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Outline

• Recent progress in the computation of EW corrections 

• Introduction on EW and mixed QCD-EW corrections

• EW corrections in the high-energy limit

• The problem of PS matching

• Mixed QCD/EW corrections to Drell-Yan at NNLO


• Recent and future developments in MC tools

• NNLO+PS predictions

• Techniques for the reduction of negative weights in 

MC@NLO-type matching

• GPU/AI related developments
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EW corrections 

and mixed-coupling expansion

Part 1
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Precision physics and 

higher-order corrections

• The way we do precise predictions: perturbation theory

4

�pp!X(s) =
X

ab

Z
dx1dx2fa(x1)fb(x2)�̂ab!X(ŝ = x1x2s)
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Parton distribution functions: 
must be fit to data, process 

independent

Probability of finding a parton 
into the proton



Marco Zaro, 10-7-2024

Precision physics and 

higher-order corrections

• The way we do precise predictions: perturbation theory

4

�pp!X(s) =
X

ab

Z
dx1dx2fa(x1)fb(x2)�̂ab!X(ŝ = x1x2s)
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• Going higher orders, the complexity of the computation explodes
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Electroweak corrections:

a multi-coupling expansion

• If EW corrections come into play, one must carry the expansion 
both in α and αs

• The structure of a given process are something like

5

n, p, q are process-dependent integers.

For t t ̄production: n=3, p=q=2

For lepton-pair production, n=1, p=0, q=2
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• For IR-finiteness, contributions of QCD and EW origin to a given 
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Some comments

• For IR-finiteness, contributions of QCD and EW origin to a given 
contribution must both be included

• The presence of different powers of α and αs hints at a power-counting 
estimate for the contributions. Such an estimate is often misleading! 

• Predictions including all the contributions at LO/NLO/… are typically 
called “Complete-LO/NLO/…” 
NLO EW and Complete-NLO predictions can be obtained with 
automatic (and mostly public) tools 
Collier, GoSam, MG5_aMC, Recola, Sherpa+Collier/OpenLoops/OpenLoops2/…
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Coupling-hiearchy violation  
Drell-Yan 
Dittmaier et al, 0911.2329
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• Because of photon radiation from 
events on the peak, the region 
M(e+e-)<mZ receives huge EW 
corrections


• NLO QCD corrections remain fairly 
stable across the peak
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Coupling-hiearchy violation  
VBS


Biedermann et al, 1708.00268
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Figure 6: Differential distributions at a centre-of-mass energy
√
s = 13TeV at the LHC for

pp → µ+νµe+νejj: (a) rapidity for the anti-muon (top left), (b) rapidity for the hardest jet (top

right), (c) invariant mass for the two leading jets (bottom left), and (d) cosine of the angle

between the positron and the anti-muon (bottom right). The upper panels show the three LO

contributions as well as the sum of all NLO predictions. The two lower panels show the relative

NLO corrections with respect to the full LO in per cent, defined as δi = δσi/
∑

σLO, where

i = O
(

α7
)

,O
(

αsα6
)

,O
(

α2
sα

5
)

,O
(

α3
sα

4
)

. In addition, the NLO photon-induced contributions

of order O
(

α7
)

computed with LUXqed is provided separately.

other hand, the contributions of order O
(

α2
sα

5
)

and O
(

α3
sα

4
)

display an opposite behaviour

with a small positive maximum in the central region and larger negative corrections in the

forward and backward directions, which is mainly caused by the increased relative size of
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Figure 1: Sample tree-level diagrams that contribute to the process pp → µ+νµe+νejj.

of order O
(

α2
sα

4
)

, and interferences of the order O
(

αsα5
)

. Owing to the colour structure,

these interferences occur only if diagrams of different quark flow between initial and final state

are multiplied with each other. Thus, order-O
(

αsα5
)

contributions appear only in partonic

channels that involve contributions of two different kinematic channels (s, t, u). For example,

in Fig. 1, the contraction of the QCD-induced diagram (bottom right) with the VBS diagrams

(top row) necessarily vanishes due to colour structure, while the corresponding contraction

with the EW s-channel background diagrams (bottom left and bottom middle) leads to a

non-zero interference contribution at order O
(

αsα5
)

. We stress that we include in our cal-

culation all possible contributions at the orders O
(

α6
)

, O
(

αsα5
)

, and O
(

α2
sα

4
)

that belong

to the hadronic process in Eq. (2.1). A list of all contributing independent partonic channels

is given in Table 1, which provides also information on contributing kinematic channels and

interferences.

At NLO, we compute both the QCD and EW corrections to each LO contribution. This

leads to four possible NLO orders: O
(

α7
)

, O
(

αsα6
)

, O
(

α2
sα

5
)

, and O
(

α3
sα

4
)

. The situation

is represented graphically in Fig. 2.1 The order O
(

α7
)

contributions are simply the NLO EW

corrections to the EW-induced LO processes. They have already been presented in Ref. [15]

for a fixed scale. Similarly, the order O
(

α3
sα

4
)

contributions furnish the QCD corrections to

the QCD-induced process, which have been computed in Refs. [11, 13, 17].

For the orders O
(

αsα6
)

and O
(

α2
sα

5
)

, a simple separation of the EW-induced process

and the QCD-induced process is not possible any more, also for the dominant uu partonic

channel. Indeed, the order O
(

αsα6
)

contains QCD corrections to the VBS process as well as

EW corrections to the LO interference. The QCD corrections have already been computed

in the VBS approximation in Refs. [7–9, 13, 14]. This means that the s-channel diagrams as

1Such a classification in powers of αs and α can also be found in Ref. [16].
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• In VBS, EW and QCD induced production modes 
comparable at LO


• NLO EW corrections to EW-induced mode 
(NLO4) are by far the dominant NLO 
contribution 


• Not only for ssWW, but general feature of VBS 
processes 
WZ: Denner et al, 1904.00882
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Coupling-hiearchy violation  
4 top 

Frederix, Pagani, MZ, 1711.02116
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…

• 4top production receives contributions induced by 
yt which ends up in (N)LO2→…

• Despite being subleading by power-counting, even 
NLO4 can amount to some 10%s wrt LO1 


• Accidental cancelations occur among the various 
contributions with the complete-NLO being very 
close to LO1+NLO1 (NLO QCD)


• A non-SM yt will spoil these cancelations

• 4top as BSM probe
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Coupling-hiearchy violation  
4 top 

Frederix, Pagani, MZ, 1711.02116
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Approximate EW corrections 

in the high-energy limit
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Approximate EW corrections 

in the high-energy limit

• EW corrections show universal behaviour when all invariants are large

• Logarithmic enhancement due to would-be IR singularities related to W 

and Z masses, the so-called Sudakov logs

• In this limit, the logarithmic contribution can be computed using only tree-

level amplitudes Denner, Pozzorini, hep-ph/0010201 & hep-ph/0104127

• This can be very helpful if EW corrections for a given process are 
dominated by Sudakov logs, if the large-invariants regime is considered, and 
if the process is not mass-suppressed
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Figure 5. Distributions in the transverse momenta of the reconstructed vector boson, pT,V, and of the
hardest jet, pT,j1 , for pp ! `�⌫̄` + 1 jet at 13TeV with standard cuts (left) and with an additional cut
��j1j2 < 3⇡/4 (right). Absolute LO (light blue), NLO QCD (green), NLO QCD+EW (red) and NLO
QCD⇥EW (black) predictions (upper panel) and relative corrections with respect to NLO QCD (lower
panels). The bands correspond to scale variations, and in the case of ratios only the numerator is varied.
The absolute predictions in pT,j1 are rescaled by a factor 10�3.

4 Fixed-order predictions for V + 2 jet production

In this section we present numerical results for ``/`⌫/⌫⌫ + 2 jet production, including NLO QCD
and EW corrections, as well as subleading Born and photon-induced contributions.

4.1 NLO QCD+EW predictions

In the following, we discuss a series of fixed-order NLO QCD+EW results for pp ! V + 2 jets
including leptonic decays, i.e. we investigate the processes pp ! `

+
⌫` + 2 jets, pp ! `

�
⌫̄` + 2 jets,

pp ! `
+
`
� + 2 jets and pp ! ⌫`⌫̄` + 2 jets at 13 TeV. We will focus on the effect of EW corrections

on the pT spectra of reconstructed vector bosons, charged leptons and jets. Such observables are
of direct relevance as a background for many searches for new physics including dark matter at the
LHC. Instead of presenting the four processes and their higher-order corrections independently, we
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Figure 5. Distributions in the transverse momenta of the reconstructed vector boson, pT,V, and of the
hardest jet, pT,j1 , for pp ! `�⌫̄` + 1 jet at 13TeV with standard cuts (left) and with an additional cut
��j1j2 < 3⇡/4 (right). Absolute LO (light blue), NLO QCD (green), NLO QCD+EW (red) and NLO
QCD⇥EW (black) predictions (upper panel) and relative corrections with respect to NLO QCD (lower
panels). The bands correspond to scale variations, and in the case of ratios only the numerator is varied.
The absolute predictions in pT,j1 are rescaled by a factor 10�3.

4 Fixed-order predictions for V + 2 jet production

In this section we present numerical results for ``/`⌫/⌫⌫ + 2 jet production, including NLO QCD
and EW corrections, as well as subleading Born and photon-induced contributions.

4.1 NLO QCD+EW predictions

In the following, we discuss a series of fixed-order NLO QCD+EW results for pp ! V + 2 jets
including leptonic decays, i.e. we investigate the processes pp ! `

+
⌫` + 2 jets, pp ! `

�
⌫̄` + 2 jets,

pp ! `
+
`
� + 2 jets and pp ! ⌫`⌫̄` + 2 jets at 13 TeV. We will focus on the effect of EW corrections

on the pT spectra of reconstructed vector bosons, charged leptons and jets. Such observables are
of direct relevance as a background for many searches for new physics including dark matter at the
LHC. Instead of presenting the four processes and their higher-order corrections independently, we
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Figure 1. Our best predictions for the four LHC 13 TeV tt̄ di↵erential distributions considered in
this work. The predictions are based on the multiplicative approach. Shown are the scale, PDF and
combined (in quadrature) theory uncertainties for each QCD⇥ EW distribution. The boundaries
of the PDF variation band are marked with black dashed lines. Also shown is the ratio of central
scales for the combined QCD and EW prediction with respect to the NNLO QCD one.

interested reader to consult secs. 3 and 4 where detailed comparisons between the two PDF

sets as well as between the two approaches for combining QCD and EW corrections can

be found.

From the plots shown in fig. 1 we conclude that the impact of the EW corrections

relative to NNLO QCD depends strongly on the kinematic distribution. The smallest

impact is observed in the two rapidity distributions: the relative e↵ect for yavt is around

2 permil and is much smaller than the scale uncertainty. The y(tt̄) distribution is slightly
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Figure 8: Differential distributions for m(Z1Z2) in ZZZ production at 13 TeV. Left: no cuts
applied. Right: cuts as defined in (4.1) applied.

4.2.1 Stable Z

We discuss results for the following differential distributions from ZZZ production in proton–
proton collisions at 13 TeV: the transverse momentum of the hardest Z boson pT (Z1) in Fig. 6
and of the softest one pT (Z3) in Fig. 7, the invariant mass of the two hardest Z bosons m(Z1Z2)

in Fig. 8 and of pT (j1) in Fig. 9. The layout of the plots in Figs. 6–9 is the same of those in
Figs. 2–5.

Before discussing the specific distributions we focus on the main differences with the tt̄H

distributions in Sec. 4.1. As already observed in the literature, in the case of multi-boson pro-
duction EWSL are very large (see e.g. Refs. [134, 16, 66, 135]) and much larger than in the
case of tt̄H production. Indeed, in Figs. 6–9 we observe a much larger impact of EWSL than in
Figs. 2–5. Moreover, at variance with tt̄H production, the LO cross section of ZZZ production
does not depend on ↵S. Therefore scale uncertainties are smaller than in the tt̄H production.
Still, NLO QCD corrections can be very large in multi-boson production (see e.g. [136–138]),
therefore also the difference between NLOQCD⌦EWSL+PS and NLOQCD+EW+PS is enhanced,
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EW Sudakov logs are back on stage

• In the recent years, interest towards EWSL has grown a lot 

• Automated by 3 different collaborations 

Sherpa: Bothmann et al, 2006.14635; MG5_aMC: Pagani, MZ, 2110.03714;  OpenLoops: Lindert et al, 2312.07927

• They provide easy solutions to difficult problems:

• Much more stable and faster than EW corrections

• Possibility to combine approximate-EW corrections with NLO-QCD 

predictions matched to PS (possibly in multijet-merged samples) 
Bothmann et al, 2111.13453; Pagani, Vitos, MZ, 2309.00452

• They exponentiate and can be resummed to all-orders


• However, one should always check whether the Sudakov approx holds 
against the exact EW corrections 
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Figure 6: Observable distributions for the pp ! e+e�µ+µ� process. From top left to bottom right we
show: the four-lepton invariant mass m2e2µ, the Z-boson distance �R2e,2µ, the transverse momentum of
the di-electron pair pT,2e, and the rapidity of the electron ye� . Results are given at LO and NLO EW
and compared to approximative EW calculations. The NLO EW is given for the Gµ (black line) and
↵(M2

Z) (grey line) renormalisation schemes, and the span between the two is marked by a hatched band.
All predictions are calculated using Sherpa+OPENLOOPS/Recola.

band. The observables considered are the invariant mass of the four-lepton system m2e2µ, the Z-boson
distance �R2e,2µ, the transverse momentum of the di-electron pair pT,2e, and the electron rapidity ye� .

We start by noticing that the overall good agreement between the EWvirt approximation and the full
NLO EW observed for the total cross section is also found for all the distributions. The only significant
difference comes from phase-space regions dominated by real-photon radiation, such as �R2e,2µ < ⇡.
There one can see the impact of resumming soft photons through YFS versus treating them at fixed
order, which exhibits the main advantage of including YFS resummation. We have indeed checked that
if we expand the YFS resummation to O(↵), as discussed above, we reproduce the NLO EW result
throughout, as a result of the inclusion on exact NLO QED corrections in the YFS resummation. A
similar overall good agreement can be seen in the Sudakov approximation.

To further discuss the impact and the effects of the EW approximations we need to distinguish between
energy-dependent observables, such as the invariant mass of the four leptons and the pT of the electron
pair, and energy-independent observables, such as the separation of the two lepton pairs and the rapidity
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Figure 6: Differential distribution in the invariant mass mZZ in the inclusive phase-space (left)
and with the requirement |⌘Z | < 3 (right) in pp ! ZZ at

p
s = 13 TeV. Curves as in Fig. 1.

NLLVI EW and NLL’VI EW reach up to 10 � 15%. For both observables we show a third ratio
plot to explicitly showcase the treatment of longitudinally polarised gauge bosons via the GBET.
For on-hell pp ! W

+
W

� the longitudinal-longitudinal (LL) and opposite transverse-transverse
(TT) polarisations are not mass-suppressed. For both observables in Fig. 7 the TT configuration
dominates, in particular in the invariant mass distribution where it saturates the unpolarised LO
amplitude obtained via the GBET, whereas the LL configuration contributes about 10% of the
cross section for pT,W1 > 300GeV.

ZZ+jet

We now consider hadronic ZZ+jet production and focus on the inclusive pT,Z1 (left) and pT,j

(right) distributions in Fig. 8. In the case of the transverse momentum of the hardest Z-boson we
observe sub-percent level agreement between the two predictions in LA and the NLOVI EW one,
with a typical virtual EW Sudakov behaviour that is dominated by large angular-independent LSC
effects. For this observable we observe the one-loop EW relative corrections to the ZZj process to
be identical to the relative corrections to the ZZ process shown in Fig. 5 (left). This indicates a
factorisation of QCD and EW effects motivating a multiplicative combination of higher-order QCD
and EW corrections to the pp ! ZZ process.

For the transverse momentum distribution of the jet shown on the right of Fig. 8 we observe an
increasing impact of the SSC correction towards higher pT,j leading to sizeable cancellations with
the LSC corrections. The total one-loop EW correction at pT,j = 1 TeV amounts to about �35%
at NLOVI EW respective �30% at NLL’VI EW, and �20% at NLLVI EW. The difference between
NLLVI EW and NLL’VI EW can be interpreted as a conservative upper bound of the accuracy of
the NLL’VI EW prediction due to logarithmic effects beyond the LA.
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amplitude obtained via the GBET, whereas the LL configuration contributes about 10% of the
cross section for pT,W1 > 300GeV.
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We now consider hadronic ZZ+jet production and focus on the inclusive pT,Z1 (left) and pT,j

(right) distributions in Fig. 8. In the case of the transverse momentum of the hardest Z-boson we
observe sub-percent level agreement between the two predictions in LA and the NLOVI EW one,
with a typical virtual EW Sudakov behaviour that is dominated by large angular-independent LSC
effects. For this observable we observe the one-loop EW relative corrections to the ZZj process to
be identical to the relative corrections to the ZZ process shown in Fig. 5 (left). This indicates a
factorisation of QCD and EW effects motivating a multiplicative combination of higher-order QCD
and EW corrections to the pp ! ZZ process.

For the transverse momentum distribution of the jet shown on the right of Fig. 8 we observe an
increasing impact of the SSC correction towards higher pT,j leading to sizeable cancellations with
the LSC corrections. The total one-loop EW correction at pT,j = 1 TeV amounts to about �35%
at NLOVI EW respective �30% at NLL’VI EW, and �20% at NLLVI EW. The difference between
NLLVI EW and NLL’VI EW can be interpreted as a conservative upper bound of the accuracy of
the NLL’VI EW prediction due to logarithmic effects beyond the LA.
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Figure 6: Differential distribution in the invariant mass mZZ in the inclusive phase-space (left)
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p
s = 13 TeV. Curves as in Fig. 1.

NLLVI EW and NLL’VI EW reach up to 10 � 15%. For both observables we show a third ratio
plot to explicitly showcase the treatment of longitudinally polarised gauge bosons via the GBET.
For on-hell pp ! W

+
W

� the longitudinal-longitudinal (LL) and opposite transverse-transverse
(TT) polarisations are not mass-suppressed. For both observables in Fig. 7 the TT configuration
dominates, in particular in the invariant mass distribution where it saturates the unpolarised LO
amplitude obtained via the GBET, whereas the LL configuration contributes about 10% of the
cross section for pT,W1 > 300GeV.

ZZ+jet

We now consider hadronic ZZ+jet production and focus on the inclusive pT,Z1 (left) and pT,j

(right) distributions in Fig. 8. In the case of the transverse momentum of the hardest Z-boson we
observe sub-percent level agreement between the two predictions in LA and the NLOVI EW one,
with a typical virtual EW Sudakov behaviour that is dominated by large angular-independent LSC
effects. For this observable we observe the one-loop EW relative corrections to the ZZj process to
be identical to the relative corrections to the ZZ process shown in Fig. 5 (left). This indicates a
factorisation of QCD and EW effects motivating a multiplicative combination of higher-order QCD
and EW corrections to the pp ! ZZ process.

For the transverse momentum distribution of the jet shown on the right of Fig. 8 we observe an
increasing impact of the SSC correction towards higher pT,j leading to sizeable cancellations with
the LSC corrections. The total one-loop EW correction at pT,j = 1 TeV amounts to about �35%
at NLOVI EW respective �30% at NLL’VI EW, and �20% at NLLVI EW. The difference between
NLLVI EW and NLL’VI EW can be interpreted as a conservative upper bound of the accuracy of
the NLL’VI EW prediction due to logarithmic effects beyond the LA.

– 24 –



Marco Zaro, 10-7-2024

LO

NLO

SDK0
SDKweak

50 100 500 1000-1.×10-6

0

1.×10-6

2.×10-6

3.×10-6

4.×10-6

5.×10-6

1st Vector boson pT [GeV]

�
pe
rb
in

[p
b]

s=3 TeV

LO

NLO

SDK0
SDKweak

50 100 500 1000
-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1st Vector Boson pT [GeV]

� X
=X

/L
O
-1

s=3 TeV

LO

NLO

SDK0
SDKweak

50 100 500 1000
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1st Vector Boson pT [GeV]

� X
-�

N
LO

s=3 TeV

NLO EW corrections are flat.

Sudakov logarithms work very well at 
low pt and very bad at high pt.

ZHH

45

• In ZHH production, at large pT(Z), EWSLs fail to reproduce EW corrections

Don’t buy everything they sell
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Resummation of EW Sudakov logs 
Denner, Rode, 2402.10503

• Since EW corrections are non-diagonal wrt flavour, exponentiation of 
Sudakov-logs is highly non-trivial


• Seminal studies for 2-loop amplitudes suggested to exponentiate separately 
weak and QED terms, and about their order Denner et al, hep-ph/0301241

• Resummation achieved using the EW version of SCET, included in a fully-
differential MC


• Results presented for CLIC@3TeV and FCC-hh@100 TeV
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Figure 27. Di↵erential distributions in the four-lepton invariant masses for unpolarised pp !

ZZ ! e+e�µ+µ�, pp ! W+Z ! e+⌫eµ+µ�, pp ! W+W�
! µ+⌫µ⌫̄ee�, production with the

error on the counting rates shaded around the purple curves. The results include real, virtual,
and integrated dipole contributions. The upper panels show the expected event numbers per bin
assuming an integrated luminosity of L = 20 ab�1. The various curves di↵er in the treatment of
the virtual corrections only.
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ZZ ! e+e�µ+µ�, pp ! W+Z ! e+⌫eµ+µ�, pp ! W+W�
! µ+⌫µ⌫̄ee�, production with the
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assuming an integrated luminosity of L = 20 ab�1. The various curves di↵er in the treatment of
the virtual corrections only.
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Figure 15. Di↵erential distributions in the tau production angle, the antimuon energy, and the
tau–antimuon invariant mass. Same layout as in Fig. 14.

with the full NLO cross sections summed over the polarisations and including contributions

of real corrections, virtual (factorisable and non-factorisable) corrections, and integrated

dipoles, converted to expected event rates at CLIC assuming an integrated luminosity of [4]

L
CLIC
int = 5ab�1. (4.30)

Figure 14 confirms that the anticipated statistics of the considered ZZ decay channel is

rather low, owing to the purely leptonic final state: The cross section of ⇠ 10 ab is ex-

pected to yield around 50 events in total, rendering a measurement at the di↵erential level

impossible. One should, however, notice that the SCETEW results can be used in the

same way for the more prominent decay channels with expected event rates being larger

by a factor 10–100. Besides that the radiative corrections are dominated by real-radiation

e↵ects in the low lepton-energy regime (see right plot), where including the real corrections

renders the total NLO EW corrections positive. In the angular distribution on the r.h.s. the
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of real corrections, virtual (factorisable and non-factorisable) corrections, and integrated

dipoles, converted to expected event rates at CLIC assuming an integrated luminosity of [4]
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int = 5ab�1. (4.30)

Figure 14 confirms that the anticipated statistics of the considered ZZ decay channel is

rather low, owing to the purely leptonic final state: The cross section of ⇠ 10 ab is ex-

pected to yield around 50 events in total, rendering a measurement at the di↵erential level

impossible. One should, however, notice that the SCETEW results can be used in the

same way for the more prominent decay channels with expected event rates being larger

by a factor 10–100. Besides that the radiative corrections are dominated by real-radiation

e↵ects in the low lepton-energy regime (see right plot), where including the real corrections

renders the total NLO EW corrections positive. In the angular distribution on the r.h.s. the
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combinations of contributions:

LL + NLO = exp(↵L2) + ↵L+ ↵,

NLLFO +NLO = exp(↵L2)(1 + ↵L) + ↵,

NLL + NLO = exp(↵L2 + ↵L) + ↵. (3.73)

The supplement “+NLO” refers to the included O(↵) terms. In the last case we take

into account the first row of (3.67), i.e. the most important neglected terms are the ↵2L3,

↵3L4, and ↵2L2 term in (3.67). The former two are associated with the running of the EW

couplings and are potentially sizable, which is why we define

LL + NLO+ running = exp
�
fEWSM
0 (↵1,↵2)

�
+ ↵L+ ↵, (3.74)

with fEWSM
0 (↵1,↵2) defined in (3.38). This di↵ers from the LL+NLO case only by resum-

ming the PR logarithms.

The ↵2L2 term is associated with the two-loop anomalous dimension, which is rather

involved due to the mixing of the several coupling constants of the SM. Its impact has been

estimated to be ⇠ 0.5% at
p
s = 4TeV in Ref. [46]. We neglect it in the following.

3.4 Technical setup

In the previous section we described in detail the implementation of all ingredients of the

SCETEW computation. To obtain numerical predictions for collider observables they have

been implemented in the integrator MoCaNLO. MoCaNLO is an in-house multichannel
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of the e↵ect such that the di↵erence between the fixed-order and NLL-resummed results is

at the level of 10%.

5 Conclusions

At high energies, electroweak corrections are dominated by large logarithms that have to

be resummed for decent predictions. Soft-collinear e↵ective (SCETEW) theory has been

proposed as an appropriate framework for this task. We have implemented SCETEW into

a Monte Carlo integration code and applied it to vector-boson pair production including

the decays of the vector bosons. The application of SCETEW to such a process requires

the use of a number of approximations, including the Double-Pole Approximation (DPA),

the use of polarised cross sections and the approximation of large kinematical invariants.

We have considered two di↵erent future collider setups inspired by the CLIC and FCC–

hh projects for diboson production processes. Within these setups we have investigated the

accuracy of the di↵erent approximations and the e↵ects of the resummation of the LL and

NLL electroweak logarithms for both integrated cross sections and di↵erential distributions

of all diboson production processes.

In the considered CLIC setup (e+e� collisions at 3TeV) the errors owing to the

SCETEW assumption, s, t, u � M2
W, are below 0.5% on the level of integrated cross sec-

tions. The resummation of the Sudakov double logarithms (↵L2) shifts the cross sections

by about +23% in ZZ production and by about +21% in W+W� production in e+e� col-

lisions (all percentages with respect to the Born cross section). The resummation of the

next-to-leading logarithms accounts for �10% for ZZ and �19% for W+W� with the major

e↵ects arising from the ↵2L3 contributions. The matching corrections account for 5–10%

and are relevant if a high accuracy is aimed for.

In the FCC–hh setup (pp collisions at 100TeV) the diboson-production cross sections

are dominated by phase-space regions in which the SCETEW assumption does not hold.

This is especially drastic for photon-induced W-boson pair production. In the high-energy

tails of distributions in processes with a high cross section, such as W+W� production,

there is nevertheless a window, in which SCETEW is applicable (with a subpercent error)

and the e↵ect of the resummation is significant. Depending on the process, this window is

typically within an energy range of 3–12TeV.

In both setups the DPA, applied only to the virtual corrections, has a limited accuracy

for some distributions in processes involving external W bosons. In the CLIC setup the

error owing to the DPA does not exceed 1% in the regions that dominate the cross section.

In the backward region, where the cross section is suppressed, we find discrepancies of

up to 40% indicating a failure of the DPA. In the FCC–hh setup for W+W� and W+Z

production, however, the DPA error reaches 10% for large invariant masses and up to 40%

for larger transverse momenta of the leptons.

While the resummation of large EW logarithms is a must at future high-energy collid-

ers, the application of the SCETEW formalism to realistic diboson processes is nontrivial

and requires a number of approximations that need to be carefully checked.
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Matching with parton shower?

15

• EW corrections matched with PS still not available for 
general processes


• Approximate approaches exist, only including n-body 
contribution (“EWvirt” or EWSL). Accuracy depends 
on kinematics region 
EWVirt: VV(J): Brauer et al, 2005.12128; top: Gutschov et al, 1803.00950;  
V+jets: Kallweit et al, 1511.08692, …

• Exact matching performed only for processes with just 
LO1 (in the Powheg scheme) 
DY: Barzè et al,1302.4606; HV(J): Granata et al, 1706.03522; 
VBS: Chiesa et al, 1906.01863, VV: Chiesa et al, 2005.12146; 
WZ@NNLO+PS: Lindert et al, 2208.12660

• Main issue: how to assign colour-flows to 
interferences (LO2 is mostly an interference 
contribution) Some ideas: Frixione et al, 2106.13471
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Figure 4: Differential distributions of the dilepton rapidity originating from the Z-boson
(left) and of the corresponding dilepton invariant mass (right) in W+Z production in the
inclusive setup at NNLOQCD combined with NLOEW matched to parton showers for
different combination schemes. See text for details.

the lepton-pair associated with the Z boson in the inclusive setup. Looking at the yee

distribution in figure 4 (left) we observe scale-uncertainty bands with upper and lower edges
at the level of +3–5% and �2–3%, respectively, in all shown predictions. EW corrections
are smaller than these QCD scale variations and show hardly any shape effects, as expected
from this observable that is inclusive with respect to QED radiation. Indeed, comparing the
NNLO(QCD)PS

QCD
prediction against the NNLO(QCD,QED)PS

QCD
one indicates that pure QED effects

are at the level of �1–2%, and an additional �2–3% of weak origin is found when comparing
further against the NLO EW-matched NNLO(QCD,QED)PS

QCD+EW
or NNLO(QCD,QED)PS

QCDxEW
predictions,

which in turn agree at the one percent level. We also observe that the NNLO(QCD)PS
QCD

⇥

K-NLO(f.o.)

EW
prediction is practically identical with the NNLO(QCD,QED)PS

QCDxEW
one, which implies

that multiple photon emissions (beyond the first one) do not have a relevant impact here.
Looking at the mee distribution in figure 4 (right), the observations are different: there

are large effects from collinear QED radiation which shift events from above the Breit–Wigner
peak to below the peak. These effects are entirely absent in the NNLO(QCD)PS

QCD
prediction

showing deviations of up to 40% compared to the NNLO(QCD,QED)PS
QCD

prediction including
effects from the QED shower. The observed shape of the corrections due to these collinear
QED effects is qualitatively very similar to the well-known NLO EW corrections to neutral-

– 16 –

Lindert et al, 2208.12660
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Attaining the highest precision:

Drell-Yan NNLO QCD×EW
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Attaining the highest precision:

Drell-Yan NNLO QCD×EW

• Lepton-pair production (Drell-Yan) is a high-
precision probe of the EW sector (MW, sinθW, …)


• NNLO QCD+NLO EW not enough for current 
and upcoming exp. data


• NNLO2 has been the frontier for long time:


• Historically, different approaches have been 
pursued for the pole vs large-m(l+l-) region


• Complicated topologies (massive double box)


• Recently, full computations of NNLO2 have 
become available, both for NC and CC process


• I will briefly review these works, focusing on 
pheno results

17
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Figure 1. Examples of Feynman diagrams that contribute to the two-loop amplitude. Left:
two-loop fermionic non-factorizable corrections, middle: factorizable corrections, right: bosonic
non-factorizable corrections.

were studied earlier in Ref. [86]. We have performed an independent calculation and checked

our analytic results against those in Refs. [86, 87]. We also note that these contributions

are the only ones relevant for the on-shell renormalization of the electroweak coupling ↵,

and they are the only diagrams that make the extension of the complex mass scheme to

O(↵↵s) non-trivial, see Ref. [86] for further details.

In our implementation, we find it convenient to separate virtual corrections into a

factorizable and a non-factorizable part. We define the former as the product of the one-

loop EW contribution and the QCD K-factor from Eq. (3.1):
D
F

fact

LVV+LV2(1q, 2q̄, 3, 4)
E
⌘ CQCD

D
F

(EW),fin

LV
(1q, 2q̄, 3, 4)

E
. (3.2)

Also, we separate the non-factorizable contribution into a bosonic part – extracted from

Ref. [57] – and a fermionic part which accounts for closed fermion loops. In summary, we

write the finite two-loop contribution to the cross section as

⌦
F

(QCD⇥EW), fin

LVV+LV2 (1q, 2q̄, 3, 4)
↵
=

⌦
F

fact

LVV+LV2(1q, 2q̄, 3, 4)
↵
+
⌦
F

non�fact,bos

LVV
(1q, 2q̄, 3, 4)

↵

+
⌦
F

non�fact,ferm

LVV
(1q, 2q̄, 3, 4)

↵
.

(3.3)

To avoid confusion, we note that the non-factorizable fermionic term only contains 1PI

contributions similar to the leftmost diagram in Fig. 1. Indeed, it is easy to convince oneself

that all reducible terms involving closed fermion loops are included in the factorizable part.

A representative diagram for each of the three terms on the right-hand side of Eq. (3.3) is

shown in Fig. 1.

The reason for separating the two-loop virtual corrections into factorizable and non-

factorizable parts is that the former should be dominant at high energy since it contains

leading Sudakov logarithms. Indeed, we have checked that the non-factorizable contribu-

tion to the cross section is typically an order of magnitude smaller than the factorizable

one. This happens across the entire phase space that we have investigated. The practical

advantage of this observation is that the non-factorizable contribution – whose numerical

evaluation is CPU expensive – can be determined to a much lower accuracy to obtain the

cross section with a target precision. We also note that the separation of two-loop virtual

corrections shown in Eq. (3.3) allows us to capture the bulk of the contribution coming from

virtual top quarks, as we now explain. Computing such contributions exactly for the full

two-loop amplitude is beyond the reach of current technology. As a consequence, they were
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Figure 1. Examples of Feynman diagrams that contribute to the two-loop amplitude. Left:
two-loop fermionic non-factorizable corrections, middle: factorizable corrections, right: bosonic
non-factorizable corrections.

were studied earlier in Ref. [86]. We have performed an independent calculation and checked

our analytic results against those in Refs. [86, 87]. We also note that these contributions

are the only ones relevant for the on-shell renormalization of the electroweak coupling ↵,

and they are the only diagrams that make the extension of the complex mass scheme to

O(↵↵s) non-trivial, see Ref. [86] for further details.
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cross section with a target precision. We also note that the separation of two-loop virtual
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Figure 1. Examples of Feynman diagrams that contribute to the two-loop amplitude. Left:
two-loop fermionic non-factorizable corrections, middle: factorizable corrections, right: bosonic
non-factorizable corrections.
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We report on the first complete computation of the mixed QCD-electroweak (EW) corrections to the
neutral-current Drell-Yan process. Superseding previously applied approximations, our calculation
provides the first result at this order that is valid in the entire range of dilepton invariant masses. The
two-loop virtual contribution is computed by using semianalytical techniques, overcoming the technical
problems in the evaluation of the relevant master integrals. The cancellation of soft and collinear
singularities is achieved by a formulation of the qT subtraction formalism valid in the presence of charged
massive particles in the final state. We present numerical results for the fiducial cross section and selected
kinematical distributions. At large values of the lepton pT the mixed QCD-EW corrections are negative and
increase in size, to about −15% with respect to the next-to-leading-order QCD result at pT ¼ 500 GeV.
Up to dilepton invariant masses of 1 TeV the computed corrections amount to about −1.5% with respect to
the next-to-leading-order QCD result.
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Introduction.—When the Large Hadron Collider (LHC)
at CERN started data taking in 2009, it was expected to give
answers to questions like the origin of electroweak (EW)
symmetry breaking or the existence of supersymmetry.
After successful physics runs at 7, 8, and 13 TeV and the
discovery of the Higgs boson [1,2], there is still no clear
evidence of physics beyond the standard model. Although a
huge amount of data will be accumulated in the high-
luminosity phase and exciting discoveries are still well
possible, it is by now clear that an alternative path to
uncover possible new physics is the search for small
deviations from the predictions of the standard model,
and that precision is the key for this path.
The Drell-Yan (DY) process [3] is the perfect example of

a precision benchmark process at the LHC. It corresponds
to the inclusive production of a lepton pair through an off
shell vector boson. It provides large production rates and
clean experimental signatures, given the presence of at least
one lepton with large transverse momentum in the final
state. Historically, it offered the first application of parton
model ideas beyond deep inelastic scattering and led to the

discovery of theW and Z bosons [4–7]. At present, the DY
process provides valuable information about parton dis-
tribution functions, allows for the precise determination of
several standard model parameters [8–11], and severely
constrains many new-physics scenarios.
The DY process was one of the first hadronic reactions

for which radiative corrections in the strong and EW
couplings αS and α were computed. The classic calcula-
tions of the next-to-leading-order (NLO) [12] and next-to-
next-to-leading-order (NNLO) [13,14] corrections to the
total cross section in quantum chromodynamics (QCD)
were followed by (fully) differential NNLO computations
including the leptonic decay of the vector boson [15–19].
The complete EW corrections for W production have been
computed in Refs. [20–24], and for Z production in
Refs. [25–29]. Very recently, the next-to-next-to-next-to-
leading-order (N3LO) QCD radiative calculations of the
inclusive production of a virtual photon [30,31] and of aW
boson [32] have been completed, and first estimates of
fiducial cross sections for the neutral-current DY process at
the same order have appeared [33].
Since the high-precision determination of EW parame-

ters requires control over the kinematical distributions at
very high accuracy, the attention of the theory community
has recently turned to the mixed QCD-EW corrections.
The knowledge of these corrections would indeed allow us
to improve over the approximations offered by shower
Monte Carlo programs (see, e.g., Refs. [34,35] and

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 128, 012002 (2022)

0031-9007=22=128(1)=012002(8) 012002-1 Published by the American Physical Society

2106.11953

4

� [pb] �LO �(1,0) �(0,1) �(2,0) �(1,1)

qq̄ 809.56(1) 191.85(1) �33.76(1) 49.9(7) �4.8(3)

qg — �158.08(2) — �74.8(5) 8.6(1)

q(g)� — — �0.839(2) — 0.084(3)

q(q̄)q0 — — — 6.3(1) 0.19(0)

gg — — — 18.1(2) —

�� 1.42(0) — �0.0117(4) — —

tot 810.98(1) 33.77(2) �34.61(1) �0.5(9) 4.0(3)

Table I. The di↵erent perturbative contributions to the fidu-
cial cross section (see Eq. (2)). The breakdown into the vari-
ous partonic channels is also shown (see text).
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Figure 1. Complete O(↵S↵) correction to the di↵erential
cross section d�(1,1) in the anti-muon pT compared to the
corresponding result in the pole approximation and to the
factorised approximation d�(1,1)

fact
. The top panels show the ab-

solute predictions, while the central (bottom) panels display
the O(↵S↵) correction normalized to the LO (NLO QCD) re-
sult. For the full result the ratios also display our estimate
of the numerical uncertainties, obtained as described in the
text.

ject to large cancellations between the various partonic
channels. The NLO QCD corrections amount to +4.2%
with respect to the LO result, while the NLO EW cor-
rections contribute �4.3%. Also the NNLO QCD cor-
rections are subject to large cancellations, and give an
essentially vanishing contribution within the numerical
uncertainties. The newly computed QCD–EW correc-
tions amount to +0.5% with respect to the LO result.

In Fig. 1 we present our result for the O(↵S↵) correc-
tion as a function of the anti-muon pT . The left panels
depict the region around the Z peak, and the right pan-
els the high-pT region. In the main panels we show the
absolute correction d�(1,1)/dpT , while the central (bot-
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Figure 2. As Fig. 1, but for the di-muon invariant mass.

tom) panels display the correction normalised to the LO
(NLO QCD) result. Our results for the complete O(↵S↵)
correction are compared with those obtained in two ap-
proximations. The first approximation consists in com-
puting the finite part of the two-loop virtual amplitude
in the pole approximation, suitably reweighted with the
exact squared Born amplitude. This approach precisely
follows that adopted for the charged-current DY process
in Ref. [49] (see Eq. (14) therein for the precise defini-
tion). The pole approximation, which includes factoris-
able and non-factorisable [44] contributions, requires the
QCD–EW on-shell form factor of the Z boson [40]. The
second approximation is based on a fully factorised ap-
proach for QCD and EW corrections, where we exclude
photon-induced processes throughout (see Ref. [45, 49]
for a detailed description). We see that the result ob-
tained in the pole approximation is in perfect agreement
with the exact result. This is due to the small contri-
bution of the two-loop virtual to the computed correc-
tion, as observed also in the case of W production [49].
Our result for the O(↵S↵) correction in the region of
the peak is reproduced relatively well by the factorised
approximation. Beyond the Jacobian peak, this approx-
imation tends to overshoot the complete result, which is
consistent with what was observed in Refs. [45, 49]. As
pT increases, the (negative) impact of the mixed QCD–
EW corrections increases, and at pT = 500GeV it reaches
about �60% with respect to the LO prediction and �15%
with respect to the NLO QCD result. The factorised ap-
proximation describes the qualitative behaviour of the
complete correction reasonably well, also in the tail of
the distribution, but it overshoots the full result as pT
increases.

In Fig. 2 we show our result for the O(↵S↵) correction
as a function of the di-muon invariant mass mµµ. The
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Table I. The di↵erent perturbative contributions to the fidu-
cial cross section (see Eq. (2)). The breakdown into the vari-
ous partonic channels is also shown (see text).
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cross section d�(1,1) in the anti-muon pT compared to the
corresponding result in the pole approximation and to the
factorised approximation d�(1,1)

fact
. The top panels show the ab-

solute predictions, while the central (bottom) panels display
the O(↵S↵) correction normalized to the LO (NLO QCD) re-
sult. For the full result the ratios also display our estimate
of the numerical uncertainties, obtained as described in the
text.

ject to large cancellations between the various partonic
channels. The NLO QCD corrections amount to +4.2%
with respect to the LO result, while the NLO EW cor-
rections contribute �4.3%. Also the NNLO QCD cor-
rections are subject to large cancellations, and give an
essentially vanishing contribution within the numerical
uncertainties. The newly computed QCD–EW correc-
tions amount to +0.5% with respect to the LO result.

In Fig. 1 we present our result for the O(↵S↵) correc-
tion as a function of the anti-muon pT . The left panels
depict the region around the Z peak, and the right pan-
els the high-pT region. In the main panels we show the
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(NLO QCD) result. Our results for the complete O(↵S↵)
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puting the finite part of the two-loop virtual amplitude
in the pole approximation, suitably reweighted with the
exact squared Born amplitude. This approach precisely
follows that adopted for the charged-current DY process
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the peak is reproduced relatively well by the factorised
approximation. Beyond the Jacobian peak, this approx-
imation tends to overshoot the complete result, which is
consistent with what was observed in Refs. [45, 49]. As
pT increases, the (negative) impact of the mixed QCD–
EW corrections increases, and at pT = 500GeV it reaches
about �60% with respect to the LO prediction and �15%
with respect to the NLO QCD result. The factorised ap-
proximation describes the qualitative behaviour of the
complete correction reasonably well, also in the tail of
the distribution, but it overshoots the full result as pT
increases.

In Fig. 2 we show our result for the O(↵S↵) correction
as a function of the di-muon invariant mass mµµ. The

• Peak region: excellent agreement with PA. 
Very large effects due to radiation. Naive 
factorisation fails 


• Large inv.mass: O(0.5%) difference wrt PA 
and naive fact, due to genuinely non-
factorisable contributions


• NNLO2 corrections at the 1% level in the 
large inv.mass region
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Mixed QCD-EW 

corrections at large invariant mass

• Two-loop amplitudes computed in 
2020, without widths  
Heller et al, 2012.05918

• IR subtraction with nested soft-
collinear scheme  
Caola et al, 1702.01352

• Computation with massless leptons 
(recombination needed)
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Figure 2. Dilepton invariant mass distribution for the Drell-Yan process pp ! `
�
`
+ at the 13.6

TeV LHC. The upper pane shows our best prediction for d� which included NLO QCD, NNLO
QCD, NLO EW, and mixed QCDxEW corrections. The middle pane shows the ratio of the NLO
EW and mixed QCDxEW corrections to the full NLO QCD result. The lower pane shows the ratio
of mixed QCDxEW corrections to a result which includes both QCD and EW NLO corrections.
The left plot shows results in the range 200 GeV < m`` < 1 TeV, the right plot shows the range
1 TeV < m`` < 3 TeV. See text for details.

provide the dominant contribution at large invariant masses. In this table, we also show our

predictions for the quantity �QCD⇥EW defined in Eq. (4.4), i.e. including NLO QCD, NLO

EW, NNLO QCD and mixed QCDxEW corrections, in the four invariant mass windows.

We observe that the theoretical uncertainty, estimated by a simultaneous variation of scales

and input scheme, is below the percent level across the di↵erent windows considered.

We now turn to the discussion of kinematic distributions. The dilepton invariant mass

case is shown in Fig. 2. There, the distributions in the upper panes include all corrections

considered in this paper

d�QCD⇥EW = d�
(0,0) + d�

(1,0) + d�
(0,1) + d�

(2,0) + d�
(1,1)

, (4.8)

the middle panes show the impact of the NLO EW and mixed QCDxEW corrections on

the results computed through NLO QCD, and the lower panes show the impact of the

mixed QCDxEW corrections on cross sections computed through NLO QCD and NLO

EW accuracy. To this end, we define the following quantities

R
(0,1)

QCD
=

d�
(0,0) + d�

(1,0) + d�
(0,1)

d�(0,0) + d�(1,0)
, R

(1,1)

QCD
=

d�
(0,0) + d�

(1,0) + d�
(0,1) + d�

(1,1)

d�(0,0) + d�(1,0)
, (4.9)
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NLOQCD+EW/NLOQCD

(NLOQCD+EW+NNLO2)/NLOQCD

(NLOQCD+EW+NNLO2)/NLOQCD+EW

• NNLO2 corrections at the 1% level wrt 
NLOQCD+EW in the large inv.mass region 
(up to 1 TeV)


• Growth with invariant mass due to 
Sudakov effects, up to 3% at 3 TeV


• Surprisingly large size in the TeV region 
wrt to power counting
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Figure 6. The complete correction to the finite hard function in the Gµ-scheme, due to
O(↵↵s) correction, in two di↵erent phase-space regions, as a function of

p
s and cos ✓. The correc-

tion is normalized by the Born and expressed in units ↵
⇡

↵s
⇡ .

p
s [GeV] cos ✓ H

(1,1)

88.066 0 61.318

88.066 -0.66 45.970

222.362 0 48.189

222.362 -0.66 -15.753

1035.37 0 29.029

1035.37 -0.66 -6.990

Table 1. Benchmark values for the finite hard function, in the Gµ-scheme, due to
O(↵↵s) correction. The correction is normalized by the Born and expressed in units ↵

⇡
↵s
⇡ .

MZ 91.1535 GeV �Z 2.4943 GeV

MW 80.358 GeV �W 2.084 GeV

mH 125.25 GeV mt 173.2 GeV

The possibility to have an exact dependence on the W -boson mass, within this numerical

approach, is discussed in Section 5.3.

We provide in Table 1 a few benchmark values of the function H
(1,1) in the Gµ-scheme,

for di↵erent
p
s and cos ✓ choices.

5.2 Checks

The scattering amplitude develops UV and IR divergences, which appear as poles in the

dimensional regularisation parameter ". Their cancellation provides a non trivial check

of the consistency of the calculation. This check exploits the restoration of some QED-

like Ward identities, valid in the BFG. In the construction of the UV-finite renormalised

propagator we observe the cancellation of the W self-energy wave function divergence

– 16 –

From NC to CC 
Armadillo, Bonciani, Devoto, Rana, Vicini, 2405.00612

• The CC case requires new topologies wrt the 
NC one

• Most complicated: double-box, with 2 different 

internal masses

• Solved by in-house package for differential 

equations, based on LiteRed and SeaSyde (series 
expansion wrt invariants)


• Boundary condition evaluated with AMFlow

• Checked that the result matches the equal-masses 

topology


• Complex-mass scheme and lepton mass≠0


• Results available as a grid, including full 
dependence on W mass 
 
LiteRed: Lee, 1310.1145; AMFlow: Liu et al, 2201.11669;  
SeaSyde: Armadillo et al, 2205.03345
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Figure 7. On the left panel we plot the real and imaginary part of the O("0) of
B̃14[1, 1, 1, 1, 0, 1, 1, 0, 1] for di↵erent values of �MW . On the right panel we plot the relative er-
ror of the solution for di↵erent number of terms in the �MW -series expansion, as a function of
�MW .

of �MW . From the plot we can see that if we consider only shifts in �MW of order 100

MeV, 15 terms in the expansions are su�cient for maintaining a relative precision of 10�15.

6 Conclusions

We have presented in this paper the details of the complete calculation, for the CC DY

process, of its exact O(↵↵s) two-loop virtual corrections. These results represent the

companion to the ones discussed in Ref. [68] for the NC DY case, with a higher level of

technical complexity in the Master Integrals, because of the presence of two di↵erent mass

values in the internal lines. When included in the Matrix framework, for the evaluation

of the fiducial cross sections, these results will allow a consistent simultaneous analysis of

both NC and CC DY processes at NNLO QCD-EW level. Such consistency is required by

the interplay between the two final states: for example, in the W -boson mass studies the

NC DY channel plays a crucial calibration role, which would be spoiled if corrections at

di↵erent orders were considered; at large lepton-pair transverse/invariant masses, CC and

NC channels have di↵erent sensitivity to the parton-parton luminosities, thus allowing an

e↵ective reduction of the associated uncertainties, crucial in the New Physics searches.

The results have been obtained thanks to an increased level of automation of every

step of the calculation, opening the way to the systematic study of the mixed QCD-EW

corrections in other 2 ! 2 scattering processes. In particular, it is worth mentioning the

possibility to study in a uniform way all the relevant MIs, with 0,1, or 2 internal massive

lines, in the same semi-analytical framework o↵ered by the SeaSyde code, with excellent

control on the cancellation of UV and IR divergences.

The flexibility of the di↵erential equations technique to solve the MIs has been ex-

ploited to preserve the exact dependence on the W -boson mass, even when we prepare

– 18 –
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Resummation of QED effects 
Buonocore, Rottoli, Torrielli, 2404.15112

• Soft QED and mixed effects added on top of QCD ones, within the Radish 
framework Monni et al, 1604.02191

• QED soft effects due to correlations with final-state leptons included

• See also earlier work with stable W/Z Autieri et al, 2302.05403
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with ⇠ = 1 � 2↵s �0 ln
µR

q
, ⇠0 = 1 � 2↵�

0
0
ln µR

q
, and �01 (�0

01
) representing the lowest-order QED

(QCD) contribution to the QCD (QED) running, see also [100, 101]. The result can be written as

R
MIX(kt1) = � g11(�,�

0)� g
0
11
(�,�0) , (2.14)

with constituent functions again given in appendix A.
Although the B

(1,1) coefficient [56] enters at NNLL accuracy, as it generates terms of order
↵
n

s
↵
m ln(1/v)n+m�1, we nevertheless include it in the Sudakov exponent to correctly account for all

single-logarithmic contributions of order ↵s ↵ ln(1/v). Our complete radiator including EW effects
then reads

R(kt1) =
h
R(kt1)

i

eq. (2.4)

+ R
QED(kt1) + R

MIX(kt1) +
↵s

2⇡

↵

2⇡
B

(1,1)
L . (2.15)

We refer to NLLEW accuracy when considering EW effects stemming from R
QED(kt1) +R

MIX(kt1)
in eq. (2.15), and to nNLLMIX accuracy when including B

(1,1) as well. The nomenclature suggests
that such a term is of mixed QCD-EW origin, and is part of the NNLL correction in the mixed
coupling expansion.

Turning now to the analysis of luminosity factor in eq. (2.5), its leading EW corrections amount
to the following replacements:

Cab(z) =
h
Cab(z)

i

eq. (2.6)

+
↵

2⇡
C

0(1)
ab

(z) +
↵s

2⇡

↵

2⇡
C

(1,1)

ab
(z) ,

H(µR) =
h
H(µR)

i

eq. (2.6)

+
↵

2⇡
H

0(1)(µR) +
↵

2⇡
F

0(1)(�B) +
↵s

2⇡

↵

2⇡
H

(1,1)(µR) . (2.16)

In eq. (2.16), C 0(1)
ab

(z) and F
0(1)(�B) refer to O(↵) QED constants of initial-state collinear and soft

wide-angle origin, respectively, obtained abelianising the corresponding QCD expressions [98, 99,
147]. H

0(1)(µR) is the EW one-loop virtual correction, that we evaluate with Recola [153, 154].
The inclusion of primed quantities in eq. (2.16) allows one to reach NLL0

EW
level, i.e. to correctly

capture all terms of order ↵
n ln(1/v)2n�2 in the cumulative cross section. Quantities labelled with

“(1, 1)” in eq. (2.16) formally enter at order ↵
n

s
↵
m ln(1/v)n+m�2 in the cumulative cross section,

thus they are beyond NLL0 accuracy in both QCD and EW expansions. However, they need to be
included if one aims at matching the resummed calculation with a fixed-order prediction at O(↵s↵)
accuracy. We define the accuracy attained by means of their inclusion as nNLL0

MIX
, consistently

with the nomenclature introduced above. Corresponding to the modifications detailed in eq. (2.16),
DGLAP evolution is now ruled by

P̂ij(z) =
h
P̂ij(z)

i

eq. (2.7)

+
↵

2⇡
P̂

0(1)
ij

(z) +
↵s

2⇡

↵

2⇡
P̂

(1,1)

ij
(z) , (2.17)

in terms of the QED (P̂ 0(1)) and mixed QCD-QED (P̂ (1,1)) splitting kernels reported in [98, 99].
A concluding remark on the inclusion of photon-initiated contributions is in order. A photon

PDF in the luminosity L(kt1) is needed in the context of EW corrections to Drell Yan. This is
due to the presence of C 0

q�
(z) coefficient functions in eq. (2.16), as well as to QED contributions

to DGLAP evolution in eq. (2.17). Moreover, in the case of NCDY, a purely photon-induced Born
channel |MB |

2
��

is active. Although its impact on the fiducial cross section is at the percent level
with respect to QCD corrections, see [63], its effects on differential distributions are not necessarily
negligible with respect to the other EW corrections we include. In our simulations we consider
all photon contributions mentioned above, and consistently adopt PDF sets that feature a photon
density [155]. We instead refrain from including photon-initiated channels in the O(↵s↵) constant
contribution, as numerically negligible [63].
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Figure 3. Matched spectra for the di-lepton transverse momentum in neutral-current DY. Left panel:
perturbative progression including QCD and EW effects. Right panel: effect of EW corrections on top of
the QCD baseline.

4.1 Neutral-current Drell Yan

We start by displaying in Fig. 3 the transverse momentum p
µµ

t
of the di-muon system in NCDY. In

the left panel we compare matched predictions with different accuracy. The purple band features
NLO+NLL0 accuracy both in the QCD and in the EW coupling. We recall that this amounts to
excluding all quantities with label “(1,1)” from eqs. (2.15) to (2.17). Green and orange bands both
include nNLL0

MIX
EW effects (i.e. “(1,1)” quantities in eqs. (2.15) to (2.17)), as well as NNLOQCD,

with the orange (green) attaining N3LL0 (NNLL0) logarithmic QCD accuracy. At medium-large
p
µµ

t
the inclusion of NNLOQCD contributions has the effect of significantly hardening the tail, and

reducing the uncertainty band to the 10-15% level. In the p
µµ

t
! 0 resummation region, nNLL0

MIX

and especially NNLL0
QCD

logarithmic terms lower the spectrum (green vs purple), a trend which
is maintained after inclusion of N3LL0

QCD
contributions (orange vs green). We notice that in this

region the uncertainty band is significantly reduced upon adding logarithmic effects, down to the
few-% level below 20 GeV for our most accurate prediction (orange). Predictions with higher formal
accuracy are well contained within the uncertainty bands of lower orders in that region, which is a
sign of good perturbative convergence.

In the right panel of Fig. 3 we assess the importance of including EW effects (orange) on top
of the QCD NNLO+N3LL0 baseline (light blue). The orange band is identical to the one in the left
panel, which will be the case as well for the next figures in this section. The two predictions differ by
their perturbative content, as well as by the PDF adopted, where a LUXqed photon PDF (together
with its DGLAP evolution) is active only for the former. EW effects induce a visible distortion in
the spectrum at small pµµ

t
, lowering the prediction by as much as 10-15% for p

µµ

t
. 10 GeV. We

have checked that, as one might expect, EW corrections largely factorise from QCD in the small-pµµ
t

region, namely similar shape distortions as those in the right panel of Fig. 3 can be observed when
including EW effects on top of lower-order QCD predictions. The same considerations apply for
all observables considered below. We also note that at small pµµ

t
the uncertainty bands of the two

predictions are comparatively small, at the level of few %, and do not overlap. The latter feature
is not surprising, since EW corrections are genuinely new physical effects, whose magnitude is not
supposed to be meaningfully estimated by pure-QCD scale variations. This consideration highlights
the relevance of an accurate description of EW effects in DY production for a successful precision-
physics programme at the LHC. The effect of all-order EW corrections becomes more and more
marginal for p

µµ

t
& 30 GeV (except for a slight increase in the uncertainty band in the matching

– 11 –

region), where the prediction starts being dominated by the fixed-order component. In this region
one also expects that the inclusion of non-factorisable O(↵s↵) QCD-EW effects, not considered in
our results, may play a role.
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Figure 4. Matched spectra for the positively charged muon transverse momentum in neutral-current DY.
Left panel: perturbative progression including QCD and EW effects. Right panel: effect of EW corrections
on top of the QCD baseline.

In Fig. 4 we display differential predictions with respect to the transverse momentum p
µ

+

t
of the

positively charged muon. The inclusion of resummation effects is necessary to provide a physical
description of this observable [167] due to its sensitivity to soft radiation for p

µ
+

t
' m

µµ
/2. The

pattern of the figure is identical to that of Fig. 3, with the perturbative progression displayed in the
left panel, and the impact of EW effects in the right panel. At variance with the di-muon transverse
momentum, the p

µ
+

t
spectrum is non-trivial already at Born level, hence we expect relatively milder

perturbative corrections, and a solid perturbative stability across its entire phase space. This is
what we find inspecting the left panel. Increasing QCD and EW formal accuracy (green vs purple)
amounts to marginally lowering the jacobian peak and raising the tail at the level of roughly 5%.
The inclusion of yet higher-order QCD resummation continues the trend, with a further few-%
distortion. Theoretical uncertainty bands are found to reliably cover the central predictions of
the next perturbative orders, both below and above the peak. The upgrade in formal accuracy
has the visible effect of reducing the residual uncertainty, down to the level of ±2% (±4%) below
(above) peak. As stated above, we expect however that a matching at O(↵s↵), not included in
our predictions, will have a numerical impact on the p

µ
+

t
distribution. This may exceed the quoted

perturbative uncertainty, especially around the jacobian peak, due to genuine mixed effects which
are not captured by scale variations.

The right panel of Fig. 4 shows how the jacobian peak in p
µ

+

t
is exposed to the interplay of QCD

and EW effects. Including the latter has a clearly visible impact on the distribution, lowering the
spectrum by as much as 20% at pµ

+

t
' mZ/2, in a way that by no means can be approximated by a

constant rescaling factor. The shape of the correction is compatible with what observed in [168] (see
Fig. 24) in the context of a comparative study among event generators with QED resummation.
In our case, the prediction including EW effects lies outside of the pure-QCD uncertainty band
in the whole peak region, roughly from 35 GeV to 55 GeV. This accentuates what was observed
in the right panel of Fig. 3 at small pµµ

t
, highlighting the need for EW corrections for a complete

description of this observable.
The di-muon transverse mass m

µµ

t
, displayed in Fig. 5, follows a similar pattern as the muon

transverse momentum in Fig. 4. A solid perturbative convergence is observed in the left panel,
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FIG. 1. Distribution in the rapidity di↵erence between the tt̄ pair and the leading jet (�ytt̄,j1), in the rapidity (ytav ) and the
average transverse-momentum (pT,tav ) of the top and the anti-top, as well as in the rapidity (ytt̄), in the invariant mass (mtt̄)
and in the transverse momentum (pT,tt̄) of the tt̄ system. Predictions are shown for MiNNLOPS (blue, solid), MiNLO0 (black,
dashed) and at NNLO (red, dashed). The black data points represent the CMS measurement at 13TeV of Ref. [99], where the
ytav and pT,tav distributions have been obtained with leptonically decaying top quarks.

hadron colliders with parton showers. This result has
been obtained by constructing the MiNNLOPS method
for the production of heavy quarks, which constitutes
the first NNLO+PS prediction for reactions with colour
charges in the final state in hadronic collisions. The
comparisons presented in Fig. 1 provide a numerical val-
idation of MiNNLOPS for top-quark pair production,
demonstrating its NNLO accuracy. The simulations pre-
sented here also allow for the inclusion of the top-quark

decay, paving the way to an accurate event generation
for tt̄ production at the LHC which will enable precise
comparisons of fiducial measurements to theory.
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MiNNLO+PS

• NLO QCD+PS has been the golden standard 
for long time 
MG5_aMC/Sherpa/Powheg


• Going beyond NLO: NNLO
• NNLO+PS relies on rather mature 

technology (MiNNLOPS) 
Monni et al, 1908.06987

• All currently-available NNLO QCD 
computation can (in principle) be included 
into a NNLO+PS generator


• Implementation is still process-dependent, 
and mostly done by hand 
bbH: Biello et al, 2402.04025; b prod: Mazzitelli et al, 2302.01645;  
WZ (+EW) Lindert et al, 2208.12660; ZH (SMEFT): Haisch et al, 2204.00663; 
top: Mazzitelli et al, 2112.12135, …
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NNLO+PS in Geneva

• The Geneva method combines NNLO+PS with N-jettiness resummation 
at NNLL’ Alioli et al, 1211.7049

• Implemented and validated for several color-singlet processes


• New developments:

• Resumming second jet resolution at NLL’

• Extension towards color-singlet+jet processes WIP

25

Implemented processes

Method has been tested and validated with several color singlet production processes: 
 DY, ZZ, , VH, , ggH, ggHH, Higgs decays using both zero-jettiness and  

   

Wγ γγ qT

SIMONE ALIOLI  -  RINGBERG 9/5/2024
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• MC@NLO-matched MCs affected by negative weights

• Reduce the statistical quality of the event sample

• More events need to be generated than with positive-

only events

• Recent progress both in Sherpa and MG5_aMC:


• MG5_aMC: modify the matching by a term which 
improves the IR behaviour of the MC counterterms 
Frederix et al, 2002.12716 

Alternatively, spread the Born over the radiative PS in 
order to compensate for over-cancelation of local CTs 
or negative virtuals Frederix, Torrielli, 2310.04160

• Sherpa: use leading-colour approximation+move K-
factor to low-mult. processes in merged samples 
Danzinger et al, 2110.15211

• Other approaches (MC-agnostic):

• Positive resampler: resample cross section to eliminate 

negative weights Andersen et al, 2005.09375 
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Figure 1: Relative cost as a function of the fraction of negative weights, eq. (1.6), for

three di↵erent values of the correlation parameter C±.

one would need to use eqs. (1.3) and (1.4) locally in the phase space, thus defining a

local relative cost, and subsequently construct the global relative cost as the weighted (by

number of events) average of the local ones. In practice, eq. (1.6), with f the overall fraction

of negative-weight events, does characterise well enough the behaviour of simulations with

events of either sign, and we shall often use it in the following.

The problem with c(f) > 1 for any f > 0 is not statistics per se, but the fact that it

generally implies additional financial costs: longer running times, hence larger power con-

sumption (events with negative weights contribute to climate change!), and bigger storage

space, to name just the most important ones. Denoting by p (p0) the overall price tag for

the generation, full simulation, analysis, and storage of an individual event resulting from

a positive-definite (non-positive-definite) simulation, the additional costs alluded to before

are:

Np
0
�Mp = M

⇥
c(f)p0 � p

⇤
. (1.7)

With all other things being equal (and chiefly among them, the control of the theoretical

systematics), it is therefore advantageous to make f as small as possible, so as to minimise

the additional costs2 of eq. (1.7). This is the goal of the present work, in the context of

the MC@NLO matching formalism [1].

Before proceeding, we remind the reader that currently the vast majority of theoretical

studies, and essentially all of the NLO+parton shower simulations performed by experi-

mental collaborations, are based on either the MC@NLO or the POWHEG [2] methods,

2Note that p
0 �p can have either sign, although when NLO and LO calculations are taken as examples of

non-positive- and positive-definite simulations, respectively, most likely p
0
> p. In any case, in the context

of a complete experimental analysis the contribution to the cost due to the generation phase alone is minor,

and thus p
0 ' p.
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MC@NLO MC@NLO-�

111 221 441 �-111 �-221 �-441

pp ! e
+
e
� 6.9% (1.3) 3.5% (1.2) 3.2% (1.1) 5.7% (1.3) 2.4% (1.1) 2.0% (1.1)

pp ! e
+
⌫e 7.2% (1.4) 3.8% (1.2) 3.4% (1.2) 5.9% (1.3) 2.5% (1.1) 2.3% (1.1)

pp ! H 10.4% (1.6) 4.9% (1.2) 3.4% (1.2) 7.5% (1.4) 2.0% (1.1) 0.5% (1.0)

pp ! Hbb̄ 40.3% (27) 38.4% (19) 38.0% (17) 36.6% (14) 32.6% (8.2) 31.3% (7.2)

pp ! W
+
j 21.7% (3.1) 16.5% (2.2) 15.7% (2.1) 14.2% (2.0) 7.9% (1.4) 7.4% (1.4)

pp ! W
+
tt̄ 16.2% (2.2) 15.2% (2.1) 15.1% (2.1) 13.2% (1.8) 11.9% (1.7) 11.5% (1.7)

pp ! tt̄ 23.0% (3.4) 20.2% (2.8) 19.6% (2.7) 13.6% (1.9) 9.3% (1.5) 7.7% (1.4)

Table 1: Fractions of negative-weight events, f , and the corresponding relative costs,

c(f) (in round brackets), for the processes in eqs. (5.7)–(5.13), computed with MC@NLO

(columns 2–4) and with MC@NLO-� (columns 5–7), for three di↵erent choices of the

folding parameters.

matching (including the fractions of negative-weight events) are concerned. This allows

one to obtain a reasonably complete comparison between MC@NLO and MC@NLO-� re-

sults, as well as to have a first idea of the main features of the latter matching prescription.

The process in eq. (5.10) has been computed, with mb = 4.7 GeV, in a four-flavour scheme;

thus, there is a slight inconsistency due to the usage of the (five-flavour scheme) NNPDF2.3

PDFs, which is however irrelevant for the purpose of the present study. The results of the

process in eq. (5.11) have been obtained by imposing a pT � 50 GeV cut on the hardest

jet of the event; jets are reconstructed by means of FastJet [27], with an R = 0.5 anti-kT

algorithm [28]. We remind the reader that the starting scales are determined as is explained

in sect. 3.1; in particular, see eq. (3.22) (for MC@NLO) and eq. (3.25) (for MC@NLO-�),

where f↵ are free parameters, whose values we are soon going to specify. In order to do

that, in view of what is implemented in the MG5 aMC code it is customary to define the

f↵’s in a redundant way, namely:

f↵ = f̂↵ . (5.14)

The default choices of these parameters for all of the processes in eqs. (5.7)–(5.13), except

for that in eq. (5.10), are the following:

 = 1 , f̂1 = 0.1 , f̂2 = 1 , (5.15)

while in the case of eq. (5.10) we set:

 =
1

2
, f̂1 = 0.1 , f̂2 = 1 . (5.16)

The reduced value of the  parameter in eq. (5.16) w.r.t. that of eq. (5.15) is in keeping

with the findings of ref. [29]. In the case of MC@NLO, we use (see eq. (3.22)):

R =
HT

2
, (5.17)
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pp ! tt̄ 23.0% (3.4) 20.2% (2.8) 19.6% (2.7) 13.6% (1.9) 9.3% (1.5) 7.7% (1.4)

Table 1: Fractions of negative-weight events, f , and the corresponding relative costs,

c(f) (in round brackets), for the processes in eqs. (5.7)–(5.13), computed with MC@NLO

(columns 2–4) and with MC@NLO-� (columns 5–7), for three di↵erent choices of the

folding parameters.

matching (including the fractions of negative-weight events) are concerned. This allows

one to obtain a reasonably complete comparison between MC@NLO and MC@NLO-� re-

sults, as well as to have a first idea of the main features of the latter matching prescription.

The process in eq. (5.10) has been computed, with mb = 4.7 GeV, in a four-flavour scheme;

thus, there is a slight inconsistency due to the usage of the (five-flavour scheme) NNPDF2.3

PDFs, which is however irrelevant for the purpose of the present study. The results of the

process in eq. (5.11) have been obtained by imposing a pT � 50 GeV cut on the hardest

jet of the event; jets are reconstructed by means of FastJet [27], with an R = 0.5 anti-kT

algorithm [28]. We remind the reader that the starting scales are determined as is explained

in sect. 3.1; in particular, see eq. (3.22) (for MC@NLO) and eq. (3.25) (for MC@NLO-�),

where f↵ are free parameters, whose values we are soon going to specify. In order to do

that, in view of what is implemented in the MG5 aMC code it is customary to define the

f↵’s in a redundant way, namely:

f↵ = f̂↵ . (5.14)

The default choices of these parameters for all of the processes in eqs. (5.7)–(5.13), except

for that in eq. (5.10), are the following:

 = 1 , f̂1 = 0.1 , f̂2 = 1 , (5.15)

while in the case of eq. (5.10) we set:

 =
1

2
, f̂1 = 0.1 , f̂2 = 1 . (5.16)

The reduced value of the  parameter in eq. (5.16) w.r.t. that of eq. (5.15) is in keeping

with the findings of ref. [29]. In the case of MC@NLO, we use (see eq. (3.22)):

R =
HT

2
, (5.17)
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• Take home message: differences due to new 
matching/resampling are generally small (5%), with 
some exceptions


• Reduction of neg. weights may entail some extra 
cost (ie slower code) at event generation, which is 
(over)compensated with full sim.
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Figure 4: As in fig. 2, for the transverse momentum of the W -hardest jet system (left

panel) and of the W
+
tt̄ system (right panel), for the processes in eqs. (5.11) and (5.12),

respectively. In the right panel, the fixed-order result (red solid) is also shown.

other; di↵erences are generally smaller than ±5%. We note that the ratio plots are flatter

than those relevant to the processes considered so far; this is in part because for the present

observable the separation between the various regimes is not as clear-cut as in the other

cases (owing to the jet-pT cut, one is more inclusive here)26. As far as W
+
tt̄ production is

concerned, the di↵erences between the MC@NLO and MC@NLO-� results are again quite

small. However, at variance with what happens in the other processes, the MC@NLO-�

large-pT tail is harder than the MC@NLO one. In order to investigate this point further,

in fig. 4 we also display the fixed-order (FO) result (red solid histogram). This shows

that the matched predictions are significantly di↵erent w.r.t. the FO one for up to very

large transverse momenta; in other words, the asymptotic regime (where MC@NLO-type

and FO result are expected to coincide with each other) is approached in a very slow

manner; essentially, one is not yet there at the rightmost end of the range shown in fig. 4.

Furthermore, the extreme steepness of the distribution at large pT implies that even small

parton-shower e↵ects might induce visible bin migrations; this is a timely reminder of the

fact that, in this region, the predictions we are considering are LO-accurate in perturbation

theory. We have verified that, by plotting this distribution at the level of the hard events,

the MC@NLO and MC@NLO-� results are on top of each other, and on top of the FO

one; thus, the di↵erences between the former two predictions are indeed stemming from

26We remark that W
+

j production, as well as any other process that features jets at the Born level,

does not require any special treatment as far as scale assignments in MC@NLO-� are concerned. The

procedure presented in sect. 3.2 guarantees that no strong hierarchy is created. Note that, in order for

an NLO-accurate generation to be sensible, Born-level configurations must feature scales of comparable

hardness.
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at a centre-of-mass energy of 13 TeV using 3.16 fb�1 of data, collected by the ATLAS experi-
ment at the LHC [34], are compared to Sherpa in Figure 4. The Monte Carlo predictions are
in good agreement with the measurement, while again reducing the negative weight fraction
significantly by employing the above discussed methods.
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Figure 2: Monte Carlo validation observables comparing the di↵erent mechanisms to
reduce the number of negative weighted events, as discussed in Section 4, for pp !
Z+0,1,2 jets@LO+3 jets@NLO. The lower two ratio plots display the negative weight frac-
tion " and the corresponding factor f("), which indicates how much more events need to be
generated on average in order to achieve the same statistical accuracy as compared to only
positive weighted events.
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Figure 1: The distributions of pW
?
, yW and pl

?
obtained using the various samples. The

sample of “positive only” events is included to illustrate the scale of the contribution from

negative weight events.

e↵ectively by reducing the event count. The number of events left after the resampling can

be adjusted and tuned – the largest possible number of events per unit of cross section is

given by the number of events (positive and negative) in the bin with the least cancellation,

divided by the cross section in this bin. The distributions expose large cancellations in some

regions of phase space, indicating that many more events are required to obtain statistically

meaningful spectra. Improvements of the example NLO-merging implementation used –

to reduce the amount of cancellation already at the “weighted” stage – would clearly be

beneficial [9].

– 10 –
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Towards the usage of GPUs and AI in 
the MG5_aMC framework
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Improving computing performances

• Computing demand requires more efficient and smarter 
handling of resources


• On one side, move away from multi-threading in favour of 
multiprocessing (SIMD/OpenMP), suitable for GPUs


• This requires rewriting and rethinking our (old) codes


• On the other, benefit from AI to improve some specific aspects 
(integration/event-gen./…)


• See also: 
“Event Generators for High-Energy Physics Experiments”, 2203.11110 
“Machine learning and LHC event generation”, 2203.07460 
“Challenges in Monte Carlo event generator software for High-Luminosity LHC”, 2004.13687
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Towards 

MG5_aMC on GPU
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S.C, J.C.M, M.R., M.Z.: MadFlow: automating Monte Carlo simulation on GPU for particle physics processes 5

Fig. 3: Timings obtained with MadFlow to evaluate events at Leading Order for gg ! tt̄ (top left), pp ! tt̄ (top right),
pp ! tt̄g (bottom left) and pp ! tt̄gg (bottom right). We show results for consumer and professional grade GPUs
(blue bars) and CPUs (red bars). For each device we quote the available RAM memory. We observe a systematic
performance advantage for GPU devices.

Fig. 4: Same as Figure 3 for pp ! tt̄ggg at Leading Or-
der. We confirm that a large number of diagrams can be
deployed on GPU and obtain relevant performance im-
provements when compared to CPU results.

together with NVIDIA and AMD GPUs (blue bars) rang-
ing from consumer to professional grade hardware. Blue
bars show the greatest performance of MadFlow when run-
ning on GPU devices. We observe that NVIDIA GPUs
with the Ampere architecture, such as the RTX A6000,
out-perfoms the previous Tesla generation. We have ob-
served that the performance of the AMD Radeon VII is
comparable to most professional grade GPUs presented in
the plot. The red bars show the timings for the same code
evaluated on CPU using all available cores. We confirm
that GPU timings are quite competitive when compared
to CPU performance, however some top-level chips such as
the AMD Epyc 7742, can get similar performance results
when compared to general consumer level GPUs, such as
the Quadro T2000. Note that in order to obtain good per-
formance and going into production mode, the MadFlow
user should adjust the maximum number of events per de-
vice, in order to occupy the maximum amount of memory
available. We conclude that the MadFlow implementation
confirms a great performance improvement when running
on GPU hardware, providing an interesting trade-o↵ in
terms of price cost and generated events.

6 S.C, J.C.M, M.R., M.Z.: MadFlow: automating Monte Carlo simulation on GPU for particle physics processes

Process MadFlow CPU MadFlow GPU MG5 aMC
gg ! tt̄ 9.86 µs 1.56 µs 20.21 µs
pp ! tt̄ 14.99 µs 2.20 µs 45.74 µs
pp ! tt̄g 57.84 µs 7.54 µs 93.23 µs
pp ! tt̄gg 559.67 µs 121.05 µs 793.92 µs

Table 1: Comparison of event computation time for
MadFlow and MG5 aMC, using an Intel i9-9980XE with
18 cores and 128GB of RAM for CPU simulation and the
NVIDIA Titan V 12GB for GPU simulation.

In Figure 4 we present a preliminary example of simu-
lation timings for 100k events using MadFlow as described
above for pp ! tt̄ggg with 2604 diagrams. The code gener-
ated for this example follows the same procedure adopted
for processes shown in Figure 3. We can remarkably con-
firm that MadFlow results on GPU are competitive when
compared CPU results even for a such large number of
diagrams (and thus required GPU memory), taking into
account that no custom code optimization has been in-
cluded. It is certainly true that the memory footprint and
the overall performances of the code can (and should) be
improved, e.g. by considering the Leading-Color approxi-
mation of the matrix element and/or possibly by perform-
ing a Monte-Carlo over color and helicity configurations,
we believe that these results confirm that GPU computa-
tion has a strong potential in HEP simulations at higher
orders.

3.3 Comparing to MG5 aMC

Finally, in Table 1 we measure and compare the required
time per event for the processes discussed above using
MadFlow and MG5 aMC simulations on a Intel i9-9980XE
CPU with 18 cores and 128GB of RAM and a NVIDIA Ti-
tan V 12GB GPU. As expected, we confirm that MadFlow
on GPU increases dramatically the evaluated number of
events per second.

Finally, as expected, the performance gain for GPUs
when compared to CPU decreases with the number of dia-
grams included in a given process thanks to the amount of
memory required to hold the computation workload. Such
limitation could be partially improved by using GPU mod-
els with larger memory, e.g. the new NVIDIA A100 with
80GB, by compressing and optimizing the kernel codes
before execution [12,23], and by using multi-GPU config-
urations where portions of diagrams are distributed across
devices.

4 Outlook

In conclusion in this work we present MadFlow, a new ap-
proach for the generalization of Monte Carlo simulation on
hardware accelerators. In particular, the MadFlow design
provides a fast and maintainable code which can quickly
port complex analytic expressions into hardware specific
languages without complex operations involving several

computer languages, tools and compilers. Furthermore, we
confirm the algorithm e↵ectiveness when running simula-
tion on hardware accelerators.

The MadFlow code is open-source and public available
on GitHub2 [18]. The repository contains links to docu-
mentation for installation, hardware setup, examples and
development.

As an outlook, we plan to continue the development
of MadFlow as an open-source library. Foreseen major im-
provements include: to replace the RAMBO phase-space
with more e�cient solutions based on the process topol-
ogy; to investigate the possibility to accelerate integration
using machine learning techniques; finally, to set the stage
for the the implementation of all required changes to ac-
commodate Next-to-Leading order computations.
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Figure 1. Total combined throughput for the gg! tt̄gg process using 1, 2, 4 or 8 copies of our
standalone application (see Ref. [1]), as a function of the CUDA grid size (number of blocks per
grid times number of threads per block, where the latter is fixed to 256).

ME calculation. In addition to speeding up the MadEvent non-ME component by parallelizing
it amongst di↵erent CPU cores, another advantage of this approach is that it could allow a
decrease in the RAM footprint of each madevent process on the CPU (which is problematic
as discussed in Ref. [1]), as it should be possible to achieve the same overall occupancy of the
GPU while decreasing the number of events computed in parallel by a single madevent process,
i.e. its CUDA grid size. The results of a preliminary test relevant to this approach are displayed
in Fig. 1, which shows the variation of the combined ME throughput achievable from a single
NVidia V100 GPU when this is shared by up to 8 processes running in parallel on di↵erent
CPU threads. The notable e↵ect that we were hoping to see, and which is indeed achieved, is
that the throughput curve moves to the left as the number of CPU processes increases, while
still reaching the same combined throughput plateau at the end: this means that the maximum
GPU throughput may be reached by running many CPU applications with smaller CUDA grid
sizes, rather than a single application with a very large grid size. Another positive result,
which however we were not anticipating and will deserve more in-depth analysis, is the fact that
the maximum combined GPU throughput actually increases by almost 50% when launching
kernels from di↵erent CPU threads. It should be stressed that this plot, which was obtained
using the infrastructure developed for the HEP-SCORE benchmarking project [8], refers to the
“standalone” application [1] where the ME calculation is not yet integrated in the full MadEvent
workflow: in the future, we plan to repeat similar studies using the full MadEvent workflows,
which would represent a more realistic test of a production-like heterogeneous scenario.

Figure 2. Total combined throughput for the gg! tt̄gg process as a function of the number of
copies of our standalone application, in our usual five C++ vectorization scenarios. The y-axis
represents the ratio of the achieved throughput to a reference with no vectorization and a single
CPU process. For reference, the range of values of the absolute throughputs is also shown.

this case, which seems enough. Our throughput results for the gg! tt̄ggg process are shown in
Table 3 for CUDA and Table 4 for vectorised C++. While encouraging, these results are still
preliminary and we plan to pursue further tests of this approach.

4. SYCL-based developments and C++ compiler studies
While all tables and plots presented so far in this paper refer to our original CUDA/C++
implementation, significant progress has also been achieved on various fronts in our parallel
implementations using performance portability frameworks. Most recently, this work has focused
on the SYCL implementation, while the developments using Kokkos have slowed down and
those based on Alpaka have stopped. As noted in Ref. [1], the main interest of these APIs
is that a single code base, with a few back-end-specific customizations, may be executed on
many architectures, including GPUs from di↵erent vendors such as NVidia, AMD and Intel.
This is shown in Fig. 3, which compares the performances of our CUDA, SYCL and Kokkos
implementations on di↵erent systems; compared to previous results [1], this ACAT2022 plot
is interesting because it also includes results on Intel XE-HPC, which is an early implementation
of the Aurora GPU. A notable achievement reported at ACAT2022 is that the SYCL
implementation of the ME calculation is now also fully integrated into MadEvent, which means
for instance that we are able to produce cross-sections and LHE event data files by o✏oading
the ME calculation to AMD or Intel GPUs, rather than using the Fortran CPU implementation.

A more recent development, which started well after ACAT2022, is that a vectorized SYCL
implementation for CPU has also been prototyped. Preliminary tests indicate that this achieves
a promising performance, with throughputs which sometimes exceed those of the gcc builds
of the CUDA/C++ implementation: while this is not yet understood and will require further
studies, it is likely that this may be due at least in part to the fact that the SYCL implementation
is built using the clang-based icx Intel compiler. As shown in Fig. 4, in fact, which presents
a recent [9] performance comparison between many builds of the CUDA/C++ implementation
using di↵erent C++ compilers, we have observed that the performance of icx builds is almost
the same as that of clang builds, which can be significantly better than that of gcc builds in some
cases (more than a factor 2 faster with AVX512/zmm vectorization and agressive inlining); these
results are however preliminary and will need more in-depth analysis. It is also interesting to note

Figure 3. Comparison of the CUDA, Kokkos and SYCL ME engines for gg! tt̄gg on
many GPUs, using the standalone application (with optimal GPU grid sizes at the throughput
plateau). “Xe-HP SDV” is a Software Development Vehicle for functional testing only, currently
used at Argonne and at other customer sites to prepare their code for future Intel data centre
GPUs. “XE-HPC” is an early implementation of the Aurora GPU. The throughput achieved
on a full Xeon 8180 CPU using SYCL and Kokkos multi-threading is also shown for reference.
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Using NN’s for importance sampling:

MadNIS


Hiemel et al,2212.06172 &2311.01548


• Use NN to overcome some limitations of VEGAS


• Do not reinvent the wheel:

• Pre-training with VEGAS (fast) used as starting 

point of normalizing-flow


• Use NF on top of known analytical mappings 


• NF adjust the weight of each channel


• Important improvement both on variance and on 
unweighting efficiency, even for large multiplicities
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Conclusions

• EW corrections are not just 1% effects: several mechanisms can 
enhance them:

• Kinematics, couplings (e.g. Yukawa), radiative return, EWSL


• EW corrections are moving beyond NLO

• Drell-Yan corrections available for NNLO2, both NC and CC


• Resummation available both for soft γs (jointly with QCD) and for EWSLs


• Still, we miss a general procedure for PS matching at NLO

• EWSL approximation +PS seems a good compromise

• But the validity of EWSL approximation (both in principle and in practice) 

should always be checked


• Lot of progress also beyond LHC physics (e+e-/ μ+μ-colliders, g-2) 
not covered in this talk

33
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• Understanding and improving MC tools is crucial for a proper 
and efficient collaboration between theory and experiments


• Lot of recent activity, only a glimpse of it in these slides

• Inclusion of higher orders beyond NLO QCD

• Reduction of negative weights leads to reduction in needed n 

of events. Some methods already implemented in public tools

• Faster simulations can profit of modern hardwares (GPUs) 

and of AI for integration/event generation. At the moment 
most WIP, but stay tuned!

Conclusions Part 2


