Transverse momentum resummation in Drell-Yan pair production: a progress report

Luca Rottoli

Transverse observables in Drell-Yan pair production

Neutral and charged current Drell-Yan production is central to the precision programme at hadron colliders thanks to its **large cross section** and **clean experimental signature**

Kinematic distributions which involve the production of a lepton pair in association with QCD radiation play a special role, as they are sensitive to accompanying hadronic activity **only through kinematic recoil**

Measurement of transverse and angular observables often lead to small experimental uncertainties

W/Z spectra at small transverse momentum: fixed order

Great experimental precision of the Z pt spectrun (sub Z/y' Gee (mormalized challen ges current theory predictionstatistical Unc. _epton Scale/Resolution Model Unc. State of the art for fixed order p_t spectrum is NNLO: ZW ecoiling against at least one hard radiation 0.6 [Gehrmann-De Ridder, Gehrmann, Glover, Huss Morgan, Walker 2015-2017] [Boughezal, Campbell, Ellis, 2006se, 3 Giele, Lou, 300 Petriello 2015]

% ATLAS **1.8** √s=13 TeV, 36.1 fb⁻¹ convergende Model Unc. Others certainty ---- Total 0.8 0.6

W/Z spectra at small transverse momentum: resummation

Origin of the logs is simple. Resum them to all orders by **reorganizing** the series

$$\ln \tilde{\sigma}(p_T) = \sum_n \left(\mathcal{O}(\alpha_s^n L^{n+1}) + \mathcal{O}(\alpha_s^n L^n) + \mathcal{O}(\alpha_s^n L^{n-1}) + \dots \right) \qquad L = \ln(p_T/m_{\ell\ell})$$

$$L = \ln(p_T/m_{\ell\ell})$$

$$\sim -\int \frac{dE}{E} \frac{d\theta}{\theta} \Theta(E\theta - p_T) \sim -\frac{1}{2} \ln^2 \frac{p_T}{m_{\ell\ell}} \frac{\text{Sudakov}}{\text{logarithms}}$$

Resummation of the transverse momentum spectrum

Resummation of transverse momentum is delicate because p_T is a vectorial quantity **Two concurring mechanisms** leading to a system with small p_T

 $p_{\perp}^2 \sim k_{t,i}^2 \ll m_H^2$

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

> **Exponential** suppression

Resummation of the transverse momentum spectrum

Resummation of transverse momentum is delicate because p_T is a vectorial quantity

Two concurring mechanisms leading to a system with small p_T

 $p_{\perp}^2 \sim k_{t,i}^2 \ll m_H^2$

cross section naturally suppressed as there is no phase space left for gluon emission (Sudakov limit)

> **Exponential** suppression

Impact-parameter space approach

phase-space constraints factorise

$$\delta^{(2)}\left(\vec{p}_T - \sum_{i=1}^n \vec{k}_{t,i}\right) = \int d^2 b \frac{1}{4\pi^2} e^{i\vec{b}\cdot\vec{p}_T} \prod_{i=1}^n e^{-i\vec{b}\cdot\vec{k}_{t,i}}$$

Exponentiation in conjugate space; inverse transform to move back to direct space

NLL formula with scale-independent PDFs

Extremely successful approach; resummation for DY production performed within a variety of formalisms (direct QCD, SCET, TMD)

The two competing effects are usually handled in **impact parameter** (b) space, where the

two-dimensional momentum conservation [Parisi, Petronzio 1979][Collins, Soper, Sterman 1985]

Factorization in **direct QCD** for production of color-less system $F: (Q^2, Y, q_T)$ [Catani, de Florian, Grazzini, 2001] $\sum_{a_1,a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} [H^F C_1 C_2]_{c\bar{c};a_1a_2} f_{a_1/h_1}(x_1, b_0^2/b^2) f_{a_2/h_2}(x_2, b_0^2/b^2)$

$$\frac{d\sigma^{(sing)}}{dQ^2 dY dp_T d\Omega} = \frac{1}{S} \sum_c \frac{d\sigma^{(0)}_{c\bar{c},F}}{d\Omega} \int_0^\infty db \frac{b}{2} J_0(bp_T) S_c(Q,b)$$

Factorization in **direct QCD** for production of color-less system $F: (Q^2, Y, q_T)$ [Catani, de Florian, Grazzini, 2001] $\frac{d\sigma^{(sing)}}{dQ^2 dY dp_T d\Omega} = \frac{1}{S} \sum_c \frac{d\sigma^{(0)}_{c\bar{c},F}}{d\Omega} \int_0^\infty db \frac{b}{2} J_0(bp_T) S_c(Q, b) \sum_{a_1,a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} [H^F C_1 C_2]_{c\bar{c};a_1a_2} f_{a_1/h_1}(x_1, b_0^2/b^2) f_{a_2/h_2}(x_2, b_0^2/b^2)$

f the constraint
$$\delta^2 \left(\mathbf{p}_T - \sum_i \mathbf{k}_{T,i} \right)$$
 in ***b* space**

Factorization in **direct QCD** for production of color-less system $F: (Q^2, Y, q_T)$ [Catani, de Florian, Grazzini, 2001] $\sum_{a_1,a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} [H^F C_1 C_2]_{c\bar{c};a_1a_2} f_{a_1/h_1}(x_1, b_0^2/b^2) f_{a_2/h_2}(x_2, b_0^2/b^2)$

$$\frac{d\sigma^{(sing)}}{dQ^2 dY dp_T d\Omega} = \frac{1}{S} \sum_c \frac{d\sigma^{(0)}_{c\bar{c},F}}{d\Omega} \int_0^\infty db \frac{b}{2} J_0(bp_T) S_c(Q,b)$$

Universal **Sudakov Form Factor**: exponentiation of soft-collinear emissions

$$Q,b) = \exp\left[-\int_{b_0^2/b^2}^{Q^2} dq^2 A_c\left(\alpha_S(q^2)\right) \ln\frac{Q^2}{q^2} + B_c\left(\alpha_S(q^2)\right)\right)\right]$$

 A_c, B_c admits a perturbative expansion in α_s

Factorization in **direct QCD** for production of color-less system $F: (Q^2, Y, q_T)$ [Catani, de Florian, Grazzini, 2001] $\sum_{a_{1},a_{2}} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \int_{x_{2}}^{1} \frac{dz_{2}}{z_{2}} \left[H^{F} C_{1} C_{2} \right]_{c\bar{c};a_{1}a_{2}} f_{a_{1}/h_{1}}(x_{1}, b_{0}^{2}/b^{2}) f_{a_{2}/h_{2}}(x_{2}, b_{0}^{2}/b^{2}) \right]$

$$\frac{d\sigma^{(sing)}}{dQ^2 dY dp_T d\Omega} = \frac{1}{S} \sum_c \frac{d\sigma^{(0)}_{c\bar{c},F}}{d\Omega} \int_0^\infty db \frac{b}{2} J_0(bp_T) S_c(Q,b)$$

LHC EW WG general meeting, 10 July, CERN

Process dependent Hard-Virtual function related to the all-order

Universal collinear or beam function

Impact-parameter space approach: SCET/TMD formulation

Analogue factorisation formula in SCET/TMD formulation

$$\frac{d\sigma^{(sing)}}{dQ^2 dY dp_T} = \sum_{c} \frac{d\sigma^{(0)}_{c\bar{c},F}}{d\Omega} H$$

In terms of hard, beam and soft functions

$$[B_c B_{\bar{c}} S] = \int \frac{d^2 \vec{b}}{(2\pi)^2} e^{i \vec{b} \cdot p_T} \tilde{B}_c(x_1)$$
$$= \int \frac{d^2 \vec{b}}{(2\pi)^2} e^{i \vec{b} \cdot p_T} \tilde{f}_c^{\text{TMD}}$$

associated RGE

resummation (G. Sterman)

[Becher, Neuber 2011]

 $[\mathbf{H}_{c\bar{c}}(Q^2,\mu)[\mathbf{B}_{c}\mathbf{B}_{\bar{c}}\mathbf{S}](Q^2,x_1,x_2,p_T,\mu)]$

- $(b, \mu, \nu/Q)\tilde{B}_{\bar{c}}(x_2, b, \mu, \nu/Q)\tilde{S}(b, \nu, \mu)$
- $f_{\overline{z}}^{\mathrm{TMD}}(x_2, b, \mu, \nu/Q) \tilde{f}_{\overline{z}}^{\mathrm{TMD}}(x_2, b, \mu, \nu/Q)$
- Resummation follows from solving factorization properties in the singular region and
- Whenever there is factorization, there is evolution; wherever there is evolution, there is

Direct space approach

Direct-space resummation in the RadISH formalism is based on a physical picture in which hard particles incoming to a primary scattering coherently radiate an ensemble of soft and collinear partons [Monni, Re, Torrielli 2016, Bizon, Monni, Re, LR, Torrielli 2017]

Logarithmic accuracy defined in terms of L

LHC EW WG general meeting, 10 July, CERN

$$= \int \frac{dk_{t1}}{k_{t1}} \mathscr{L}(k_{t1}) e^{-R(k_{t1})} \mathscr{F}(p_T, \Phi_B, k_{t1})$$

$$R(k_{t1}) = \int_{k_{t1}}^{m_{\ell\ell}} \frac{dq}{q} [A(\alpha_s(q)) \ln \frac{m_{\ell\ell}^2}{Q^2} + B(\alpha_s(q))] dq_{t1}$$

Universal Sudakov radiator: exponentiation of soft-collinear emissions

$$u = \ln(k_{t,1}/m_{\ell\ell})$$

Resummation: logarithmic counting

	Boundary conditions	Anomalous γ_i	dimensions $\Gamma_{\rm cusp}, \beta$	FO matching
LL NLL	1	- 1-loop	1-loop 2-loop	
NLL'+NLO NNLL+NLO	α_s α_s	1-loop 2-loop	2-loop 3-loop	$lpha_{s}$ $lpha_{s}$
NNLL'+NNLO N ³ LL+NNLO	α_s^2 α_s^2	2-loop 3-loop	3-loop 4-loop	$lpha_s^2$ $lpha_s^2$
N ³ LL'+N ³ LO N ⁴ LL+N ³ LO	α_s^3 α_s^3	3-loop 4-loop	4-loop 5-loop	α_s^3 α_s^3

All ingredients at N³LL' now known, with partial N⁴LL information available [G. Falcioni, F. Herzog, S. Moch, and A. Vogt] [Moch, B. Ruijl, T. Ueda, J. Vermaseren, and A. Vogt] [J. M. Henn, G. P. Korchemsky, and B. Mistlberger] [C. Duhr, B. Mistlberger, and G. Vita]

Resummation: gallery

N³LL'/aN⁴LL results published in recent years by many groups using various formulations

Alternative approaches use different prescriptions for turning off resummation (profile) functions, transition functions...), with associated uncertainty

Precise description of the transverse momentum spectra State-of-the-art predictions achieve N³LL'/aN⁴LL+N³LO accuracy

direct-space approach (RadISH) [Chen, Gehrman, Glover, Huss, Monni, Re, <u>LR</u>, Torrielli 2022] 12

SCET formalism (Cute-MCFM) [Neumann, Campbell 2022]

Excellent description of experimental data, with residual scale uncertainties at the few % level LHC EW WG general meeting, 10 July, CERN

Comparison with ATLAS data at 8 TeV with different codes shows overall good description of the data at low transverse momentum, but highlights some differences between alternative approaches

LHC EW WG general meeting, 10 July, CERN

Comparison with ATLAS data at 8 TeV with different codes shows overall good description of the data at low transverse momentum, but highlights some differences between alternative approaches

Matching ambiguities affect description of data in the transition region

Comparison with ATLAS data at 8 TeV with different codes shows overall good description of the data at low transverse momentum, but highlights some differences between alternative approaches

Description at low transverse momentum affected by the inclusion of (tuned) NP corrections, absent in some formalisms

LHC EWWG general meeting, 10 July, CERN

Comparison with ATLAS data at 8 TeV with different codes shows **overall good description of the data** at low transverse momentum, but highlights **some differences between alternative approaches**

Estimate of missing higher-order corrections can vary significantly among different approaches

LHC EWWG general meeting, 10 July, CERN

Comparison with ATLAS data at 8 TeV with different codes shows **overall good description of the data** at low transverse momentum, but highlights **some differences between alternative approaches**

Motivates benchmark of resummed calculations to address and understand these differences

Benchmark: settings

Benchmark on three levels:

Level 1:

- Pure resummed predictions at $Q = m_{Z}$, Y = 0, MSHT20 NNLO PDFs
- Nominal logarithms to ensure consistency, central scales; no NP corrections Level 2:
- Still only resummed piece
- Each group uses their default settings for scales, resummation turn-off, etc Level 3:
- Includes matching to fixed order, possible inclusion of NP corrections

Final goal: comparison with 8 TeV ATLAS data with agreed benchmark settings

Benchmark: status

Predictions at level 3 already available from Cute-MCFM, RadISH, SCETLIB with final settings. Other groups in the process of uploading their final predictions

Ongoing effort: currently moving to level 3 predictions for all groups involved, preparing draft

;	1	Introduction	1
; ;)	2	Overview of resummation formalism2.1Basics2.2Factorization2.3Resummation2.4Matching to fixed order at large q_T	
· · ·	3	 Setup for benchmark predictions 3.1 Numerical inputs and electroweak scheme 3.2 Specification of benchmark levels 3.2.1 Level 1: Canonical resummation 3.2.2 Level 2: Nominal resummation 3.2.3 Level 3: Nominal resummation matched to fixed order 3.2.4 Additional specifications 3.3 Classification of perturbative uncertainties 	
,	4	Results for level 1 predictions	11
)	5	Results for level 2 predictions	11
	6	Results for level 3 predictions	1
2	7	Nonperturbative contributions	11
	8	Conclusions	11
	Α	 Description of resummation codes A.1 ArTeMiDe A.2 CuTe-MCFM A.3 DYTurbo A.4 NangaParbat A.5 RadISH A.6 Resbos A.7 SCETlib 	11 12 12 12 12 12 12 12 12 12
2	Re	eferences	12

First sections almost complete, sections for each level will be written once all results are available Individual groups working on their respective

appendices

Many lessons learned, see slides by J. Michel, T. <u>Cridge</u>, <u>T. Neumann</u> in past general EWWG meetings

Benchmark: example of lesson learned

Level 1 predictions showed overall percent agreement between different codes, but highlighted difference at low p_T between different approaches

[dd]

$pp \rightarrow \ell^+ \ell^- + X, Y = 0, Q = m_Z, N^3 LL$

Benchmark: example of lesson learned

Level 1 predictions showed overall percent agreement between different codes, but highlighted difference at low p_T between different approaches

Differences related to the treatment of the Landau pole in NangaParbat

"Local" (only scales) vs. "Global" (everywhere) implementation of b^* prescription

$$b^* = \frac{b}{\sqrt{1 + (b/b_{\text{lim}})}}, \quad b^* < b_{\text{lim}}$$

[dd]

 $\sigma_{
m RadISH}$

$pp \rightarrow \ell^+ \ell^- + X, Y = 0, Q = m_Z, N^3 LL$

Benchmark: example of lesson learned

Level 1 predictions showed overall percent agreement between different codes, but highlighted difference at low p_T between different approaches

Differences related to the treatment of the Landau pole in NangaParbat

"Local" (only scales) vs. "Global" (everywhere) implementation of b^* prescription

$$b^* = \frac{b}{\sqrt{1 + (b/b_{\text{lim}})}}, \quad b^* < b_{\text{lim}}$$

Highlights importance of understanding impact of non-perturbative corrections, even in the absence of fitted NP form factor

Not perturbative exceptions $f(x_2) f(x_2) d\sigma_{\text{part}}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{\text{QCD}}^n/Q^n))$ Collinear factorization valid up to power corrections $\mathcal{O}(\Lambda_{\text{QCD}}^n/Q^n)$

In principle, easy to imagine mechanisms for linear power corrections, which would be a disaster for precision programme at the LHC

For many interesting observables, this does not happen!

Linear term could be generated when integrating over soft $d_s (p_{\perp})$ which is not azimuthally symmetric

Luckily, for p_T this does not happen! [Ravasio, Limatola, Nason 2021] [Caola, Ravasio, Limatola, Melnikov, Nason 2022]

No linear power corrections affect the transverse momentum spectrum

Treatment of non-perturbative corrections

Nevertheless, NP corrections can be sizeable in the first p_T bins. Often supplemented by introducing a non-perturbative correction determined from data

 $\tilde{f}_{c}^{\mathrm{TMD}}(x_{1})$ e.g. in TMD factorisation

Properties of $f_c^{NP}(x_1, b, \mu)$ determined by TMD factorisation; function is not universal, as it depends on the strategy used to regularise the Landau pole

Extraction from data of the nonperturbative component to the Collins-Soper kernel can be compared with recent lattice QCD computation

Progress in lattice computations opens the door for future first-principles QCD predictions of the CS kernel and to possible combination with fits to data

$$h_1, b, \mu, \zeta) = \tilde{f}_c^{\text{NP}}(x_1, b, \mu) \tilde{f}_c^{\text{TMD}}(x_1, b^*, \mu, \zeta)$$

The role of PDFs

Non negligible differences in absolute value between different groups (NNPDF, MHST)

Discrepancy explained by fitted (NNPDF) vs. perturbative (MSHT) charm and different value of the charm mass, still state-of-the-art PDFs set can differ at the few % level

LHC EW WG general meeting, 10 July, CERN

[Neumann @ Loops and Legs 2024]

The role of PDFs

0

Non negligible differences in absolute value between different groups (NNPDF, MHST)

Discrepancy explained by fitted (NNPDF) vs. perturbative (MSHT) charm and different value of the charm mass, still state-of-the-art PDFs set can differ at the few % level

[Neumann @ Loops and Legs 2024] aN³LO PDFs from MSHT or NNPDF have a similar impact in shape on the Z p_T spectrum. Substantial differences can impact the agreement with the experimental data

Precision programme requires a deeper understanding of PDF/N³LO DGLAP role for such a crucial observable

see Mandy's talk later

Wand Z production: understanding correlations

Precise data on p_T^Z spectrum can be employed in measurement of m_W only indirectly, by modelling the differences between Z and W production processes

e.g. m_W determination by ATLAS

Z and W production share a similar pattern of QCD radiative corrections, but a precise understanding of the correlation between the two processes is crucial to propagate consistently the information

[Bizon, Gehrmann-De Ridder, Gehrmann, Glover, Huss, Monni, Re, <u>LR</u>, Walker '19] LHC EW WG general meeting, 10 July, CERN

The W/Z transverse momentum ratio: understanding correlations

Alternative uncertainty estimate: each resummation order only depends on a few semiuniversal parameters: treat them as theory nuisance parameters F. Tackmann, unpublished

Easier to encode correlations within given assumptions, obviously not as cheap as scale variations

LHC EW WG general meeting, 10 July, CERN

modelling and reduce the related uncertainties in a measurement of m_W

- Low-pileup runs in recent ATLAS measurement show remarkable agreement with N³LL+N³LO (RadISH+NNLOJET) and NNLL+NNLO (DYTURBO) predictions
- W/Z ratio is perturbatively stable but differs by a few % from the data assuming 100% correlation

Transverse momentum in W/production

Direct measurement of W transverse momentum would provide a direct way to test W/Z modelling and reduce the related uncertainties in a measurement of mw

Low-pileup runs in recent ATLAS measurement show remarkable agreement with N311+N310 (Radish+MNLOYET) and MNLL+MNLO (DYTURBO) predictions

W/Z ratio is perturbatively stable but differs by a few % from the data assuming 100% correlation Tuned MC predictions (POWHEG+PY8) display the same level of discrepancy and are relatively insensitive to choice of tune, intrinsic k_T, MPI and hadronisation effects

Hints towards a perturbative origin of this discrepancy

W and Z production: the role of EW corrections

Conclusion

- Modelling of theoretical uncertainties crucial for EW precision programme at the LHC
- Resummation needed for observable sensitive to soft/collinear radiation. Different whose relevance should be assessed
- Work in progress in the subgroup, with different theory groups providing their best predictions and benchmarking their results
- Perturbative QCD predictions have reached a remarkable level of accuracy. Comprehension of NP physics, PDF uncertainty (including MHOU), interplay with QED/mixed QCD/EW predictions mandatory for a successful precision programme
- Monte Carlo tunes for sub-percent precision must be handled with care. Availability of accurate perturbative calculation may provide insight on tuning parameters to avoid unphysical correlations

resummation approaches differ by subleading logarithmic and/or higher orders terms,

Logarithmic accuracy and counting

Ingredients needed to reach a given logarithmic accuracy

	Boundary conditions	Anomalous dimensions		FO matching
	(FO hard, coll., soft)	$oldsymbol{\gamma_i}$	$\Gamma_{ ext{cusp}},oldsymbol{eta}$	(nonsingular)
LL	1	-	1-loop	-
NLL	1	1-loop	2-loop	_
NLL'+NLO ₀	$lpha_s$	1-loop	2-loop	$lpha_s$
$NNLL+NLO_0$	$lpha_s$	2-loop	3-loop	$lpha_s$
NNLL'+NNLO ₀	$lpha_s^2$	2-loop	3-loop	$lpha_s^2$
$N^{3}LL+NNLO_{0}$	$lpha_s^2$	3-loop	4-loop	$lpha_s^2$

E.g. in *b* space, in a **very** schematic way $\Sigma_{\text{NNLL}}(v) \sim \exp[Lg_0(\alpha_s L) + g_1(\alpha_s L) + \alpha_s g_2(\alpha_s L)]$ $\Sigma_{\text{NNLL}}^{(1)}(v) \sim \exp[Lg_0(\alpha_s L) + g_1(\alpha_s L)](1 + \alpha_s g_2(\alpha_s L) + \dots)]$ $\Sigma_{\text{NNLL}}^{(2)}(v) \sim \exp[Lg_0(\alpha_s L) + g_1(\alpha_s L) + \alpha_s \tilde{g}_2(\alpha_s L)] \{1 + \alpha_s [g_2(\alpha_s L) - \tilde{g}_2(\alpha_s L)] + \dots\},\$

Results all **formally equivalent** at NNLL accuracy

LHC EW WG general meeting, 10 July, CERN

Credits: F. Tackmann

 $\tilde{g}_2(x) \neq g_2(x)$

Logarithmic accuracy and counting: the role of DGLAP evolution

Ev. at LO, NLO, NNLO at NLL, NNLL, N³LL

Default in e.g. DYRes/DYTURBO, ReSolve

Advantage in using LHAPDF: (partial) information on quark thresholds Differences can be important at NLL and NNLL and are an indication of the size of subleading corrections

Ev. at NNLO at NLL, NNLL, N³LL via LHAPDF Default in e.g. RadISH, ResBos2, SCETLib

b-space results vs. p_t space results

For codes whose formal accuracy is defined in *b*-space, it may be of some interest to

Matching ambiguities F. Coradeschi/T. Cridge, ReSolve

Nominal (**un-modified**) vs. canonical (**modified**) logs most of the differences due to the differen resummation scales used in the two cases

T. Becher, CuTe $\eta[\alpha_s] = 1/2$ ∞ $- t_1(\lambda)$ $- t_2(\lambda)$ $- t_3(\lambda)$ 1/2 2 1/2 $C_i = C_F$ M=91 GeV0 4080 20 60 $q_T[GeV]$

Transition functions and matching functions used to turn off resummation at large q_t

$$\frac{d\sigma_{ms}}{dq_{T}} = t(\lambda) \frac{d\sigma_{res}}{dq_{T}} + [R_{sud}(\mu_{ms})]^{t(\lambda)} \left[\frac{d\sigma_{fo}}{dq_{T}} - t(\lambda) \frac{d\sigma_{sqt}}{dq_{T}}\right]$$
Matching details play an important role in t
transition region, but at lower accuracy mig
induce differences also (it(the Gratable partial par

Non-perturbative corrections

1. All formalisms have to deal with the Landau pole

- direct space: Sudakov radiator hit Landau pole at $\alpha_s(\mu_R^2)\beta_0 \ln Q/k_{t1} = \frac{1}{2}$ n.b. since at small pt the large azimuthal cancellations dominate, this cutoff is never an issue in practice
- b space, when integrating over b, the integral hits the Landau pole at large values of *b*
- Several solutions available

E.g. b* prescription: impact parameter frozen

- 2. intrinsic quark transverse momentum (initia
 - non-perturbative, fitted factor to model to perturbative region, in principle kinemati dependent
 - Fitted factor may help to stabilize the nur when computing *b*-integral

le
$$\frac{d\sigma}{dq_T} \propto \int_0^{\infty} db_T b$$

meter frozen at a value $b_* = \frac{b}{\sqrt{1 + (b/b_{\text{lim}})}}, \quad b_* < b_{\text{lim}}$
mentum (initial condition for TMDs
or to model the non-
tiple kinematics- and flavour-
bilize the numerical integral
LHC EW WG general meeting, 10 July, CERN
 $\frac{d\sigma}{dq_T} \propto \int_0^{\infty} db_T b$
 $b_* < b_{\text{lim}}$
 $\frac{d\sigma}{dq_T} \propto \int_0^{\infty} db_T b$
 $b_* < b_{\text{lim}}$
 $\frac{d\sigma}{dq_T} \propto \int_0^{\infty} db_T b$
 $\frac{d\sigma}{dq_T} \propto \int_0^{\infty} db_T$

Heavy-quark effects

Bottom quarks in the initial state yield ~4% of the total Z cross section (CKM suppressed for W)

Collinear logarithmic contributions encoded in DGLAP evolution in the 5FS; accounting for bottom mass can be important at scales $p_t \sim m_b \sim peak$ region

Existing studies indicate very small corrections ~ 1%

[Bagnaschi, Maltoni, Vicini, Zaro '18] Exact shape details remain an open question: fully consistent treatment in resummations useful for %-level precision

[Aivazis, Collins, Olness, Tung '93] [Nadolsky, Kidonakis, Olness, Yuan '02] [Berge, Nadolsky, Olness '05] [Pietrulewicz, Samitz, Spiering, Tackmann '17][

Full calculation still unavailable, but partial results indicate a percent effect at *p*_t~m_b

[Pietrulewicz, Samitz, Spiering, Tackmann '17] LHC EW WG general meeting, 10 July, CERN

EW corrections: ratio p_T^W/p_T^Z

Comparison with PWG_{EW}+PY8+PHOTOS, PWG_{QCD}+PY8+PHOTOS and NLL'_{OCD} + NLO_{OCD} + NLL'_{EW} + NLO_{EW} Nice perturbative stability and robustness against shower tuning • Better agreement of "simpler" PWG_{QCD}+PY8+PHOTOS to RadISH, residual difference similar to

- pure QCD case
- PWG_{EW}+PY8+PHOTOS result deviates significantly from our best prediction

