Monte-Carlo developments and Electroweak/mixed QCD-EW corrections

1

Marco Zaro LHC EWWG, July 2024

Outline

- Recent progress in the computation of EW corrections
	- Introduction on EW and mixed QCD-EW corrections
	- EW corrections in the high-energy limit
	- The problem of PS matching
	- Mixed QCD/EW corrections to Drell-Yan at NNLO
- Recent and future developments in MC tools
	- NNLO+PS predictions
	- Techniques for the reduction of negative weights in MC@NLO-type matching
	- GPU/AI related developments

EW corrections and mixed-coupling expansion Part 1

$$
\sigma_{pp \to X}(s) = \sum_{ab} \int dx_1 dx_2 f_a(x_1) f_b(x_2) \hat{\sigma}_{ab \to X}(\hat{s} = x_1 x_2 s)
$$

• The way we do precise predictions: perturbation theory

Probability of finding a parton into the proton

$$
\sigma_{pp \to X}(s) = \sum_{ab} \int dx_1 dx_2 f_a(x_1) f_b(x_2) \hat{\sigma}_{ab \to X}(\hat{s} = x_1 x_2 s)
$$

Parton distribution functions:

must be fit to data, process independent

• The way we do precise predictions: perturbation theory

 $\sigma_{pp \to X} (s) = \sum$ *ab* Z $dx_1 dx_2 f_a(x_1) f_b(x_2) \hat{\sigma}_{ab \to X} (\hat{s} = x_1 x_2 s)$ Parton distribution functions: Partonic cross section: Probability of finding a parton Probability that two partons into the proton scatter into a given final state

must be fit to data, process independent

can be computed in perturbation theory, process dependent

• The way we do precise predictions: perturbation theory

 $\sigma_{pp \to X} (s) = \sum$ *ab* Z $dx_1 dx_2 f_a(x_1) f_b(x_2) \hat{\sigma}_{ab \to X} (\hat{s} = x_1 x_2 s)$ Parton distribution functions: must be fit to data, process can be computed in perturbation independent Probability of finding a parton Probability that two partons into the proton scatter into a given final state Partonic cross section: theory, process dependent $\hat{\sigma}_{ab \to X} = \hat{\sigma}_{ab \to X}^{(0)} + \alpha_s \hat{\sigma}_{ab \to X}^{(1)} + \alpha_s^2 \hat{\sigma}_{ab \to X}^{(2)} + \alpha_s^3 \hat{\sigma}_{ab \to X}^{(3)} + \ldots$ strong coupling, ~0.

Probability of finding a parton Probability that two partons into the proton scatter into a given final state Z *pp*!*^X*(*s*) = ^X *dx*1*dx*2*fa*(*x*1)*fb*(*x*2)ˆ*ab*!*^X*(ˆ*s* = *x*1*x*2*s*) *ab* Parton distribution functions: Partonic cross section: must be fit to data, process can be computed in perturbation independent theory, process dependent ˆ*ab*!*^X* = ˆ(0) *ab*!*^X* ⁺ ↵*s*ˆ(1) *s*ˆ(2) *s*ˆ(3) *ab*!*^X* ⁺ ↵² *ab*!*^X* ⁺ ↵³ *ab*!*^X* ⁺ *...* LO strong coupling, ~0.1

Probability of finding a parton probability that two partons into the proton scattering is the given final state of
$$
p_{\text{p}} \rightarrow X(s) = \sum_{ab} \int \frac{dx_1 dx_2 f_a(x_1) f_b(x_2) \hat{\sigma}_{ab \rightarrow X}(\hat{s} = x_1 x_2 s)}{2a_1 x_2 x_3}
$$

pp!*^X*(*s*) = ^X *ab* Z *dx*1*dx*2*fa*(*x*1)*fb*(*x*2)ˆ*ab*!*^X*(ˆ*s* = *x*1*x*2*s*) Parton distribution functions: must be fit to data, process independent Probability of finding a parton into the proton Partonic cross section: can be computed in perturbation theory, process dependent Probability that two partons scatter into a given final state ˆ*ab*!*^X* = ˆ(0) *ab*!*^X* ⁺ ↵*s*ˆ(1) *ab*!*^X* ⁺ ↵² *s*ˆ(2) *ab*!*^X* ⁺ ↵³ *s*ˆ(3) *ab*!*^X* ⁺ *...* LO NLO NNLO strong coupling, ~0.1

• The way we do precise predictions: perturbation theory

• Going higher orders, the complexity of the computation explodes

Marco Zaro, 10-7-2024

Electroweak corrections: a multi-coupling expansion

- If EW corrections come into play, one must carry the expansion both in α and α*^s*
- The structure of a given process are something like

Some comments

Some comments

• For IR-finiteness, contributions of QCD and EW origin to a given contribution must *both* be included

- For IR-finiteness, contributions of QCD and EW origin to a given contribution must *both* be included
- The presence of different powers of α and α*s* hints at a power-counting estimate for the contributions. Such an estimate is often misleading!

Some comments

- For IR-finiteness, contributions of QCD and EW origin to a given contribution must *both* be included
- The presence of different powers of α and α*s* hints at a power-counting estimate for the contributions. Such an estimate is often misleading!
- Predictions including all the contributions at LO/NLO/… are typically called "Complete-LO/NLO/…" NLO EW and Complete-NLO predictions can be obtained with automatic (and mostly public) tools

Collier, GoSam, MG5_aMC, Recola, Sherpa+Collier/OpenLoops/OpenLoops2/…

Coupling-hiearchy violation Drell-Yan

Dittmaier et al, 0911.2329

- *• Because of photon radiation from events on the peak, the region M(e+e-)<mZ receives huge EW corrections*
- *• NLO QCD corrections remain fairly stable across the peak*

INFN

Coupling-hiearchy violation **VBS** -25 \overline{z} $\overline{1}$ und de la construction de la const \overline{a} νµ **_/**

Express and Biedermann et al, 1708.00268 \overline{a}

- 0 \mathcal{T} maacca production modes **•** *In VBS, EW and QCD induced production modes • In VBS, EW and QCD induced production modes* $combarable$ at IO comparable at LO *comparable at LO*
- $\sqrt{2}$ \mathbf{v} $F(M)$ corrections to $F(M)$ induced mode -1 1 2 \bullet NLO EW corrections to EW-induced mode \mathbf{r} in Fig. 1, the contraction of the \mathbf{r} *(NLO₄) are by far the dominant NLO* α2 sα5" , and O! α3 sα4" *contribution* . The situation
- -6 contributions furnish the QCD corrections to \overline{z} y ا، -2 -1 -0.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 -0.5 1.5 \overline{M} \mathbf{Z} \overline{a} , \overline{a} , \overline{a} , \overline{a} μ t gonoral foaturo of VRS the general learnie of LDP. A list of all contributions in Eq. (2.1). A list of all contributions in Eq. (2.1) δZ and δZ and δZ and EW corrections to each LO contributions to each LO contribution. This is a contribution of δZ " contributions are simply the NLO EW **FIGHE-INDUCED PROCESS** • Not only for ssWW, but general feature of VBS **WZ: Denner et al, 1904.00882**

NFN

<u> \On</u>

Coupling-hiearchy violation

- *• 4top production receives contributions induced by y_t* which ends up in (N)LO_{2→}*…*
- *• Despite being subleading by power-counting, even NLO4 can amount to some 10%s wrt LO1*
- *• Accidental cancelations occur among the various contributions with the complete-NLO being very close to LO1+NLO1 (NLO QCD)*
- *• A non-SM yt will spoil these cancelations*
	- *• 4top as BSM probe*

Approximate EW corrections in the high-energy limit

Approximate EW corrections in the high-energy limit

- EW corrections show universal behaviour when all invariants are large \blacksquare **CIM** corrections show \blacksquare \blacks NLO QCD :VV COLLECTIONS SHOW UNIVELLS IHDENSANIONLY QCD×EW a Hobenaviour when all invamants are a QCD×EW **in Mau Ada**
- **Logarithmic enhancement due to would-be IR singularities related to W** \Box and Z masses, the so-called Sudakov logs \Box **b** Logariumine chilancell The absolute predictions in *p*T*,j*¹ are rescaled by a factor 10³. d*/*d \overline{a} $\overline{}$ $\overline{}$ due to would-be IR sing
and the loss of the single
- **1 Fixed-order in this limit, the logarithmic e<mark>t prinbution can be computed using onl</mark>y tree**level amplitudes Denner, Pozzorini, _{ep-ph/0010201 & hep-ph/0104127} *p*T*,*j¹ 1.8 1.4 1@ **EDIT LATER UNC.** P^{scale unc.} λ .95 1 10¹ **OFADULEGGRISING 4.**9 1 (QCD×EW)/QCD
- This can be very helpful if EW corrections for a given process are dominated by Sudakov logs, if the large-invariants regime is considered, and if the process is not mass-suppressed \blacksquare • This can be very helpful if EV. \blacksquare **p p** $\frac{1}{2}$ **d** $\frac{$ */*d NLO QCD $\mathsf{L}\mathsf{C}$ \sum_{odd} 0 Figure 1. Our best predictions for the four LHC 13 TeV *tt* 0.998 1.002 1.004 (QCD×EW)/QCD ר∨חו−מסממ⊢ ממ ,
y(tt) 1 1.01 $\mathbf{F1} \mathbf{M} \mathbf{P} \mathbf{I} \mathbf{C}^T \mathbf{C} \mathbf{C} \mathbf{D} \mathbf{C} \mathbf{I} \mathbf{C}$

 \mathfrak{z}

 \mathcal{N}

 $\begin{array}{ccc} \text{SSSC} & & \text{o}^{\text{L}} \\ \end{array}$ Sherpa: Bothmann et al, 2006.14635; MG5_aMC: Pagani, MZ, 2110.03714; OpenLoops: Lindert et al, 2312.07927 and compared to approximative EW calculations. The NLO EW is given for the *G^µ* (black line) and Sherpa: Bothmann et al. 2006. 14635: MG5; aMC+Pagani: MZ, 21 IC $\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{2}}\right)^{1-\frac{1}{2}}\left(\frac{1}{\sqrt{2}}\right)^{1-\frac{1}{2}}\left(\frac{1}{\sqrt{2}}\right)^{1-\frac{1}{2}}$ ¹⁰ ³ ⁰ **D.5 - 1999**
D.5 - 1999 SSC SSSC C PR $\begin{array}{c} \Pi(\mathsf{Z}_1,\mathsf{Z}_2) \end{array}$ SSC F C :655; MG54 al TC: <u>Pagant, MZ, ZTT0.037.1</u>4; OpenLoops: Lir 1 LSC SSC SSSC C $\mathbb{P}_{\mathbb{R}}$ and $\mathbb{P}_{\mathbb{F}}$ reason by $\mathbb{E}[\mathbf{L},\mathbf{L}]$ for LI 3 SSC SSSC C PR

- NS to difficultial distributions for a nonapplied. Right: cuts as defined in (4.1) applied. **o** They provide easy solutions to difficult problems. $p: f \cap$ difficult problems e^{y} For on-hell *pp* ! *^W*⁺*W* the longitudinal-longitudinal (LL) and opposite transverse-transverse \overline{r} *m*ZZ [GeV] 10^{14} \leq 10
	- proton collisions at 13 TeV: the transverse momentum of the hardest *Z* boson *p^T* (*Z*1) in Fig. 6 and of the softest one *p^T* (*Z*3) in Fig. 7, the invariant mass of the two hardest *Z* bosons *m*(*Z*1*Z*2) • Much more stable and faster than EW corrections TUCH THOTE STADIE AND TASTEL THAT EVV COLLECT \mathbf{r} than $\mathsf{E}[\Lambda]$ corrections in Fig. 7 the TT configurations in Fig. 7 the TT configurations in Fig. 7 the TT configuration of \mathbf{r} α chart EVV corrections distribution where it saturates the unpolarised LO Figure 6: Differential distribution in the invariant mass *m*ZZ in the inclusive phase-space (left) and faster than EW corrections and laster than EVV corrections
	- \mathcal{L} roximate-EVV corrections with NLO-QCD distributions in Sec. 4.1. As already observed in the literature, in the case of multi-boson produckslow in multuet-merged samples. **EXEC** case of *the production* in the production. In Figs. 6–9 we observe a much larger in the EWSL than in production of $\frac{1}{2}$ Bothmann et al, 2111.13453; Pagani, Vitos, MZ, 2309.00452 proton collisions at 13 TeV: the transverse momentum of the hardest *Z* boson *p^T* (*Z*1) in Fig. 6 predictions matched to PS (possibly in multijet-merged samples) • Possibility to combine approximate-EW corrections with NLO-QCD difference comes from phase-space regions dominated by real-photon radiation, such as *R*2*e,*2*^µ <* ⇡. There is the implies of \mathbf{F}_{F} is the soft photons through \mathbf{F}_{F} if we expand the YFS resummation to *O*(↵), as discussed above, we reproduce the NLO EW result \mathcal{L} similar over all \mathcal{L} in the Suday and Sum, victor, in \mathcal{L} , $\sum_{i=1}^n$ **SAMIALE-LYY COLLECTIONS WILL INLO-QUD** \mathbf{v}_{max} plot to explicit the treatment of the treatment of longitudinal polarization of the GBET. The GBET S For on-hell *pp* ! *^W*⁺*W* the longitudinal-longitudinal (LL) and opposite transverse-transverse (TT) polarisations are not mass-suppressed. For the longitudinal-longitudinal (LL) and opposite transverse-transverse-transverse-transverse-transverse-transverse-transverse-transverse-transverse-transverse-transverse-trans od to PS (possibly in multijat-merged samples) ϵ u to i 5 (possibiy in multij ϵ trii ϵ i ϵ u sampi ϵ s) \mathcal{L} polarisations are not mass-suppressed. For both observables in \mathcal{L} the TT configuration \mathcal{L}
	- does not depend on ↵*S*. Therefore scale uncertainties are smaller than in the *ttH*¯ production. n he resummed to all-orders can be very large in the very large in \sim the difference between NLOQUD+EWSL+PS and NLOQUD+EWSL+PS and NLOQUD+EW +PS is enhanced, the number of \mathcal{L} Before discussing the specific distributions we focus on the main differences with the *ttH*¯ n be resummed to all-orders in the literature, in the case of multi-• They exponentiate and can be resummed to all-orders energy-dependent observables, such as the invariant mass of the four leptons and the *p*^T of the electron pair, and energy-independent observables, such as the separation of the separation of the two lepton pairs and We now consider hadronic *ZZ*+jet production and focus on the inclusive *p*T*,*Z¹ (left) and *p*T*,*^j (right) distributions in Fig. 8. In the case of the transverse momentum of the transverse momentum of the hardest *D*-boson we have the transverse momentum of the hardest *Z-boson we have a verse momentum of the hardest an* e and can be resummed to all-orders
- 24 case of *ttH*¯ production. Indeed, in Figs. 6–9 we observe a much larger impact of EWSL than in /s cneck wnetner the **Sugakov approx** nc • However, one should always check whether the Sudakov approx holds against the exact EW corrections therefore also the difference between $\mathcal{L}_{\mathcal{L}}$ and $\mathcal{L}_{\mathcal{L}}$ and $\mathcal{L}_{\mathcal{L}}$ and $\mathcal{L}_{\mathcal{L}}$ with a typical and typical de typical substitutions in the independent is dominated by large angular-independen
Substitution of the Ludwig and LSCC angular substitutions of LSCC and Lord Lord Lord and Lord Lord Lord Lord L effects. For this observable we observe the one-loop EW relative corrections to the *ZZj* process to ϵ and EW effects motivating a multiplicative combination of higher-order ϵ ZZ+jet We now consider hadronic *ZZ*+jet production and focus on the inclusive *p*T*,*Z¹ (left) and *p*T*,*^j cross section for *p*T*,W*¹ *>* 300 GeV. VV c

Marco Zaro, 10-7-2024

Don't buy everything they sell

<u>zh zemene</u> In ZHH production, at *large* $p_T(Z)$, EWSLs fail to reproduce EW corrections

Don't buy everything they sell

In ZHH production, at *large* $p_T(Z)$, EWSLs fail to reproduce EW corrections

Resummation of EW Sudakov logs FeynRules M motion of FWV sudel N T

ELERROLESS Denner, Rode, 2402.10503 $\frac{1}{\sqrt{2}}$ the use of polarised cross sections and the approximation of large kinematical invariants.

- Since EW corrections are non-diagonal wrt flavour, exponentiation of Sudakov-logs is highly non-triviat Rept1l Collier uis are livre-ui Model $\sqrt{\text{Repr1L}}$ collier production production production production production production \blacksquare α ccureis ale hou-diagonal will havour, expond $\sum_{n=1}^{\infty} \frac{1}{n} \frac{\log \left| \sum_{n=1}^{\infty} \alpha_n x_n \right|}{\log \left| \sum_{n=1}^{\infty} \alpha_n x_n \right|}$ \log_{10} uon production processes
- Seminal studies for 2-loop amplitudes suggested to exponentiate separately weak and QED terms, and about their order Denner et al, hep-ph/0301241 10⁸ pp ! WW ! 4*f* (FCC-hh setup) Born i**v**iis bb/0301241 Born Scene (SCET) w ank and \bigcap FD tarn \mathbf{e} $\left(\frac{\text{RECOLA}}{\text{RECOLA} \ 2 \ \text{(SYSM)}} \right)$ al \mathbf{C} MoCaNLO Recola 2 (SySM) Recola 1 (SM) LHAPDF **MADE LETTING** $\left\{\begin{array}{l} \text{Recoa 2 (SvSM)} \\ \text{for } 2\text{-loop} \end{array}\right\}$ amplitudes suggested to expone **SCETE AS IN A** *LACTER ALL MACHER SUSSESTED TO EXPOLIC* FD tarms, and about their order D \mathcal{L} by $\underbrace{\mathbf{C}\mathbf{C}\mathbf{P}}_{\text{DE}}$ in $\underbrace{\mathbf{C}\mathbf{A}\mathbf{R}}_{\text{MOCANLO}}$ and $\underbrace{\mathbf{C}\mathbf{A}\mathbf{C}\mathbf{A}}$ in equality $\underbrace{\mathbf{C}\mathbf{A}\mathbf{R}}_{\text{DE}}$ in $\underbrace{\mathbf{C}\mathbf{A}\mathbf{R}}_{\text{DE}}$ in $\underbrace{\mathbf{C}\mathbf{R}}_{\text{DE}}$ in $\underbrace{\mathbf{C}\mathbf{R}}_{$

 \mathbb{R}^n have considered two di \mathbb{R}^n setups inspired by the CLIC and FCC–CLIC and FC

- Resummation achieved using the EW version of SCET, included in a fullydifferential MC 10⁴ *N*ev*/*bin 400 *N*ev*/*bin $\frac{1}{\sqrt{2\pi}}$ events n achieved using the EVV version of SCET inclu $\sum_{i=1}^n$ accounts a complete that $\sum_{i=1}^n$ $\sum_{i=1}^n$ $\sum_{i=1}^n$ $\sum_{i=1}^n$ $\sum_{i=1}^n$ with the major $\sum_{i=1}^n$ $\sum_{i=1}^n$ $\sum_{i=1}^n$ $\mathbf{10}$
- Results presented for CLIC@3TeV and FCC-hh@100 TeV esults presented for $CLIC(\omega)$ J leV and Figure 3. Used software and dependencies in the setup. H ed for $\bigcap \bigcap (\bigcap \mathcal{X} \cup \{1\} \cup \{0\})$ and $\bigcap \bigcap \bigcap \bigcap (\bigcap \{1\} \cup \{0\})$

 $_{\rm H0}^{\rm G}$

and requires a number of approximations that need to be carefully checked. **z** \blacksquare **i** \blacksquare ers, the application of the $SCET_{EW}$ formalism to realistic diboson processes is nontrivial While the resummation of large EW logarithms is a must at future high-energy collid-

Marco Zaro, 10-7-2024 \mathbf{a} In the previous section we described in detail the implementation of all ingredients of the

^e+e ! WW ! ⁴*^f* (CLIC setup)

14

Matching with parton shower?

- EW corrections matched with PS still not available for general processes
	- Approximate approaches exist, only including n-body contribution ("EWvirt" or EWSL). Accuracy depends on kinematics region **EWVirt:** VV(J): Brauer et al, 2005.12128; top: Gutschov et al, 1803.00950; V+jets: Kallweit et al, 1511.08692, …

• Exact matching performed only for processes with just $LO₁$ (in the Powheg scheme) DY: Barzè et al,1302.4606; HV(J): Granata et al, 1706.03522; VBS: Chiesa et al, 1906.01863, VV: Chiesa et al, 2005.12146; WZ@NNLO+PS: Lindert et al, 2208.12660

• Main issue: how to assign colour-flows to interferences $(LO₂)$ is mostly an interference contribution) Some ideas: Frixione et al, 2106.13471

Attaining the highest precision: Drell-Yan NNLO QCD×EW

Attaining the highest precision: Drell-Yan NNLO QCD×EW

- Lepton-pair production (Drell-Yan) is a highprecision probe of the EW sector (M_W , sin θ_W , ...)
- NNLO QCD+NLO EW not enough for current and upcoming exp. data
- NNLO₂ has been the frontier for long time:
	- Historically, different approaches have been pursued for the pole vs large-m(I+I-) region
	- Complicated topologies (massive double box)
- Recently, full computations of NNLO₂ have become available, both for NC and CC process
- I will briefly review these works, focusing on pheno results

2106.¹¹⁹⁵³

Mixed QCD-EW corrections to NC Drell-Yan

Mixed Strong-Electroweak Corrections to the Drell-Yan Process

Roberto Bonciani[®],^{1,*} Luca Buonocore[®],^{2,†} Massimiliano Grazzini[®],^{2,‡} Stefan Kallweit[®],^{3,§} Narayan Rana $\mathbf{Q},^{4,\parallel}$ Francesco Tramontano $\mathbf{Q},^{5,\parallel}$ and Alessandro Vicini $\mathbf{Q}^{4,*}$ Dipartimento di Fisica, Universit `a di Roma "La Sapienza" and INFN, Sezione di Roma, I-00185 Roma, Italy

- First computation of NNLO₂ (with massive leptons) putation of $NNLO_2$ (with massive leptons) $\overline{\mathsf{A}}$
	- Amplitues computed with semi-analytical approach Amplitues computed with semi-analytical approach
	- IR Subtraction with Matrix Grazzini et al, 1711.06631 With Matrix crazini of all 1711.06631 neutral-current Dread-Yan process. Superseding previously approximations, our calculations, our calculations, o rith Matrix Grazzini e 1*.*0
- Comparison with pole approx and naive factorisation of K-factors provides the first result at this order that is valid in the entire range of dilepton invariant masses. The \bullet luitipuit appliux aliu fiante tactulisalic problems in the evaluation of the relevant master integrals. The cancellation of soft and collinear a polo approx and 1 pois app. ox. a. $\overline{\mathbf{y}}$ and 0*.*5 \blacktriangledown */*GeV]

1

- $\mathbb{E}[\mathbb{I}^{10^{-3}}]$ $\mathbb{I}^{10^{-3}}$ $\mathbb{I}^{10^{-3}}$ $\mathbb{I}^{10^{-3}}$ wery large effects due to radiation. Naive • Peak region: excellent agreement with PA. factorisation fails
	- and poive fact due to genu and naive fact, due to genuinely non t_{action} for toricable contributions \mathbf{f}_\parallel factorisable contributions Large inv.mass: $O(0.5%)$ difference wrt PA
	- $\frac{1}{2}$ news new-physics scenarios. • NNLO₂ corrections at the 1% level in the for which radiative corrections in the strong and \mathbf{F} large inv.mass region tions of the next-to-leading-order (NLC) $\frac{1}{2}$ and next-to-leading-order (NLC) $\frac{1}{2}$

Mixed QCD-EW corrections at large invariant mass \bullet \bullet \bullet \bullet Received: *April 5, 2022* Accepted: *May 4, 2022*

- Two-loop amplitudes computed in 2020, without widths Heller et al, 2012.05918
- IR subtraction with nested softcollinear scheme Caola et al, 1702.01352
- Computation with massless leptons (recombination needed)
- $NNLO₂$ corrections at the 1% level wrt NLOQCD+EW in the large inv.mass region (up to 1 TeV)
- Growth with invariant mass due to Sudakov effects, up to 3% at 3 TeV
- Surprisingly large size in the TeV region wrt to power counting

Mixed QCD-electroweak corrections to dilepton production at the LHC in the high invariant mass region

Federico Buccioni,*^a* **Fabrizio Caola,***a,b* **Herschel A. Chawdhry,***^a* **Federica Devoto,***^a* **Matthias Heller,***^c* **Andreas von Manteuffel,***^d* **Kirill Melnikov,***^e* **Raoul Röntsch***^f* **and Chiara Signorile-Signorile***e,g* 2203.11237

From NC to CC T2P9 N4 \blacksquare

Armadillo, Bonciani, Devoto, Rana, Vicini, 2405.00612

- The CC case requires new topologies wrt the NC one
	- Most complicated: double-box, with 2 different internal masses uble-box, with 2 different
	- Solved by in-house package for differential equations, based on LiteRed and SeaSyde (series expansion wrt invariants)
	- Boundary condition evaluated with AMFlow
	- Checked that the result matches the equal-masses topology
	- Complex-mass scheme and lepton mass≠0
- Results available as a grid, including full dependence on W mass

μ

500

 $\ddot{}$

Marco Zaro, 10-7-2024

LiteRed: Lee, 1310.1145; **AMFlow**: Liu et al, 220.11669; **SeaSyde**: Armadillo et al, 2205.03345 $\overline{}$

Resummation of QED effects \mathbb{R} Decimination of \cap \Box of \circ (CONDITION CONTRIBUTION \bigcup critten as

Buonocore, Rottoli, Torrielli, 2404.15112 *^R*MIX(*kt*1) = *^g*11(*,* ⁰

- Soft QED and mixed effects added on top of QCD ones, within the Radish framework Monni et al, 1604.02191
	- QED soft effects due to correlations with final-state leptons included
- See also earlier work with stable W/Z Autieri et al, 2302.05403 then reads N3LL' QCD NLL' MIX α_Smαn Lm+n

$$
R(k_{t1}) = [R(k_{t1})]_{\text{eq. (2.4)}} + R^{\text{QED}}(k_{t1}) + R^{\text{MIX}}(k_{t1}) + \frac{\alpha_s}{2\pi} \frac{\alpha}{2\pi} B^{(1,1)} L
$$

NLL' QED FORMALLY NNLL' MIX

Recent and planned developments for MC tools Part 2

NNLO+PS predictions

MiNNLO+PS

- NLO QCD+PS has been the golden standard for long time MG5_aMC/Sherpa/Powheg
- Going beyond NLO: NNLO
	- NNLO+PS relies on rather mature technology (MiNNLOPS) Monni et al, 1908.06987
	- All currently-available NNLO QCD computation can (in principle) be included into a NNLO+PS generator
	- Implementation is still process-dependent, and mostly done by hand

bbH: Biello et al, 2402.04025; b prod: Mazzitelli et al, 2302.01645; WZ (+EW) Lindert et al, 2208.12660; ZH (SMEFT): Haisch et al, 2204.00663; top: Mazzitelli et al, 2112.12135, …

NNLO+PS in Geneva **Implemented processes**

- The Geneva method combines NNLO+PS with N-jettiness resummation at NNLL' Alioli et al, 1211.7049 $\det MNL$ Alioli et al, 1211.7049
- γ Implemented and validated for several color-singlet processes $_{\rm V\,Y}$ $W\gamma$ <code>lmple</code>ppented and validated for several color-singlet processes ac i vi ville Alloli et al, 1211.7047
Exp. legale mented and validated for several color singlet prosesses *yγ Wγ* impiyyiented and vandated for several color-singlet pro

- New developments:
	- Resumming second jet resolution at NLL'
	- Extension towards color-singlet+jet processes WIP

Reduction of negative weights in MC@NLO-type matching

- MC@NLO-matched MCs affected by negative weights
	- Reduce the statistical quality of the event sample
	- More events need to be generated than with positiveonly events
- Recent progress both in Sherpa and MG5 aMC:
	- MG5 aMC: modify the matching by a term which improves the IR behaviour of the MC counterterms Frederix et al, 2002.12716

Alternatively, spread the Born over the radiative PS in **ALLEQ ALGONLO** order to compensate for over-cancelation of local CTs $p p \rightarrow e^+e^ 3.5\%$ (1.2) 2.4% (1.1) **or negative virtuals Frederix, Torrielli, 2310.04160** $pp \to e^+ \nu_e$ 3.8% (1.2) 2.5% (1.1)

- Sherpa: use leading-colour approximation+move K-
• Sherpa: use leading-colour approximation+move K-
• $p_p \rightarrow H_b$ $\frac{4.9\% (1.2)}{38.4\% (19)}$ $\frac{2.0\% (1.1)}{32.6\% (8.2)}$ factor to low-mult. processes in merged samples $p p \rightarrow W^{+} j$ $16.5\% (2.2)$ $7.9\% (1.4)$ Danzinger et al, 2110.15211 *pp* ! *^W*+*tt*
- Other approaches (MC-agnostic):
	- Positive resampler: resample cross section to eliminate negative weights Andersen et al, 2005.09375 Table 1: Fractions of negative-weight events, *f*, and the corresponding relative costs, *c*(*f*) (*f*) (*f for the processes* in the processes in the contractions of negative-weight events, $\frac{1}{2}$ \sim 09375 and with MC@NLO- (columns \sim *c*(*f*) (in round brackets), for the processes in eqs. (5.7)–(5.13), computed with MC@NLO

 $d\sigma/dp_{\perp}$ (jet 1) [pb/GeV] $\sigma/dp_\perp(\text{jet 1})$ [pb/GeV]

Ratio

Deviation

Negative Fraction ϵ

f(*#*)

Results

Towards the usage of GPUs and AI in the MG5_aMC framework

Improving computing performances

- Computing demand requires more efficient and smarter handling of resources
- On one side, move away from multi-threading in favour of multiprocessing (SIMD/OpenMP), suitable for GPUs
	- This requires rewriting and rethinking our (old) codes
- On the other, benefit from AI to improve some specific aspects (integration/event-gen./…)

• See also:

"Event Generators for High-Energy Physics Experiments", 2203.11110 "Machine learning and LHC event generation", 2203.07460 "Challenges in Monte Carlo event generator software for High-Luminosity LHC", 2004.13687

Towards MG5_aMC on GPU in Fig. 1, which shows the variation of the combined ME throughput achievable from a single fro \mathbf{r} and \mathbf{r} CPU threads. The notable e↵ect that we were hoping to see, and which is indeed achieved, is $t_{\rm eff}$ through curve moves to the number of $C_{\rm eff}$ Γ ... Γ DU applications with smaller CPU and Γ \blacksquare sizes, rather than a single application with a very large grid size. Another positive result, \blacksquare $\mathbf v$ will $\mathbf v$ we were in-depth and will desire $\mathbf v$ implementations using performance portability frameworks. Most recently, this work has focused $\overline{}$ those based on Alpaka have stopped. As noted in Ref. [1], the main interest of the main interest of the main in $M \cap T$ architectures, including GPUs from di T erent vendors such as NVI di T T \mathbf{u}_1 is \mathbf{v}_2 on \mathbf{v}_3 plots \mathbf{v}_4

MadFlow: Carrazza, Cruz-Martinez, Rossi, MZ, 2106.10279

of the infrastructure developed for the HEP-SCORE benchmarking project at Aurora GPU. Valassi et al, 2106.12631, 2303.18244, 2312.02898 kernels from di∟erent CPU threads. It should be stressed that the stressed that this plot, which was obtained
It should be stressed that this plot, which was obtained that the stressed that the stressed that the stressed values of all ϵ footh ϵ and ϵ is the function of ϵ in ϵ and ϵ workflows, ϵ implementation of the ME calculation is now also fully integrated into $\frac{1}{2}$ and $\frac{1}{2}$ means $\frac{1}{2}$ $f(z)$ is a valued to all $f(z)$ and $f(z)$ is produce cross-sections by our data fields by $f(z)$

Marco Zaro, 10-7-2024 and RTX A6000, such as the RTX A6000, such as the RTX A6000, such as the RTX A6000, such a

Using NN's for importance sampling (INFN MadNIS

- Use NN to overcome some limitations of VEGAS
- Do not reinvent the wheel:
	- Pre-training with VEGAS (fast) used as starting point of normalizing-flow
	- Use NF on top of known analytical mappings
	- NF adjust the weight of each channel
- Important improvement both on variance and on unweighting efficiency, even for large multiplicities

All figures by R. Winterhalder

Marco Zaro, 10-7-2024

Conclusions

Part 1

- Kinematics, couplings (e.g. Yukawa), radiative return, EWSL
- EW corrections are moving beyond NLO
	- Drell-Yan corrections available for NNLO₂, both NC and CC
	- Resummation available both for soft γs (jointly with QCD) and for EWSLs
- Still, we miss a general procedure for PS matching at NLO
	- EWSL approximation +PS seems a good compromise
	- But the validity of EWSL approximation (both in principle and in practice) should always be checked
- Lot of progress also beyond LHC physics (e⁺e-/ μ⁺μ-colliders, g-2) not covered in this talk

- Understanding and improving MC tools is crucial for a proper and efficient collaboration between theory and experiments
- Lot of recent activity, only a glimpse of it in these slides
	- Inclusion of higher orders beyond NLO QCD
	- Reduction of negative weights leads to reduction in needed n of events. Some methods already implemented in public tools
	- Faster simulations can profit of modern hardwares (GPUs) and of AI for integration/event generation. At the moment most WIP, but stay tuned!