
Investigating memory footprints of data objects

Mateusz Fila
Gaudi Developers Meeting, 17.04.2024



Heterogeneous Frameworks

• R&D project: Heterogeneous Frameworks
• EP-SFT: Mateusz Fila, Benedikt Hegner, Graeme A Stewart

Starting idea:

• Investigate scheduling with accelerators and multi-node setups.
• Start from greenfield
• Mock-up realistic workloads

2



Why memory footprints?

Beside the execution graph and
timings of algorithms a workflow can
be characterized by memory sizes of
exchanged objects.

• Most of current compute
accelerators utilize relatively
slow buses

• Communication between nodes
is relatively slow

• Cost to bring the data

CPU

Task A

Task B

Memory
transfer

GPU

Task C

Task E

GPU

CPU Memory
transfer

Task D

CPU

3



Object footprint

Different definitions of object
memory footprint in use.
Affected by multiple aspects such as:

• type size
• memory layout and alignment
• ownership

Approximate values enough for the
use case

struct MCHit {
uint cellID;
Vector3 position;
set<Contribution> contribs;

};

struct Contribution {
uint pdg;
float deposit;
Particle* particle;

};

4



Memory footprint measurement

How to obtain information about memory footprints of objects in Gaudi
TES?

Collection of ideas, some worked some not:

• Memory profilers
• Serialization
• Allocation statistics
• Specialized counting

5



Profilers — Massif

Samples the memory usage and
creates snapshots

Useful for:
• monitoring overall memory
usage

• identifying hot-spots
• detecting unreachable memory
leaks

Info

Valgrind heap profiler tool

Limitation

Can’t monitor specific
allocations

6

https://valgrind.org/docs/manual/ms-manual.html


Profilers — Object introspection

…provides byte accurate
memory occupancy
information for arbitrarily
complex C++ object
hierarchies…

Info

New memory profiler by Meta

Limitation

Currently works only with static
libraries

7

https://objectintrospection.org/
https://github.com/facebookexperimental/object-introspection
https://www.youtube.com/watch?v=6IlTs8YRne0&feature=youtu.be&themeRefresh=1


Serialization

• Measure the size of buffer
• Utilize serialization mechanism
to obtain relevant information

ROOT:
• Serialize each data object to
TBufferFile

• Custom TBuffer to avoid
unnecessary operations

• Serialization of whole TES used
in GaudiMP

Limitation

Include serialization format
overhead

I failed to extract the information
with this method. AnyDataWrapper
serialized without content, error on
my side

8



Process memory usage

Parsing /proc/ implemented in
Gaudi with ProcStats.
Reports blocks of memory available
to a process. Insensitive to:

• allocations fitting in available
memory

• dealocations not causing release
of memory back to system

Limitation

Provides only coarse, high level
information

9



Allocator monitoring

Replace the allocator with a one that
tracks the number of bytes it
allocates and deallocates

• adjust the std containers used in
a data model

• change custom containers to
defer allocation to an allocator

More possibilities for allocations
done with new or malloc.

Flaw

Intrusive unless a data model
already utilizes dynamic
allocator

Flaw

Measures whole memory pre-
alocated to a container not the
part in use (capacity not size)

10



Malloc monitoring

Not part of the C and C++ standards

glibc defines following functions for monitoring malloc:

• mallinfo mallinfo() - deprecated
• mallinfo2 mallinfo2()
• int malloc_info(int options, FILE *fp) - output XML
• int malloc_stats() - print statistics to stdout

11



Malloc monitoring
Drawbacks:

• Change in memory allocation
required

• Original object creation hard to
pin-point

• Deep-copy or delete object from
TES

• Deep-copy polymorphic objects
is tricky

• Deleting relates on correct
ownership semantics

Mechanism scheme:
• Single thread, single event slot
• Wait for ‘EndEvent‘
• For each object in TES:

• get free memory
• delete object
• get free memory difference

Flaw

Assumes object ownership

12



Malloc monitoring results
Relative success:

• glibc malloc (ptmalloc) not
reporting freed but awaiting
dealocations

• wrote malloc wrapper to include
such allocations

• tcmalloc reports freed memory
as expected

• wrote malloc wrapper to
monitor requested memory (no
memory overheads)

101 102 103 104 105 106

Array size [B]

0%

100%

200%

300%

400%

500%

600%

700%

Al
lo

ca
tio

n 
ov

er
he

ad tcmalloc
ptmalloc

13



Example output

id class size [B]

/Event/ DataObject 0
/Event/SomeInt AnyDataWrapper<int> 8
/Event/SomeDouble AnyDataWrapper<double> 8
/Event/SomeVec4 AnyDataWrapper<MicroVector4> 32
/Event/SomeVec3 AnyDataWrapper<MicroVector3> 24
/Event/SomeFloat AnyDataWrapper<float> 8

14



Specializations

Assumptions done by previous approaches might be not fulfilled by every
data model

Provide code to calculate memory
footprint for each class

Flaw

• Maintenance effort
• Only supported classes
can be used

15



EDM4hep specific

EDM4hep data model used in
key4hep:

• object data stored in PODs
• objects stored in collections
• collections owned by Frame
• only collections stored in TES

Collections can’t be destroyed
directly from TES

Measuring with malloc will lead do
segmentation faults

Since all the allowed types are
known, collection coll memory
footprint can be calculated directly:
coll.size()*sizeof(coll::value_type)

16



EDM4hep results

Example memory footprint distributions

17



}


