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The inverse problem

I We are concerned with computing the spectral
density ρ(E) associated to a lattice correlator C(t)

I Ill-posed in presence of a finite set of noisy data

I There are ways to regularise the problem. Different
assumptions, one way to express the result

ρσ(E) =
∑

t
gt(σ; E) C(t)

ρ(E) = lim
σ→0

ρσ(E)
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Difficulties

I Finite set of measurements vs function with
potentially continuous support

I Target function is a distribution

I Information is suppressed by exp(−tE)

I We work we data that is affected by errors
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Smearing

I Smearing must be introduced to have a function
that is smooth even in a finite volume

ρσ(ω) =

∫
dE Sσ(E, ω) ρ(E)

I Linear combinations of correlators automatically
produce a smeared SD

ρσ(ω) =
∑

t
gt(σ;ω) C(t)

=
∑

t
gt(σ;ω)

∫
dE e−tE

ρ(E)

I We can now take the infinite volume limit

lim
L→∞

ρL(E) =

lim
σ→0

lim
L→∞

ρL(σ; E) = ρ(E)
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Bayesian Inference with Gaussian Processes
◦ Aim for a probability distribution over a functional space of possible spectral densities

◦ Consider the stochastic field R(E) Gaussian-distributed around the prior value ρprior(E) with covariance
Kprior(E, E′).

GP
(
ρ

prior
(E),Kprior

(E, E′
)
)

◦ Similarly, assume that observational noise is Gaussian: η(t)

G (η, Covd) = exp

(
−

1
2
~η

T Cov−1
d ~η

)

◦ The stochastic variable associated to the correlator, C, is related to R and η via

C(t) =

∫
dE e−tER(E) + η(t)

◦ Incomplete list of references:
FASTSUM collab. , Valentine, Sambridge 19 , Horak, Pawlowski, Rodríguez-Quintero, Turnwald, Urban 21
Del Debbio, Giani, Wilson 21
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Bayesian Inference with Gaussian Processes

◦ The joint, posterior distribution is again Gaussian,
centred around ρpost centre and variance:

ρ
post

(ω) = ρ
prior

(ω) +

tmax∑
t=1

gGP
t (ω)

(
C(t) −

∫ ∞

0
dE e−tE

ρ
prior

(E)

)

Kpost
(ω, ω) =

(
Kprior

(ω, ω) −
tmax∑
t=1

gGP
t (ω) f GP

t (ω)

)

◦ The coefficients can be written as

~gGP
(ω) = (Σ

GP
+ λCovd)

−1 ~f GP

◦ With the following ingredients:

Σ
GP

tr =

∫
dE1

∫
dE2 e−tE1 Kprior

(E1, E2) e−rE2 ill cond

f GP
t (ω) =

∫
dE Kprior

(ω, E) e−tE
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Backus-Gilbert methods: ideal world

I {Hansen Lupo Tantalo 19} Choose an appropriate smearing kernel such that when σ → 0 we recover
Sσ(E, ω) → δ(E − ω)

I We need to find the set of coefficients spanning Sσ(E, ω):

∞∑
τ=1

gtrue
τ (σ, E) e−aτω

= Sσ(E, ω)

I We can find the coefficients by minimising

A[g] =
∫ ∞

E0

dE eαE

∣∣∣∣∣
∞∑

τ=1
gτ (σ, E) e−aτω − Sσ(E, ω)

∣∣∣∣∣
2

I Without errors on C(t) and infinitely many points, this is the solution.
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Backus-Gilbert methods: less ideal world
I In reality, the correlator is known at a finite number of points. This translates into a systematic error in the

reconstructed kernel and therefore in the reconstructed SD

τmax∑
τ=1

gτ (σ, E)C(aτ) = ρσ(E) + r(τmax, σ; E)

I The sum truncated to τmax is however well-defined and define unambiguously a given smearing kernel
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Backus-Gilbert methods: real world

I The main complication is that noisy data severely hinder this approach. Minimising A[g] amounts to solve a
massively ill-conditioned linear system

~g = Σ
−1~f

Σtr =

∫
dE1 e−tE1 e−rE1

I Backus-Gilbert regularisation:

∫ ∞

0
dE eαE

∣∣∣∣∣
tmax∑
t=1

gte−tE − Sσ(ω, E)

∣∣∣∣∣
2

+ λ ~g · Covd ·~g

I The linear system is now
~g = (Σ + λCovd)

−1 ~f
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Comparing equations

I In both cases the coefficients that generate the solution are written as:

~gGP
(ω) = (Σ

GP
+ λCovd)

−1 ~f GP

Σ
GP

tr =

∫
dE1

∫
dE2 e−tE1 Kprior

(E1, E2) e−rE2

f GP
t (ω) =

∫
dE Kprior

(ω, E) e−tE

Σtr =

∫
dE1 e−tE1 e−rE1

ft(ω) =

∫
dE Sσ(ω, E) e−tE

I They can be mapped into one another only at σ = 0.

I They regularise the problem in the very same way.

I What about λ?
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Unphysical parameters & physical results
I λ introduces a bias. Recent application of BG methods perform a “stability analysis“ {Bulava et al. 21 }

I We could do the same with the Bayesian reconstruction. Let us pick a prior:

Kprior
ε (E, E′

) =
e−(E−E′)2/2ε2

λ
, ρ

prior
= 0
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Unphysical parameters & physical results

I In the Bayesian literature, hyperparameters are determined by minimising the negative log likelihood (NLL)

− log P(data|parameters)

I The methods seem compatible
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Bayesian formulation of BG
I Compute the posterior probability distribution for a

spectral density smeared with a fixed kernel
Gσ(E, E′) = exp−(E−E′

)
2/2σ2

I Diagonal model covariance:

K(E, E′
) =

δ(E − E′)

λ
,

I The solution is now given by the same coefficients as
HLT19

gGP
(σ;ω) = g(σ;ω) even at finite σ

◦ The only difference is in the error (bootstrap for
Backus-Gilbert methods)

Kσ
post(ω, ω)

2
=

1
2

∫
dE
(∑

t
gt(σ, ω)e−tE − Gσ(E, ω)

)
Gσ(E, ω)
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More on the bias

I Generate toys for spectral densities / correlators distributed with the covariance measured on the lattice.

C(t) =

nmax−1∑
n=0

wne−|t|En , E0 < E1 ≤ . . . ,

I Solving for each can give an idea of the size of the bias, if any

I Example: generate weights wn with a GP, centred around the Gounaris-Sakurai parametrisation of the
R-ratio, and covariance:

Kweights(n, n′
) = κ exp

(
−

(En − En′ )
2

2ε2

)
,

I For the corresponding correlators, we inject noise from a covariance matrix measured on the lattice.
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Preliminary results
I Results for ρσ (true) - ρσ (estimate)

I Same plots for the pull are being analysed. Stay tuned!
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Updates about spectroscopy
I In a previous paper [2211.09581] we explored the possibility to perform finite-volume spectroscopy using

smeared spectral densities

I Recent developments in [2405.01388]

PS V T AV AT S ps v t av at s

1.0

1.5

2.0

2.5

3.0

3.5

m̂

Meson spectrum

M1

M2

M3

M4

M5

work with:
E. Bennett, L. Del Debbio, N. Forzano, R.C. Hill, D. K. Hong, H. Hsiao, J.-W. Lee, C.-J. D. Lin, B. Lucini, AL, M.

Piai, D. Vadacchino, F. Zierler
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