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The inverse problem

P We are concerned with computing the spectral N
density p(E) associated to a lattice correlator C(t) oz e
109 “‘\‘
10 “‘\\
P Tll-posed in presence of a finite set of noisy data lon ™

= / dE p(E) e tF

P There are ways to regularise the problem. Different
assumptions, one way to express the result
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Difficulties
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P Finite set of measurements vs function with v \‘\‘
potentially continuous support 10t \‘\‘
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P Target function is a distribution - - C(t) — /dE p(E) e—tE

> Information is suppressed by exp(—tE) s
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> We work we data that is affected by errors 02
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Smearing

P Smearing must be introduced to have a function
that is smooth even in a finite volume

pal) = [ 4B Sa(B,w) p(E)

P Linear combinations of correlators automatically
produce a smeared SD

po(@) = 3 auloiw) C(1)
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» We can now take the infinite volume limit

lim p,(E)=Q©
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lim lim pp(o; E) = p(E)
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Bayesian Inference with Gaussian Processes

Aim for a probability distribution over a functional space of possible spectral densities

Consider the stochastic field R(E) Gaussian-distributed around the prior value pP*°*(E) with covariance
’Cpnor(E, E’)‘
g.P (pprior(E) ’Cprior(E E,))

Similarly, assume that observational noise is Gaussian: 7(t)
G (n, Covy) = exp (—%ﬁT Cov;1 ﬁ)
The stochastic variable associated to the correlator, C, is related to R and 7 via
e = / dE e PR (E) + n(1)
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Bayesian Inference with Gaussian Processes

o The joint, posterior distribution is again Gaussian,
centred around pP°s' centre and variance:

P = P )+ 32 5w (00 = [T ap e ) )
t=1

PO (w0, ) = (K:prior(w7 w) — f oS% () £,5F (w))

=1
o The coefficients can be written as
gcp(w) _ (EGP + ACovq) ™! For

o With the following ingredients:

neP, =/dE1/dE2 e B PrOT (B By) e ™2 i1l cond

5,5 (w) = / dE KP7 (w0, B) o= F

- Cond(®) o




Backus-Gilbert methods: ideal world

P {Hansen Lupo Tantalo 19} Choose an appropriate smearing kernel such that when ¢ — 0 we recover
So(E,w) = §(E — w)

P We need to find the set of coefficients spanning S, (E, w):

oo

> g¥ (0, B) e T = S, (B, w)

=1

> We can find the coefficients by minimising

2
oo

Alg] :/ dE e*”
E,

0

oo
Z gr(o,E)e” Y — S, (E,w)
=1

P Without errors on C(t) and infinitely many points, this is the solution.
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Backus-Gilbert methods: less ideal world

P In reality, the correlator is known at a finite number of points. This translates into a systematic error in the
reconstructed kernel and therefore in the reconstructed SD

-

Z 9r (0" E) C(”'T) = pG(E) + T(Tmaxy a5 E)

T=1

> The sum truncated to Tmax is however well-defined and define unambiguously a given smearing kernel
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Backus-Gilbert methods: less ideal world

P In reality, the correlator is known at a finite number of points. This translates into a systematic error in the
reconstructed kernel and therefore in the reconstructed SD

Tmax

Z 9r (0" E) C(”'T) = pG(E) + T(Tmaxy a5 E)

T=1

> The sum truncated to Tmax is however well-defined and define unambiguously a given smearing kernel
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Backus-Gilbert methods: real world

P The main complication is that noisy data severely hinder this approach. Minimising A[g] amounts to solve a
massively ill-conditioned linear system
- —17
g=%""71

Sy = / dE, e P g7

P> Backus-Gilbert regularisation:

/ dE *P
0

2

tmax

Z gte_bE — S5 (w, E)

t=1

+AXg-Covg-g

> The linear system is now
G= (T4 ACova)™ '
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Comparing equations

» In both cases the coefficients that generate the solution are written as:

§GP(w) — (EGP + )\COVd)71 }*GP

neP, = /dEl/dE2 e B KCPHT (B By) e TR Sir =/dE1 e P T

£, (w) = /dE KP™ (w, B) e 7 fi(w) =/dE So(w, B) e ¥

P They can be mapped into one another only at o = 0.
P> They regularise the problem in the very same way.

> What about A?
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Unphysical parameters & physical results

P X introduces a bias. Recent application of BG methods perform a “stability analysis“ {Bulava et al. 21 }

> We could do the same with the Bayesian reconstruction. Let us pick a prior:

o= (B— E')?)2€?
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Unphysical parameters & physical results

P In the Bayesian literature, hyperparameters are determined by minimising the negative log likelihood (NLL)
— log P(data|parameters)

> The methods seem compatible
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Bayesian formulation of BG

» Compute the posterior probability distribution for a
spectral density smeared with a fixed kernel

Gy (E,E') = exp—(E—E’)z/w2

E=168 =
» Diagonal model covariance: 00118 To =T
, 6(E7E’) 0.0116 H +ﬁ +* +*
K(B,E) = ===, X
A 0.0114 $
3
» The solution is now given by the same coefficients as 00112 %
HLT19 Y min NLL
o.0110 @ Frequentist error
%Y (0;w) = g(o;w) even at finite o 00108 $ Bayeian emor
10t 10? 10° 10¢

o The only difference is in the error (bootstrap for
Backus-Gilbert methods)

KT g (w0, @)% = %/dE (Z gr(o,w)e ™ — Ga<E,w)) Gy (B, w)




More on the bias

P Generate toys for spectral densities / correlators distributed with the covariance measured on the lattice.
T —
ct) = Zwe“'E, Eo<Ei<...,

> Solving for each can give an idea of the size of the bias, if any

> Example: generate weights w, with a GP, centred around the Gounaris-Sakurai parametrisation of the
R-ratio, and covariance:

(B, — E»)?
Kweights("y ’I’L/) = Kk exp <_n7n )

2€?

P For the corresponding correlators, we inject noise from a covariance matrix measured on the lattice.




Preliminary results

> Results for p, (true) - p, (estimate)

P Same plots for the pull are being analysed. Stay tuned!
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Updates about spectroscopy

P In a previous paper [2211.09581] we explored the possibility to perform finite-volume spectroscopy using
smeared spectral densities

P> Recent developments in [2405.01388]
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