Experimental perspective of the future SM LHC program

Ulla Blumenschein, Queen Mary University of London

Weak mixing angle @ CMS & ATLAS

$$A_{\rm FB} = \frac{N(\cos\theta^* > 0) - N(\cos\theta^* < 0)}{N(\cos\theta^* > 0) + N(\cos\theta^* < 0)} = \frac{3}{8}\frac{B}{A},$$

- Challenge@pp: Dilution, PDF
- New CMS measurement based on 13TeV data (CCee/µµ)
 - reduced stat unc: $0.00036 \rightarrow 0.00010$
 - reduce total uncertainty: $0.00053 \rightarrow 0.00031$
 - → Now systematically dominated

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23157 \pm 0.00010 \text{ (stat)} \pm 0.00015 \text{ (syst)} \pm 0.00009 \text{ (theo)} \pm 0.00027 \text{ (PDF)}.$

- ATLAS final measurement on 8TeV data set (CCee/µµ + CFee: |Y| < 3.6)</p>
 - Preliminary: ATLAS-CONF-2018-037: stat: 0.00021, total: 0.00036
- Future ATLAS measurement on 13TeV data set (CC + CF): expect reduced stat unc. etc

See: Rhys Taus: Weak mixing angle measurement at CMS, Thu, 09:55

 $g_V^f = t_2^f - (2Q_f \times \sin^2 \theta_W)$

 $A = Q_l^2 Q_q^2 - 2Q_l g_V^q g_V^l \chi_1 + (g_A^{q^2} + g_V^{q^2})(g_A^{l^2} + g_V^{l^2}) \chi_2$

 $B = -4Q_l g^q_{\Lambda} g^l_{\Lambda} \chi_1 + 8g^q_{\Lambda} g^q_{V} g^l_{\Lambda} g^l_{V} \chi_2,$

Weak mixing angle @ HL LHC

- Stat unc and (constrained) PDF unc decrease with high luminosity
- Extended forward tracking capability \rightarrow reduce dilution
- CMS (CMS-PAS-FTR-17-001):
 - → μµ: acceptance → |η| < 2.8→ stat. unc. - 30% and PDF unc. -20%
 - Stat unc negligible for lumi > 1000/fb

ATLAS (ATL-PHYS-PUB-2018-037):

• ee:
$$\rightarrow$$
 CC + CF + FF \rightarrow |Y| < 4.0

expect unc of ~0.00015

	ATLAS $\sqrt{s} = 14$ TeV	ATLAS $\sqrt{s} = 14$ TeV
\mathcal{L} [fb ⁻¹]	3000	3000
PDF set	CT14 [13]	PDF4LHC15 _{HL-LHC} [19]
$\sin^2\theta_{\rm eff} \ [\times 10^{-5}]$	23153	23153
Stat.	± 4	± 4
PDFs	± 16	± 13
Experimental Syst.	± 8	± 6
Other Syst.	-	-
Total	± 18	(±15)

LHC EEWG meeting, Ulla Blumenschein

Weak mixing angle @ LHCb

- + lower dilution in forward region, less statistics, larger PDF uncertainty
- Published results on combination of 7TeV and 8TeV data set for 2.0 < $\eta(\mu)$ < 4.5

- Working on including the full Run2 data set \rightarrow reduce the statistical uncertainty
- Use more modern PDF with constraints in the forward region from recent LHC data

ATLAS low- μ p_TW and p_TZ

- Special data sets with μ~2: 5TeV, 250/pb, 13TeV, 338/pb, lumi precision @ATLAS ~ 1%
- Inclusive and normalized differential cross sections and their ratios
 - ~1% precision up to p_TV ~ 40 GeV , p_TZ is stats limited
 - Discriminating up to pTV ~ 100 (22) GeV for 5(13) TeV
 - DYturbo resumed prediction describe data best

See: Fabrice Balli/Jan Eysermans: Low-mu run (ATLAS/CMS): today, 16:30/16:45

Powheg+Py8 & Pythia8 tuned to 7-TeV ATLAS data describe p_TV < 40GeV range

Systematic precision < % 1% level precision for inclusive cross sections due to precise lumi:

Process	$\sigma_{\rm fid}(\sqrt{s}=5.02{\rm TeV})~{\rm [pb]}$	$\sigma_{\rm fid}(\sqrt{s}=13{\rm TeV})~{\rm [pb]}$			
$W^- \to \ell^- \nu$	1384 ± 2 (stat.) ± 5 (syst.) ± 15 (lumi.)	3486 ± 3 (stat.) ± 18 (syst.) ± 34 (lumi.)			
$W^+ \to \ell^+ \nu$	2228 ± 3 (stat.) ± 8 (syst.) ± 23 (lumi.)	4571 ± 3 (stat.) ± 21 (syst.) ± 44 (lumi.)			
$Z \to \ell \ell$	333.0 ± 1.2 (stat.) ± 2.2 (syst.) ± 3.3 (lumi.)	$780.3 \pm 2.6 \text{ (stat.)} \pm 7.1 \text{ (syst.)} \pm 7.1 \text{ (lumi.)}$			

07/07/2024

CMS low-µ W and Z cross sections

- Special data sets with μ~2: 5TeV, 289/pb, 13TeV, 201/pb, lumi precision @CMS ~ 1.9% / 1.6%
- Inclusive W and Z (fiducial and total) cross sections and their ratios
- Systematic precision < 0.5%

See: Fabrice Balli/Jan Eysermans: Low-mu run (ATLAS/CMS): today, 16:30/16:45

ATLAS W mass

- New: ATLAS measurement:
 - 7TeV data set as in EPJC 78 (2018)110
 - PLH fit instead of χ^2 based offset method
 - Modern PDF

See: "W mass and width measurement" Maarten Boonekamp, Thu, 11.7, 9:25

 \rightarrow consistent with EPJC 78 (2018)110, improved precision 18.5 MeV \rightarrow 16.9 MeV

Unc. [MeV]	Total	Stat.	Syst.	PDF	A_i	Backg.	EW	e	μ	u_{T}	Lumi	Γ_W	PS
p_{T}^{ℓ}	16.2	11.1	11.8	4.9	3.5	1.7	5.6	5.9	5.4	0.9	1.1	0.1	1.5
m _T	24.4	11.4	21.6	11.7	4.7	4.1	4.9	6.7	6.0	11.4	2.5	0.2	7.0
Combined	15.9	9.8	12.5	5.7	3.7	2.0	5.4	6.0	5.4	2.3	1.3	0.1	2.3

 \rightarrow Looking forward to CMS results

Additional W width measurement

W mass @ low-µ

- mW measurement relies on precise modelling of soft p_TW spectrum (via u_T)
 - Low- $\mu \rightarrow$ improve recoil resolution, need sufficient lumi (stats unc, calibration)
 - Lowering \sqrt{s} improves resolution
 - ATLAS: low-µ calorimeter settings further improves resolution (but much more work)

W mass @ low-µ

 Current data set: 13TeV, µ~2, 338/pb, (ATLAS high-µ calo setting) 5TeV, µ~2, 250/pb, (ATLAS high-µ calo setting)
 2024 reference run for HI: 5TeV, µ~4, X00/pb, (ATLAS low-µ calo setting → new calibration!)
 2025/26? 13TeV, µ~2, 1/fb? → start campaigning! → need studies!

HL LHC

14 TeV, µ~2, 200+/pb? Improvements by including forward leptons

\sqrt{s} [TeV]	Lepton acceptance	Uncertainty in m_W [MeV]						
		p_{T}^{ℓ} fits	$m_{\rm T}$ fits	p_{T}^{ℓ} , m_{T} fits				
14	$ \eta_\ell < 2.4$	$20.6~(14.8 \oplus 14.4)$	18.0 (13.8 11.5)	16.0 (10.6 12.0)				
14	$ \eta_\ell < 4$	$15.6(12.6\oplus 9.2)$	14.2 (12.0 \oplus 7.6)	$11.9 \ (8.8 \oplus 8.0)$				

W mass @ LHCb

- Combined fit of W q/pTl and Z ϕ * in partial Run2 data set in muon channel
- Uncertainty: 32 MeV

 $m_W = 80354 \pm 23_{\text{stat}} \pm 10_{\text{exp}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}.$

- Future steps:
 - Update to full Run2 data set: stat unc: 23MeV → 14 MeV
 - Improvements in systematics
 - \rightarrow total uncertainty: 32 MeV \rightarrow 20 MeV

Strong di-boson production

- Sensitive to ZWW, gWW TGC, high-energy tails sensitive to BSM → EFT fits
- Not statistically limited @ Run2, except for extreme phase spaces
- Differential cross sections, and VV+jets (Background to Higgs->VV and VH)
- Polarisation measurements: individual W/Z polarisation → joint polarization
- Started Run3 measurements: ATLAS ZZ, CMS: W⁺W⁻

10/07/2024

LHC EEWG meeting, Ulla Blumenschein

Run3: 13.6 TeV

11

Di-bosons and polarisation

- ATLAS WZ: Jointly longitudinally polarized $W^{\pm}Z$ observed with 7.1 (6.3) σ , agrees SM.
 - $p_z(v)$ via NN regression. DNN to separate the four joint helicity states.
- ATLAS ZZ: 4.3 (3.8) σ evidence for jointly longitudinally polarised ZZ
 - pLLH fit to the output of a boosted decision tree (BDT) on angular variables.
- **CMS** $W_L^{\pm}W_L^{\pm}$ **jj**: upper limits (~2-3SM) on $W_L^{\pm}W_L^{\pm}$ jj and $W_L^{\pm}W_X^{\pm}$ jj cross section at 2.3 (3.1) σ

See: Polarisation measurement Erik Bachmann, 11.7.24, 11:40

VBS measurements

EW VVjj with VBS component and s/t channels V/H exchange, which regularizes amplitude

- Run~2: Golden Era: observed $W^{\pm} W^{\pm}$ jj, W^+W^- jj, ZZjj, 4ljj, WZjj, W γjj , $Z\gamma jj$
 - Final states with charged leptons, neutrinos and photons (CMS evidence for VV \rightarrow lvjj)
- Advanced machine-learning and fitting techniques, strong VVjj background constrained in CR
- Started to go differential → EFT fits in tails of mass/energy distributions (→ dim-8 operators)
- Still large statistical unc. component in many measurements \rightarrow profit from more data

Future developments:

- More stats -> increase general precision and reach
- in EFT-sensitive mass/energy ranges
- Extract joint polarization components

See: Multiboson and VBS measurements Mattia Lizzo, 11.7.24, 11:00

Prospects for VBS Joint VV polarisation

Test of EW structure, sensitive to BSM (e.g. modification of H-VV coupling, new resonances) Complementary to direct Higgs coupling measurements. Can be defined in WW cms system and in the parton cms system Fraction of $W_L^{\pm}W_L^{\pm}$ jj is 11% (7%) in WW (parton) cms system

- **CMS Run2** $W_L^{\pm} W_L^{\pm}$ jj (PL B 812 (2020) 136018)
 - Fits to $W_L^{\pm}W_L^{\pm}$ jj and $W_T^{\pm}W_T^{\pm}$ jj BDTs
 - Upper limit on $W_L^{\pm}W_L^{\pm}$ jj at 2.7 (2.0) SM (WW cms)
 - $W_L^{\pm}W_X^{\pm}$ jj cross section at 2.3 (3.1) σ (WW cms)
- CMS HLLHC: $W_L^{\pm}W_L^{\pm}$ jj (FTR-21-001-PAS)
 - @3000/fb expected 2% stat unc, 3% sys unc on $W^{\pm} W^{\pm}$ jj
 - 4 σ significance of $W_L^{\pm}W_L^{\pm}$ jj @3000/fb

PL B 812 (2020) 136018

LHC EEWG meeting, Ulla Blumenschein

SMEFT fits with EWK data

- ◆ ATLAS SM only fit: W^+W^- , $W^\pm Z$, $Z \rightarrow llll$ and EW Z j j : fit to 15 EFT parameters leading dimension 6 and dimension 8 terms, LLH fits with PCA
- ATLAS global EFT fit: Higgs data, diboson & VBF Z, EW precision data (LEP, SLC) (ATL-PHYS-PUB-2022-037)
- Perspectives: Several global SMEFT fitting packages Regular global fit updates, similar to EWK fits?

V+light jets

- Important probe of QCD & bkg to Higgs/BSM
- Larger data set \rightarrow extreme space regions:
 - Large pTZ: EWK corrections \blacklozenge
 - Large pT(jet), Collinear Z emission
- High precision tests of MEPS at NLO and NNLO V+jets
- EW Vij:
 - Sensitive to VBF (TGC)
 - differential measurements \rightarrow EFT
- **Perspectives:**
 - Update to full Run2 (especially W+jets) \rightarrow Run3
 - Test NNLO+PS, N³LO V+jet
 - Test QCD-EW corrections at high pTV
 - Improve EFT constraints through EW Vjj

See: V+light jets (ATLAS+CMS) Giorgio Pizzati, Tosay 15:40

See: V+light jets (LHCb and ALICE), Nathan Grieser, 15:55

35.9 fb⁻¹ (13 TeV)

Z+jets

QCD

800

ATGC c

ATGC c_=20

ATGC c=87.

1000 1200

p_(e) [GeV]

V+HF

W+charm

- Sensitive to PDF (s), D or c-jet, now systematics limited
- Agrees with SM but trends \rightarrow impact on PDF from eta and Rc
- Perspectives:
 - More differential, e.g. in $R_c = \sigma W^+ c / \sigma W^- c$.
 - Improved charm tagging.
- Z+b(b)
 - More differential with Run2 data, More stats helps with Z+bb
 - Modelling ok in general but identified some generator issues
 - First comparisons with IRC predictions at NNLO V+HF
 - Perspectives:
 - Boosted Z+bb: profit from larger data set
 - Unfold to IRC safe b-jet algorithms

Z+c(c)

- ATLAS & CMS: Z+c inclusive and differential
- Identified some modelling issues
- ► LHCb: Forward Z+c: discrepancy with SM → Intrinsic Charm?
- Perspectives:
 - Improve c tagging
 - Z+c with forward Z (LHCb, ATLAS: CF, HLLHC: FF)
 - More stats, better c-tagging: Z+cc

See: Experimental aspects of flavour definition, Federico Sforza. Today, 18:10

See: V+light jets (LHCb and ALICE), Nathan Grieser, 15:55

10/07/2024

LHC EEWG meeting, Ulla Blumenschein

Strong coupling constant

Inclusive jets, Jet multiplicities

- CMS Run2 azimuthal correlations: $\alpha_{S}(m_{Z}) = 0.1177^{+0.0117}_{-0.0074}$ (Theory: NLO)
- CMS Run2 2D inclusive jets, HERA+CMS QCD fit: : $\alpha_{s}(m_{z}) = 0.1166 \pm 0.0017$ ATLAS Run2 TEEC* asymmetry: $\alpha_S(m_Z) = 0.1185^{+0.0027}_{-0.0015}$ (NNLO)
- CMS Run2 EEC jet substructure: $\alpha_{S}(m_{Z}) = 0.1229^{+0.0040}_{-0.0050}$ (NLO+NNLL_{approx})
- **Drell-Yan precision measurements**
 - CMS Run1 Drell-Yan combination: $\alpha_S(m_Z) = 0.1175^{+0.0025}_{-0.0028}$. (NNLO)
 - ATLAS 8TeV, ZpT: $\alpha_{S}(m_{Z}) = 0.1183 \pm 0.0009$ (N4LLa+N3LO)
- **Perspectives:**
 - Most promising: precision Drell-Yan, inclusive jets, TEEC
 - Improvements expected with upgraded theory predictions
 - PDF become important \rightarrow joint extraction of PDF and $\alpha_{\rm S}(m_Z)$

Jet substructure perspectives

- **EEC inside jets** (arXiv:2004.11381):
 - Angular correlation between particles in a jet, E~ order 10GeV
 - Collinear dominant, NLO+NNLLapprox
 - **CMS:** arXiv:2402.13864: 2particle and 3 particle correlators E2C and E3C
 - Not impacted by soft emissions → no grooming techniques needed
 - Also extracted $\alpha_S(m_Z)$ from E3C/E2C ratio

(CMS+ATLAS), Meng Xiao, today, 16:10

Jet substructure perspectives

Dead cone:

- Suppression of the gluon spectrum emitted by a heavy quark of mass mQ and energy E, within a cone of angular size mQ/E around the emitter
- Observed by ALICE, Nature 605 (2022) 440-446, in Jets with D mesons
- Observable: Ratio $R(\theta)$ of splitting angle distributions
- Dead cone effect observed with 7.7 σ (3.5 σ) for the 5<Erad <10GeV (10< Erad.< 20GeV)

Jet substructure perspectives

- Lund jet plane:
 - Recluster anti-kt jets with size R using C/A algorithm
 - Primary Lund plane from core emission
 - Secondary Lund plan from secondary emission etc.
 - → new identification and calibration algorithms for booste resonances
- Example Publications:
 - ATLAS (Phys. Rev. Lett. 124, 222002 (2020)):
 Lund jet plane in dijets, based on track jets
 - ALICE (ALICE-PUBLIC-2021-002) Primary lund jet plane
 - CMS (JHEP 05 (2024) 116): Primary Lund jet plane density
 - ATLAS (ATL-PHYS-PUB-2023-017)
 Tagging boosted Wbosons applying ML to the Lund Jet Plane

Lund subjet multiplicity (Lund multiplicity):

- ATLAS: arXiv:2402.13052
- JSS observable used to test for the inclusion of double-soft splittings
- Built from kT vs R/ ΔR

Summary

- Exciting new perspectives for Run3/HLLHC
- Precision Drell-Yan and W mass: more low-µ data
- Weak mixing angle: Larger data sets and higher Z rapidities at HLLHC
- Di-Bosons: differential cross sections, EFT-sensitive variables, joint polarization, inclusion into global EFT fits
- EW VVjj: Larger stat sets reduce stats limitation, joint polarisation at HL LHC
- V+light jets: test more precise predictions, test EWK corrections, EFT sensitivity through EW Vjj → global EFT fits
- V+HF: IRC safe b/c jet algorithms, Z+c with forward Z, improve c-tagging
- Strong coupling constant: Drell-Tan precision, inclusive jets (global fit), TEEC
- Jet substructure: Many new ideas: Lund jet plane, EEC inside jets, Dead Cone,...