

Challenges of Experimental Particle Physics*

*from my very biased point of view.

A. Salzburger (CERN)

from my very biased point of view.

 $\vec{L} = -i \vec{F}_{\mu\nu} \vec{F}^{\mu\nu} \\
+ i \vec{F} \vec{N} \vec{F}$ + $\chi_i \mathcal{Y}_{ij} \chi_j \not p$ + h.c. $+\left|\mathcal{D}_{\mathcal{A}}\varphi\right|^{2}-V(\varphi)$

Accelerator

Detector

Data Acquisition

Worldwide distributed Computing

Data Reconstruction

 $\vec{\chi} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ + iFBY + X: Yij X; Ø+h.c. $+|\mathcal{D}_{\mathcal{P}}|^{2}-V(\phi)$

Accelerator

4

Accelerator

Detector

Data Acquisition

Hey, I designed one!!

And ok, the engineers laughed at me ...

Worldwide distributed Computing

Data Reconstruction

Data Acquisition

Accelerator

Detector

Data Acquisition

Now we are talking, I can preach HOURS about that stuff.

> Worldwide distributed Computing

Data Reconstruction

Why biased?

 $\vec{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\
+ i F \vec{N} F$ + $\chi_i \mathcal{Y}_{ij} \chi_j \not p$ + h.c. $+\left|\mathcal{D}_{\mathcal{A}}\varphi\right|^{2}-V(\varphi)$

Accelerator

Data Acquisition

Data Reconstruction

$$\begin{aligned} \vec{\mathcal{L}} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \vec{\mathcal{F}} \vec{\mathcal{D}} \vec{\mathcal{F}} \\ &+ \vec{\mathcal{F}} \vec{\mathcal{F}} \vec{\mathcal{F}} \\ &+ |\vec{\mathcal{P}}_{\mu} \vec{\mathcal{F}}|^2 - V(\vec{\mathcal{P}}) \end{aligned}$$

Accelerator

Detector

Data Acquisition

... all of that has to work together!

Worldwide distributed Computing

Data Reconstruction

 $J = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i F B \mu$ + χ : $\mathcal{Y}_{ij}\chi_{j}\phi$ + h.c. $+\left|\mathcal{D}_{\mathcal{A}}\varphi\right|^{2}-V(\varphi)$

Accelerator

Detector

Data Acquisition

Worldwide distributed Computing

Data Reconstruction

J= - FAVFAV + i FDY

The Lagrangian of the Standard Model: It describes the particles, and how they interact with another

+ X: Y: X, Ø+h.C. $+ \left| \mathcal{D} \varphi \right|^{2} - \mathcal{V}(\mathcal{O})$

The particles?

Particles and mediators

Not described by the Standard Model

Finding the Higgs Boson

I wait until a

comes around, and then I look at it.

A daily observation

[Image source]

Flower "Object"

A good microscope

[Image Source]

A very good microscope

Electron microscope Siemens, 1943

"Source"

[Image source: EM] [Image source: Pollen]

Detector "Observer"

Pollen "Object"

My experiments so far ...

My experiments so far ...

Large Hadron Collider

$\sqrt{s} = 14$ TeV (design)

The collider

Large Hadron Collider

$\sqrt{s} = 14 \text{ TeV}$ (design)

A very large microscope

[Image source]

eV ... and what you can see

particle detector

Creating the Higgs Boson

~ 60 individual proton-proton interactions

Creating the Higgs Boson

individual proton-proton interactions

Creating the Higgs Boson

Η

Unfortunately ... this does not happen often.

Figure:

Standard Model cross sections measured with the ATLAS experiment and compared to theoretical predictions, July 2017

This is why we do this every 25 nanoseconds!

~ 60 individual proton-proton interactions

... and when it happens ...

... it decays immediately

This happens in practically 0 time

... it decays immediately

... anti-what?

These particles also exist in their anti-matter form ...

... in our world this looks like

Detector

←____

 $\rightarrow \bigcirc$

... in our world this looks like

Run: 205113 Event: 12611816 Date: 2012-06-18 Time: 11:07:47 CEST

... does it though?

The ATLAS detector

How to get from here ...

How to get from here ...

... to here ?

ATLAS Detector

41

... and it's principle

I need to identify each particle and measure its properties.

... and it's principle

Tracking

3m 5m 6m 7m 4m Charged particles move on curved paths in magnetic field, thats how we measure them!

44

Calorimetery

Muon System

We need a selection ...

coincidence ! energy ! no energy ! energy! 1 kHz **ATLAS** EXPERIMENT \sim http://atlas.ch

25 ns = 40 MHz

48

And then read it out ...

This is not what a experiment looks like ...

Al detour

 \bullet \bullet

•••

Object detection and recognition is a AI standard problem

- big advances achieved in the last years
- Both in object detection & object calssification
- Can we use this for HEP?

The Beatles, Abbey Road

ne last years bject calssification

Al detour

Al detour

57

With all ingredients

Data Acquisition

Data Analysis

Worldwide distributed Computing

Data Reconstruction

4 lepton signals

4 lepton signals

4 lepton signals confirmed

Data Analysis & publication

4 lepton signals

4 lepton signals confirmed

2 positive leptons2 negative leptonsand measured

Lesson 1 - Minkowski arithmetic

Invariant mass:

$$M^{2} = E^{2} - p_{x}^{2} - p_{y}^{2} - p_{z}^{2}$$

4 lepton signals

4 lepton signals confirmed

2 positive leptons2 negative leptonsand measured

Data Analysis & publication

Let us run the experiment ... for real

[Animation source]

[Animation source]

And so it went ...

Level 1 Trigger to 100 kHz on detector electronics

High level trigger ~1kHz

close-by computer farm

Full processing of events 1000 events/second

Data Analysis & publication

... and of course the right guys got it.

The Nobel Prize in Physics 2013

© Nobel Media AB. Photo: A. Mahmoud

François Englert Prize share: 1/2

© Nobel Media AB. Photo: A. Mahmoud

Peter W. Higgs Prize share: 1/2

[Animation source]

High level trigger ~1kHz

close-by computer farm

Full processing of events 1000 events/second

Data Analysis & publication

A search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented. The datasets used correspond to integrated luminosities of approximately 4.8 fb⁻¹ collected at $\sqrt{s} = 7$ TeV in 2011 and 5.8 fb⁻¹ at $\sqrt{s} = 8$ TeV in 2012. Individual searches in the channels $H \to ZZ^{(*)} \to 4\ell$, $H \to \gamma\gamma$ and $H \to WW^{(*)} \to e\nu\mu\nu$ in the 8 TeV data are combined with previously published results of searches for $H \rightarrow ZZ^{(*)}$, $WW^{(*)}$, $b\bar{b}$ and $\tau^+\tau^-$ in the 7 TeV data and results from mproved analyses of the $H \to ZZ^{(*)} \to 4\ell$ and $H \to \gamma\gamma$ channels in the 7 TeV data. Clear evidence for the production of a neutral boson with a measured mass of 126.0 ± 0.4 (stat) ±0.4 (sys) GeV is presented. This observation, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10^{-9} , is compatible with the production and decay of the Standard Model

© 2012 CERN. Published by Elsevier B.V. All rights reserved.

15 pages scientific context

~ 3000 authors

When we all work together ...

Data Acquisition

71

When we all work together ...

... we can achieve amazing things.

The why

allows us to investigate universe at an age of

10^{-10} s = 0.000000001 s

The duck & the wall

SM Higgs coupling to fermions & vector bosons

Exclusion limits for various SUSY particles

ATLAS SUSY Searches* - 95% CL Lower Limits

_									v 5 = 1 0
1	S	ignatur	e ∫	$\mathcal{L} dt [\mathbf{fb}^{-1}]$] Mas	s limit			Reference
)	$0~e,\mu$ mono-jet $0~e,\mu$	2-6 jets 1-3 jets 2-6 jets	$E_T^{ m miss} \ E_T^{ m miss} \ E_T^{ m miss}$	139 139 139	<i>q̃</i> [1×, 8× Degen.] <i>q̃</i> [8× Degen.] <i>g̃</i>	1.0 0.9	1.85	$m(ilde{\chi}_{1}^{0}){<}400~{ m GeV} \ m(ilde{q}){-}m(ilde{\chi}_{1}^{0}){=}5~{ m GeV} \ m(ilde{\chi}_{1}^{0}){=}0~{ m GeV}$	2010.14293 2102.10874 2010.14293
$ ilde{\chi}_1^0 \ \ell) ilde{\chi}_1^0 \ Z ilde{\chi}_1^0$	1 e,μ ee,μμ 0 e,μ SS e,μ 0-1 e,μ SS e,μ	2-6 jets 2 jets 7-11 jets 6 jets 3 <i>b</i> 6 jets	E_T^{miss} E_T^{miss} E_T^{miss}	139 139 139 139 79.8 139	του	Forbidden 1	1.15-1.95 2.2 2.2 1.97 .15 2.25	$m(\tilde{x}_{1}^{0}) = 1000 \text{ GeV}$ $m(\tilde{x}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{x}_{1}^{0}) < 700 \text{ GeV}$ $m(\tilde{x}_{1}^{0}) < 700 \text{ GeV}$ $m(\tilde{x}_{1}^{0}) = 200 \text{ GeV}$ $m(\tilde{x}_{1}^{0}) = 200 \text{ GeV}$ $m(\tilde{x}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{x}_{1}^{0}) = 300 \text{ GeV}$	2010.14293 2101.01629 CERN-EP-2022-014 2008.06032 1909.08457 ATLAS-CONF-2018-041 1909.08457
	0 <i>e</i> , <i>µ</i>	2 b	$E_T^{\rm miss}$	139	\tilde{b}_1 \tilde{b}_2	0.68	1.255	$m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 10 GeV $< \Delta m(\tilde{h}_1, \tilde{\chi}_1^0) < 20 \text{ GeV}$	2101.12527 2101.12527
$ \tilde{\chi}_2^0 \to bh \tilde{\chi}_1^0 $	0 e,μ 2 τ 0-1 e,μ	6 <i>b</i> 2 <i>b</i> ≥ 1 jet	$E_T^{ mmmmmiss}$ $E_T^{ mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm$	139 139 139		0.13-0.85	.23-1.35 1.25	$ \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 100 \text{ GeV} \Delta m(\tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0}) = 130 \text{ GeV}, m(\tilde{\chi}_{1}^{0}) = 0 \text{ GeV} m(\tilde{\chi}_{1}^{0}) = 1 \text{ GeV} $	1908.03122 2103.08189 2004.14060,2012.03799
$\begin{split} \tilde{\chi}_1^0 \\ \tilde{\nu}\nu, \tilde{\tau}_1 \to \tau \tilde{G} \\ \tilde{\rho}/\tilde{c}\tilde{c}, \tilde{c} \to c \tilde{\chi}_1^0 \end{split}$	1 e,μ 1-2 τ 0 e,μ 0 e,μ	3 jets/1 <i>b</i> 2 jets/1 <i>b</i> 2 <i>c</i> mono-jet	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	139 139 36.1 139	$ ilde{t}_1$ $ ilde{t}_1$ $ ilde{c}$ $ ilde{t}_1$	Forbidden Forbidden 0.85 0.55	1.4	$\begin{array}{c} m(\tilde{\chi}_{1}^{0}) = 500 \ {\rm GeV} \\ m(\tilde{\tau}_{1}) = 800 \ {\rm GeV} \\ m(\tilde{\chi}_{0}^{0}) = 0 \ {\rm GeV} \\ m(\tilde{\chi}_{1},\tilde{c}) - m(\tilde{\chi}_{1}^{0}) = 5 \ {\rm GeV} \end{array}$	2012.03799 2108.07665 1805.01649 2102.10874
$\tilde{\chi}_{2}^{0} \rightarrow Z/h \tilde{\chi}_{1}^{0}$ + Z	1-2 <i>e</i> ,μ 3 <i>e</i> ,μ	1-4 <i>b</i> 1 <i>b</i>	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	\tilde{t}_1 \tilde{t}_2	0.067- Forbidden 0.86	1.18 r	$\begin{split} \mathbf{m}(\tilde{\chi}_{2}^{0}){=}500~\mathrm{GeV}\\ \mathbf{n}(\tilde{\chi}_{1}^{0}){=}360~\mathrm{GeV},~\mathbf{m}(\tilde{\iota}_{1}){-}\mathbf{m}(\tilde{\chi}_{1}^{0}){=}~40~\mathrm{GeV} \end{split}$	2006.05880 2006.05880
Ζ	Multiple ℓ /jet $ee, \mu\mu$	s ≥ 1 jet	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.205	0.96		$m(\tilde{\chi}_1^0)=0, \text{ wino-bino}$ $m(\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5 \text{ GeV, wino-bino}$	2106.01676, 2108.07586 1911.12606
W h $/\tilde{v}$ $v\tilde{v}^{0}$	2 e,μ Multiple ℓ/jet 2 e,μ 2 τ 2 e,μ	s O iets	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss}	139 139 139 139 139	$ \begin{array}{c} \tilde{\chi}_{1}^{*} \\ \tilde{\chi}_{1}^{*} / \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} \\ \tilde{\tau} \\ \tilde{\tau} \\ \tilde{\tau} \\ \tilde{\tau} \\ \end{array} $	0.42 1.0 1.0 0.12-0.39	6	$\begin{split} & m(\tilde{\chi}_1^0) = 0, \text{ wino-bino} \\ & m(\tilde{\chi}_1^0) = 70 \text{ GeV}, \text{ wino-bino} \\ & m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_1^\pm) + m(\tilde{\chi}_1^0)) \\ & m(\tilde{\ell}, \tilde{\nu}) = 0. \end{split}$	1908.08215 2004.10894, 2108.07586 1908.08215 1911.06660 1908.08215
Ĝ/ZĜ	ee, μμ 0 e, μ 4 e, μ 0 e, μ	≥ 1 jet $\geq 3 b$ 0 jets ≥ 2 large jet	E_T^{miss} E_T^{miss} E_T^{miss} E_T^{miss} ts E_T^{miss}	139 36.1 139 139	 <i>ℓ</i> <i>ℓ</i> 	0.29-0.88 0.55 0.45-0.93		$ \begin{array}{c} m(\tilde{\ell}) - m(\tilde{\chi}_{1}^{0}) = 10 \text{ GeV} \\ BR(\tilde{\chi}_{1}^{0} \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}_{1}^{0} \to Z\tilde{G}) = 1 \\ BR(\tilde{\chi}_{1}^{0} \to Z\tilde{G}) = 1 \end{array} $	1911.12606 1806.04030 2103.11684 2108.07586
f prod., long-lived $\tilde{\chi}_1^{\pm}$	Disapp. trk	1 jet	$E_T^{\rm miss}$	139	$ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} $ 0.21	0.66		Pure Wino Pure higgsino	2201.02472 2201.02472
hadron \tilde{g} R-hadron, $\tilde{g} \rightarrow q q \tilde{\chi}_1^0$	pixel dE/dx pixel dE/dx Displ. lep pixel dE/dx		$E_T^{ m miss}$ $E_T^{ m miss}$ $E_T^{ m miss}$ $E_T^{ m miss}$	139 139 139 139	$ \begin{array}{c} \tilde{g} \\ \tilde{g} & [\tau(\tilde{g}) = 10 \text{ ns}] \\ \tilde{e}, \tilde{\mu} \\ \tilde{\tau} & 0.3 \\ \tilde{\tau} & 0.4 \end{array} $	0.7 4 .36	2.05 2.2	$\begin{split} m(\tilde{\chi}_1^0) &= 100 \; \mathrm{GeV} \\ \tau(\tilde{\ell}) &= 0.1 \; \mathrm{ns} \\ \tau(\tilde{\ell}) &= 0.1 \; \mathrm{ns} \\ \tau(\tilde{\ell}) &= 10 \; \mathrm{ns} \end{split}$	CERN-EP-2022-029 CERN-EP-2022-029 2011.07812 2011.07812 CERN-EP-2022-029
$ \begin{array}{l} \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell \\ \phi WW/Z\ell\ell\ell\ell\ell\nu\nu \\ 0, \tilde{\chi}_{1}^{0} \rightarrow qqq \\ 0 \\ 0 \rightarrow tbs \\ \tilde{\chi}_{1}^{\pm} \rightarrow bbs \end{array} $	3 e,μ 4 e,μ 2 e,μ	0 jets 4-5 large jet Multiple $\geq 4b$ 2 jets + 2 b 2 b	$E_T^{\rm miss}$ is	139 139 36.1 36.1 139 36.7 36.1	$ \begin{split} \tilde{\chi}_{1}^{*}/\tilde{\chi}_{1}^{0} & [BR(Z\tau)=1, BR(Ze)=1] \\ \tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0} & [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] \\ \tilde{g} & [m(\tilde{\chi}_{1}^{0})=200 GeV, 1100 GeV] \\ \tilde{t} & [\lambda''_{323}=2e-4, 1e-2] \\ \tilde{t} \\ \tilde{t}_{1} & [qq, bs] \\ \tilde{t}_{1} \end{split} $	0.625 1.05 0.95 0.95 0.55 1.05 Forbidden 0.95 0.42 0.61	5 1.55 1.3 1.9 5 0.4-1.45	Pure Wino $m(\tilde{\chi}_1^0)=200 \text{ GeV}$ Large λ''_{112} $m(\tilde{\chi}_1^0)=200 \text{ GeV}$, bino-like $m(\tilde{\chi}_1^{\pm})=500 \text{ GeV}$ $BR(\tilde{\iota}_1 \rightarrow be/b\mu)>20\%$	2011.10543 2103.11684 1804.03568 ATLAS-CONF-2018-003 2010.01015 1710.07171 1710.05544
$\tilde{\chi}^0_{1,2} \rightarrow tbs, \tilde{\chi}^+_1 \rightarrow bbs$	1 μ 1-2 <i>e</i> , μ	DV ≥6 jets		136 139	$\begin{array}{c c}t_1 & [1e-10 < \lambda'_{23k} < 1e-8, 3e-10 < \lambda'_{23k} \\ \tilde{\chi}^0_1 & 0.2e-0.32\end{array}$	<3e-9] 1.0	1.6	BR $(\tilde{t}_1 \rightarrow q\mu)$ =100%, cos θ_t =1 Pure higgsino	2003.11956 2106.09609

1

Mass scale [TeV]

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made. 10^{-1}

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

75

ITk layout - Tracks in buckets

Trajectories from simulated particles in the ATLAS upgrade tracker, found with (the help of) Spotify

A. Salzburger, CODEX-b week, CERN, 12/06/2023

Labelling: Music & pighbours

A. Salzburger, CODEX-b week, CERN, 12/06/2023

77

Labelling: Music & peighbours

Perfect hash function would solve the tracking problem

h(hit) = track number

Approximate hashing, however, can be done

h(track 1, hit 0) = group x h(track 1, hit 1) = group x h(track 0, hit 1) = group x

RADNOM **PROJECTIONS**

APPROXIMATE NEAREST **NEIGHBOURS**

A. Salzburger, CODEX-b week, CERN, 12/06/2023

Labelling: Music & eighbours

Industry/open source libraries offer quite some potential also for science applications

To find a bucket with at least 4/hits of the track contained (good enough for track seeding)

Salzburger, CODEX-b week, CERN, 12/06/2023 Ż

79

Labelling: Music & Seighbours

[S. Amrouche, T. Golling, M. Kiehn, AS: Music, Neighbours & Tracking] [S. Amrouche, N. Calace, T. Golling, M. Kiehm. AS : Hashing & similarity learning]

Industry/open source libraries offer quite some potential also for science applications, but ...

9	Index on GPU	
ient		1.0
©		0.8
e C++ implementation.		ency ency
hts are copied when using .add_item(). In our application we sible to avoid the copy and use the elements directly by hange have to be implemented?		0.4 Effect
		0.2
Collaborator 🕤 🕤 …		0.0
the memory layout of Annoy indexes, unfortunately!	6000 8000 ueries	
	no business mod	el!
19	(In other words)	
To find a bucket with at least	4/hits of the track contained	

A. Salzburger, CODEX-b week, CERN, 12/06/2023

