrow \text{WW}) = 22 \text{ fb}$

 σ (EW os WW) = 10 fb

 $\sigma(EW qqW\gamma) = 24 fb$

1.0e+02

 $\sigma(EW qqW\gamma) = 11 fb$

 σ (EW ss WW) = 4 fb

 $\sigma(\text{EW } \text{qq} \text{Z} \gamma) = 1.9 \text{ fb}$

 σ (EW qqZZ) = 0.33 fb

 $\sigma(\text{EW qqWZ}) = 1.8 \text{ fb}$

 σ (EW ss WW) = 4 fb

1.0e+00

 $\sigma(\text{EW } \text{qqZ}\gamma) = 5.2 \text{ fb}$

Span several orders of magnitude!

 36 pb^{-1} 231 nb⁻¹ 298 pb⁻¹ 36 pb^{-1} 18 pb^{-1} 201 pb⁻¹ 5 pb^{-1} 5 pb^{-1} 36 pb^{-1} 18 pb⁻¹ 201 pb⁻¹ 5 fb⁻¹

 $5 \, {\rm fb}^{-1}$ 137 fb⁻¹ 5 fb⁻¹ 20 fb⁻¹ 302 pb⁻¹ 5 fb⁻¹ 19 fb⁻¹ 36 fb⁻¹ 302 pb⁻¹ 5 fb⁻¹ 20 fb⁻¹ 137 fb⁻¹ 302 pb⁻¹ 5 fb⁻¹ 20 fb⁻¹ 137 fb⁻¹

137 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 19 fb⁻¹ 138 fb⁻¹ $19 \, {\rm fb}^{-1}$ 137 fb⁻¹ 19 fb⁻¹ 137 fb⁻¹

19 fb⁻¹ 36 fb⁻¹ 5 fb⁻¹ 20 fb⁻¹ 36 fb⁻¹ 138 fb⁻¹ 20 fb⁻¹ 20 fb⁻¹ 138 fb⁻¹ 138 fb⁻ 19 fb⁻¹ 137 fb⁻¹ 20 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹ 137 fb⁻¹

Broad status of triboson observation in CMS

gauge bosons at $\sqrt{s} = 13$ TeV

• CMS-PAS-SMP-19-014: Measurements of the $W^{\pm}\gamma\gamma$ and $Z\gamma\gamma$ cross sections at $\sqrt{s} = 13$ TeV and limits on anomalous quartic gauge couplings

• CMS-PAS-SMP-22-006: Observation of $WW\gamma$ and search for $H\gamma$ production in proton-proton collisions at $\sqrt{s} = 13$ TeV

• CMS-PAS-SMP-19-014: Observation of the production of three massive

Triboson cross sections

	VVV	13 -
	www	13 -
	WWZ	13
_	WZZ	13
JOS C	ZZZ	13
Ő	$WV\gamma$	8 Te
÷	$WW\gamma$	13

VVV	13 TeV	PRL 125 151802 (2020)	
www	13 TeV	PRL 125 151802 (2020)	
WWZ	13 TeV	PRL 125 151802 (2020)	
WZZ	13 TeV	PRL 125 151802 (2020)	
ZZZ	13 TeV	PRL 125 151802 (2020)	
WVγ	8 TeV	PRD 90 032008 (2014)	
WWγ	13 TeV	SMP-22-006	σ(
Wγγ	8 TeV	JHEP 10 (2017) 072	$\sigma(W\gamma\gamma)$
Wγγ	13 TeV	JHEP 10 (2021) 174	
Ζγγ	8 TeV	JHEP 10 (2017) 072	
Ζγγ	13 TeV	JHEP 10 (2021) 174	σ(

A NEW TRI-BOSON PROCESS DISCOVERY

Observation of WWy production at $\sqrt{s} = 13$ TeV

- $WW\gamma$ process observed (expected) with a significance of 5.6 (5.1) σ
- Higgs boson to light quarks

7

Quartic coupling

*The theoretical modeling uncertainties include the renormalization and factorization of QCD scales, PDFs, and parton shower modeling

Trilinear coupling

Fiducial cross section measured as: 5.9 ± 0.8 (stat.) ± 0.8 (syst.) ± 0.7 (modeling*) fb Associated search for H with a photon explored \rightarrow generated by coupling of the

https://arxiv.org/abs/2310.05164

Associated production $(H\gamma)$

Observation of WWy production at $\sqrt{s} = 13$ TeV

- $WW\gamma \rightarrow e^+ \nu_e \mu^- \bar{\nu_u}\gamma$ or $\mu^+ \nu_\mu e^- \bar{\nu_e}\gamma$ final state
- Events with b-jets vetoed
- Additional loose leptons vetoed
- Backgrounds suppressed by
 - $M_{\ell\ell} > 10 \, \mathrm{GeV}$
- $p_T^{\ell\ell} > 15 \text{ GeV}$
- $m_T^{WW} > 10 \text{GeV}$

 $m_T^{WW} = \sqrt{2p_T^{\ell\ell} p_T^{miss}} [1 - \cos \Delta \phi(\overrightarrow{p_T}^{\ell\ell}, \overrightarrow{p_T}^{miss})]$

Observation of $WW\gamma$ production at $\sqrt{s} = 13$ TeV

ntrol region	Top γ control region
ns of identical	Flip b-veto and remo cut on transverse ma of the WW-system
npt lepton odeling	Validate top-quark an non-prompt photor background modelir

Observation of WWy production at $\sqrt{s} = 13$ TeV

Process	SR (0 jet)	SR (≥ 1 jet)	SR (total)	SSWW γ CR	Top γ CR
$WW\gamma$	122 ± 23	132 ± 27	254 ± 47	1.0 ± 0.2	12.8 ± 2.7
$QCD V\gamma$	72.0 ± 6.4	94.7 ± 9.3	167 ± 14	12.2 ± 2.2	12.6 ± 1.2
VV	15.1 ± 1.4	21.6 ± 2.4	36.7 ± 3.5	24.9 ± 1.7	2.0 ± 0.3
Тор	56.6 ± 6.5	271 ± 26	328 ± 32	2.4 ± 0.6	2434 ± 85
Nonprompt ℓ	45.7 ± 4.0	77.2 ± 6.5	122.9 ± 9.7	197 ± 14	40 ± 11
Nonprompt γ	109.1 ± 9.0	301 ± 24	410 ± 32	19.9 ± 1.6	793 ± 62
Total	420 ± 20	898 ± 29	1318 ± 43	257 ± 14	3294 ± 57
Data	414	916	1330	259	3287
		Background			

dominated

Simultaneous extraction of signal and control regions

Observation of WWy production at $\sqrt{s} = 13$ TeV

Signal extracted from a binned maximum likelihood fit using two dimensional distributions in m_T^{WW} and $m_{\ell\ell\gamma}$ (product of the Poisson probability mass functions for each bin forms the likelihood function)

Search for $H\gamma$

- Selection modified to target $H\gamma$ by requiring
 - $\Delta \phi_{\ell\ell} < 2.5$
 - $\Delta R_{\ell\ell} < 2.3$
- Design requirements: oppositely charged W-bosons from the Higgs decay \rightarrow opposite spin orientation

Process	σ upper limits obs. (exp.) [fb]	κ_q limits obs. (exp.) at 95% CL	$\overline{\kappa}_{q}$ limits obs. (exp.) at 95% CI
$u\overline{u} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	85 (67)	$ \kappa_{\rm u} \le 16000 \ (13000)$	$ \overline{\kappa}_u \leq 7.5 \ (6.1)$
$d\overline{d} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	72 (58)	$ \kappa_{\rm d} \le 17000 \ (14000)$	$ \overline{\kappa}_{\mathrm{d}} \leq 16.6 \ (14.7)$
$s\overline{s} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	68 (49)	$ \kappa_{\rm s} \le 1700$ (1300)	$ \overline{\kappa}_{\mathrm{s}} \leq 32.8 \ (25.2)$
$c\overline{c} \to H + \gamma \to e\mu\nu_e\nu_\mu\gamma$	87 (67)	$ \kappa_{\rm c} \le 200$ (110)	$ \overline{\kappa}_{\rm c} \le 45.4$ (25.0)

First observation of triboson production

- Culmination of persistent endeavor by both <u>ATLAS</u> and <u>CMS</u> Collaborations
- Recent <u>result</u> from ATLAS on observation of the WWW process

https://arxiv.org/abs/2006.11191

Announced on April, 2020

Note: V (V= W^{\pm} , Z⁰)

topics

Triple threat: The first observation of three massive gauge bosons produced in proton-proton collisions

oy Ingrid Fadelli, Phys.org

symmetry

What is so special about VV?

- Unique access to the quartic coupling
- Mediation by the Higgs boson

 f_1 V^* f_2 V^* H V

Culmination of several searches over several years

A-priori production rates are low

13

1/3rd of Run II data All of Run II data

Production rates lower than the Higgs production by a factor of 100!

Cross sections X branching fractions

complementary cut based analysis

Lepton detection in CMS

Excellent lepton detection capabilities in CMS → can be replied on for SM-like analysis

CMS Experiment at the LHC, CERN Data recorded: 2015-Oct-30 19:23:54.631552 GMT Run / Event / LSI 260424 / 211873064 / 115

Background processes

Process	Final state	Background
WWW	Same signed leptons 🟹	top-quark pair production, diboson process (WZ)
WWW	Three leptons	top-quark pair production, diboson process (WZ)
WWZ	Four leptons	top-quark pair produced with Z-boson, diboson process (Z
WZZ	Five leptons 🔽	diboson process (ZZ)
ZZZ	Six leptons 🟹	top-quark pair produced with Higgs boson, diboson proces (ZZ)
Prompt lepto	on: lepton that originates from the pri	mary interaction vertex

Type of background contribution: Misidentified leptons, prompt leptons

Search for WWW in dilepton final state

- Major backgrounds are WZ and nonprompt contribution, some prompt (W±W±jj / ttW)
- and prompt backgrounds

Using boosted decision trees to tackle backgrounds from nonprompt sources

Input variables (indicative, not exhaustive):

- pT^{miss} (typically indicative of neutrinos in the event)
- Lepton p_T
- Jet p_T
- Transverse mass (m_T)
- Mass of the two jets (M_{jj})

21

Understanding prompt backgrounds

 Dijet invariant mass in a control region with 3 leptons

- Contributes when one of the leptons fails to pass the minimum pT threshold in the analysis
- Referred to as a lost lepton background

22

WZZ in five lepton final state

WZZ in five lepton final state

- In 5 lepton channel:
 - Require 2 Z boson candidates and associate remaining lepton with a W
 - Separate by flavor of the W candidate lepton and require $M_T > 50$ GeV if electron

24

Combination of all final states

Contribution from Higgs-mediated mode ~1/3 in the sensitive channels

Observation of the VVV process

Combined observed significance at 5.7 s.d. Observed significance for WWW and WWZ at 3.3 s.d. and 3.4 s.d.

Process	Final State	Significance s.d. observed (expected)	Cross sections (fb)
WWW	same-signed dilepton and trilepton	3.3 (3.1)	590^{+160}_{-150} $^{+160}_{-130}$
WWZ	four leptons	3.4 (4.1)	300^{+120}_{-100} $^{+50}_{-40}$
WZZ	five leptons	1.7 (0.7)	200^{+160}_{-110} $^{+40}_{-20}$
ZZZ	six or more leptons	0.0 (0.9)	< 200

The strength of the signal with respect to SM expectation

Significance of the VVV process at the High-Luminosity LHC*

Process	Final State	Significance observed (expected) σ at Run II	Significance expected (3000 fb ⁻¹) σ Projected assuming uncertainties are the same as Run II
WWW	same-signed dilepton and trilepton	3.3 (3.1)	Can be pursued in the realm o precision measurements
WWZ	four leptons	3.4 (4.1)	Can be pursued in the realm o precision measurements
WZZ	five leptons	1.7 (0.7)	> 5.0
ZZZ	six or more leptons	0.0 (0.9)	> 5.0

*Unofficial projections

Measurements of the $W^{\pm}\gamma\gamma$ and $Z\gamma\gamma$

https://arxiv.org/pdf/2105.12780.pdf

- Final state: $W \to \ell \nu$ and $Z \to \ell^+ \ell^ (\ell = e, \mu)$
- Explore potential effect of new physics and characterize in terms of the effective field theory approach
- $W^{\pm}\gamma\gamma$: 3.1 σ and $Z\gamma\gamma$: 4.8 σ
- Electron and muon candidates $p_T > 15 \text{ GeV}$
- Photon candidates $p_T > 20 \text{ GeV}$
- For $W^{\pm}\gamma\gamma$ require exactly one lepton
- For $Z\gamma\gamma$ require two leptons
 - $M_{\ell\ell} > 55 \,\mathrm{GeV}$

28

Measurements of the $W^{\pm}\gamma\gamma$ and $Z\gamma\gamma$

- **Background contributions**
 - jets misidentified as photons
 - electrons reconstructed as photons

Jet \rightarrow photon misidentification background in the diphoton phase space estimated by solving system of equations (so-called "tight-loose" method based on passing/failing isolation requirements)

Measurements of the $W^{\pm}\gamma\gamma$ and $Z\gamma\gamma$

Binned maximum likelihood fits to the diphe strength

Process
Misid. jets
Misid. electrons
Others
Total backgrounds
Expected signal
Total prediction
Data
Process
Ъ <i>Т</i> [•] • 1 • т

 $ev_e\gamma\gamma$ $918 \pm 23 (stat) \pm$ $669 \pm 28 (stat) \pm$ $217 \pm 11 (stat) \pm$ $1804 \pm 38 (stat) \pm$ $248 \pm 6 (stat) \pm$ $2052 \pm 38 (stat) \pm$ 1987

 $ee\gamma\gamma$ $42 \pm 4 (stat) \pm$ $6 \pm 1 (stat) \pm$ $48 \pm 4 (stat) \pm$ $68 \pm 2 (stat) \pm$ $116 \pm 4 (stat) \pm$ 110

Binned maximum likelihood fits to the diphoton p_T distribution performed to extract signal

γ	$\mu u_{\mu}\gamma\gamma$
± 180 (syst)	$1441 \pm 27 (stat) \pm 280 (syst)$
\pm 34 (syst)	107 ± 9 (stat) ± 7 (syst)
± 20 (syst)	286 ± 11 (stat) ± 25 (syst)
± 180 (syst)	$1834 \pm 30 ({\rm stat}) \pm 280 ({\rm syst})$
± 17 (syst)	500 ± 8 (stat) ± 33 (syst)
± 180 (syst)	2334 ± 31 (stat) ± 280 (syst)
	2384
/	μμγγ
\pm 9 (syst)	98 ± 5 (stat) ± 27 (syst)
= 1 (syst)	11 ± 2 (stat) ± 1 (syst)
±9 (syst)	$109 \pm 6 (\mathrm{stat}) \pm 27 (\mathrm{syst})$
± 5 (syst)	157 ± 3 (stat) ± 11 (syst)
± 8 (syst)	$266 \pm 6 (\text{stat}) \pm 23 (\text{syst})$
	272

• $\sigma(W\gamma\gamma)^{\text{meas}} = 13.6^{+1.9}_{-1.9}(\text{stat.})^{+4.0}_{-4.0}(\text{syst.}) \pm 0.08 \text{ (PDF} + \text{scale}) \text{ fb}$ Theoretical value: 18.70 ± 0.12 fb • $\sigma(Z\gamma\gamma)^{\text{meas}} = 5.41^{+0.58}_{-0.55}(\text{stat.})^{+0.64}_{-0.70}(\text{syst.}) \pm 0.06 \text{ (PDF} + \text{scale}) \text{ fb Theoretical value: 5.96 \pm 0.06 fb}$

Measurements of the $W^{\pm}\gamma\gamma$ and $Z\gamma\gamma$

Cross section modified as: $|\mathcal{M}|^{2} = |\mathcal{M}_{SM}|^{2} + 2Re(\mathcal{M}_{SM}^{*}\mathcal{M}_{D-8}) + |\mathcal{M}_{D-8}|^{2}$

Pure SM

Interference between SM and BSM

Transverse operators:

- $\mathcal{O}_{T,5} = Tr[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}] \times B_{\alpha\beta}B^{\alpha\beta}$
- $\mathcal{O}_{T,6} = Tr[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}] \times B_{\mu\beta}B^{\alpha\nu}$
- $\mathcal{O}_{T,8} = B_{\mu\nu}B^{\mu\nu}B_{\alpha\beta}B^{\alpha\beta}$ $\mathcal{O}_{T,9} = B_{\alpha\mu}B^{\mu\beta}B_{\beta\nu}B^{\nu\alpha}$

 $\mathscr{L}_{EFT} = \mathscr{L}_{SM} + \sum \frac{f_i^8}{\Lambda^4} \mathscr{O}^8$

Pure BSM

	$W\gamma\gamma$ (TeV^{-4})	$Z\gamma\gamma$ (TeV ⁻⁴)	
Parameter	Expected	Observed	Expected	Observed
$f_{\rm M2}/\Lambda^4$	[-57.3, 57.1]	[-39.9, 39.5]		
$f_{\rm M3}/\Lambda^4$	[-91.8, 92.6]	[-63.8, 65.0]		
$f_{\rm T0}/\Lambda^4$	[-1.86, 1.86]	[-1.30, 1.30]	[-4.86, 4.66]	[-5.70, 5.46]
$f_{\mathrm{T1}}/\Lambda^4$	[-2.38, 2.38]	[-1.70, 1.66]	[-4.86, 4.66]	[-5.70, 5.46]
$f_{\rm T2}/\Lambda^4$	[-5.16, 5.16]	[-3.64, 3.64]	[-9.72, 9.32]	[-11.4, 10.9]
$f_{\rm T5}/\Lambda^4$	[-0.76, 0.84]	[-0.52, 0.60]	[-2.44, 2.52]	[-2.92, 2.92]
$f_{\rm T6}/\Lambda^4$	[-0.92, 1.00]	[-0.60, 0.68]	[-3.24, 3.24]	[-3.80, 3.88]
$f_{\mathrm{T7}}/\Lambda^4$	[-1.64, 1.72]	[-1.16, 1.16]	[-6.68, 6.60]	[-7.88, 7.72]
$f_{\rm T8}/\Lambda^4$			[-0.90, 0.94]	[-1.06, 1.10]
$f_{\rm T9}/\Lambda^4$			[-1.54, 1.54]	[-1.82, 1.82]

EFT interpretation in $W^{\pm}\gamma\gamma$ and $Z\gamma\gamma$

Cross the aisle

Observation of $W\gamma\gamma$ production at $\sqrt{s} = 13$ TeV

https://arxiv.org/abs/2308.03041

- $W\gamma\gamma$ observed with a significance of 5.6 σ
- Final state: $W \rightarrow \ell \nu \ (\ell = e, \mu)$
- Fiducial cross section:
 - $\sigma_{\text{fid}} = 13.8 \pm 1.1 \text{ (stat.)}_{-2.0}^{+2.1} \text{ (syst.)} \pm 0.1 \text{ (lumi) fb}$
- Largest background from jets that fake a photon $(j \rightarrow \gamma)$

Source	SR	TopCR
$W\gamma\gamma$	410 ± 60	28 ± 5
Non-prompt $j \to \gamma$	420 ± 50	42 ± 20
Misidentified $e \to \gamma$	155 ± 11	120 ± 9
Multiboson $(WH(\gamma\gamma), WW\gamma, Z\gamma\gamma)$	76 ± 13	5.2 ± 1.7
Non-prompt $j \to \ell$	35 ± 10	
Top $(tt\gamma, tW\gamma, tq\gamma)$	30 ± 7	136 ± 32
Pileup	10 ± 5	—
Total	1136 ± 34	332 ± 18
Data	1136	333

25

Observation of $W\gamma\gamma$ production at $\sqrt{s} = 13$ TeV

• Final state: $W \rightarrow \ell \nu \ (\ell = e, \mu)$

- Largest background from jets that fake a photon $(i \rightarrow \gamma)$
- Estimated using data-driven method by performing a two-dimensional template fit to the leading and sub-leading photon isolation distributions

NLO electroweak corrections included

Observation of WZy production at $\sqrt{s} = 13$ TeV

- Final state: $W \to \ell \nu, \ Z \to \ell^+ \ell^ (\ell = e, \mu)$
- $WZ\gamma$ observed with a significance of 6.3 σ
- Cross section (fiducial):
 - 2.01 ± 0.30 (stat.) ± 0.16 (syst.) fb
- $K_{\rm EW} = \sigma_{\rm fid}^{\rm NLO \ EW} / \sigma_{\rm fid}^{\rm LO} = 1.05$
- Fiducial region defined by isolated leptons $(p_T^{\ell} > 30 \text{ GeV})$ and photons at high p_T $(p_T^{\gamma} > 15 \text{ GeV})$
- Backgrounds arise from non-prompt photons and leptons

Observation of WZy production at $\sqrt{s} = 13$ TeV

Clean final state with large number of signal events with respect to the background contributions

- across orders of magnitude in cross section, allowing us to probe exotic couplings in the **Standard Model**
- Only covered most recent results from ATLAS ($Z\gamma\gamma$ and WWW are impressive)
- Discussions on
 - electroweak corrections

Conclusion

• Both ATLAS and CMS have a comprehensive multiboson program, spanning several processes,

interference with the Higgs-mediated mode and the quartic and trilinear modes are important

Additional Material

Basis of Dimension-8 operators

- Proposed by Eboli et al. (hep-ph/0606118)
- Three classes of operators
 - Scalar
 - $\mathcal{O}_{S,0} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\mu}\Phi)^{\dagger}D^{\nu}\Phi]$
 - $\mathcal{O}_{S,1} = [(D_{\mu}\Phi)^{\dagger}D^{\mu}\Phi] \times [(D_{\nu}\Phi)^{\dagger}D^{\nu}\Phi]$
 - $\mathcal{O}_{S,2} = [(D_{\mu}\Phi)^{\dagger}D_{\nu}\Phi] \times [(D^{\nu}\Phi)^{\dagger}D^{\mu}\Phi]$
- Mixed
 - $\mathcal{O}_{M,0} = Tr[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}] \times [(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi]$
 - $\mathcal{O}_{M,1} = Tr[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta}] \times [(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi]$
 - $\mathcal{O}_{M,2} = [B_{\mu\nu}B^{\mu\nu}] \times [(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi]$
 - $\mathcal{O}_{M,3} = [B_{\mu\nu}B^{\nu\beta}] \times [(D_{\beta}\Phi)^{\dagger}D^{\mu}\Phi]$
 - $\mathcal{O}_{M,4} = [(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\mu}\Phi] \times B^{\beta\nu}$
 - $\mathcal{O}_{M,5} = [(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}D^{\nu}\Phi] \times B^{\beta\mu} + H.c.$
 - $\mathcal{O}_{M,7} = [(D_{\mu}\Phi)^{\dagger}\hat{W}_{\beta\nu}\hat{W}^{\beta\mu}D^{\nu}\Phi]$

- Transverse
 - $\mathcal{O}_{T,0} = Tr[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}] \times Tr[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}]$
 - $\mathcal{O}_{T,1} = Tr[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}] \times Tr[\hat{W}_{\mu\beta}\hat{W}^{\alpha\nu}]$
 - $\mathcal{O}_{T,2} = Tr[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}] \times Tr[\hat{W}_{\beta\nu}\hat{W}^{\nu\alpha}]$
 - $\mathcal{O}_{T,3} = Tr[\hat{W}_{\mu\nu}\hat{W}_{\alpha\beta}] \times Tr[\hat{W}^{\alpha\nu}\hat{W}^{\mu\beta}]$
 - $\mathcal{O}_{T,4} = Tr[\hat{W}_{\mu\nu}\hat{W}_{\alpha\beta}] \times B^{\alpha\nu}B^{\mu\beta}$
 - $\mathcal{O}_{T,5} = Tr[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}] \times B_{\alpha\beta}B^{\alpha\beta}$
 - $\mathcal{O}_{T,6} = Tr[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}] \times B_{\mu\beta}B^{\alpha\nu}$
 - $\mathcal{O}_{T,7} = Tr[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}] \times B_{\beta\nu}B^{\nu\alpha}$
 - $\mathcal{O}_{T,8} = B_{\mu\nu}B^{\mu\nu}B_{\alpha\beta}B^{\alpha\beta}$
- $\mathcal{O}_{T,9} = B_{\alpha\mu}B^{\mu\beta}B_{\beta\nu}B^{\nu\alpha}$

BOIDS Contro 0 nition

eading photon ID Loose ⁽	TL'	L
Tight Subl	osinov SR Iso Non-iso	L
	Tight	Lo eading p
M _T ^W < 40 GeV E ^{miss} < 25 GeV		Loc for
M _T ^W > 40 GeV E ^{miss} > 25 GeV	SR 🕻	Lo fo
	Signal	Loc

- The WZ background:
 - Contributes when one of the leptons fails to pass the minimum pT threshold in the analysis
 - Referred to as a "lost lepton" background

 $W^{\pm}Z \longrightarrow \ell^{\pm} \nu \ell^{\pm} \ell^{\mp}$

Pernicious backgrounds

$\neg q q l^{\pm} \nu l^{\pm} \nu$

- An event category can be constructed by requiring that 2 identically charged leptons be present
- Require that mass of the jets (emerging) from q q') is consistent with arising from a W-boson

The most interesting distribution

Backgrounds (processes)

The LHC will dominate the collider spectrum till 2040!

- Run 3 commenced in mid-2022
- Collect 2x data, by 2042: more than 20x data 47

We are here

Shutdown/Technical stop Protons physics Ions Commissioning with beam

Hardware commissioning

Radiation damage foreseen that will necessitate the replacement of the endcap detectors <u>CMS-TDR-019</u>

Sum of energy = 0.9 TeV

Variable analogous to partonic center of mass energy

Sum of energy = 0.9 TeV

Variable analogous to partonic center of mass energy

Expect to see an excess in tails of distributions

Sum of energy = 0.9 TeV

Look for appearance of new physics indirectly in the interactions of the gauge bosons

Standard model production

W-decay products are resolved

Sum of energy >> 0.9 TeV

Look for appearance of new physics indirectly in the interactions of the gauge bosons

In how many ways can tribosons decay — let's tabulate

Process	Fully leptonic	At least one gauge boson decays hadronically	At least one gauge boson decays leptonically	Fully hadronic
WWW	3 lepton+missing energy	2 leptons+jets	1 lepton+jets	6 jets/3 boosted j
WWZ	4 lepton+missing energy	2 lepton+jets 3 lepton+jets	1 lepton+jets 2 lepton+jets	6 jets/3 boosted j
WZZ	5 lepton+missing energy	3 lepton+jets 4 lepton+jets	1 lepton+jets 2 lepton+jets	6 jets/3 boosted j
ZZZ	6 leptons	4 lepton+jets	2 lepton+jets	6 jets/3 boosted j

Explored for the first observation of VVV production

This table does not include the decays of the Z-bosons to $\nu\bar{\nu}$ for brevity

New final states open up!

New final states open up!

New final states open up!

