

Ongoing CMS tuning efforts

LHC EW WG General Meeting 10-July-2024

Jie Xiao IP21–Lyon

on behalf of the CMS collaboration

Outline

Generator tunes in CMS Run3

Current snapshot

- \diamond GEN-22-001: Intrinsic k_T tune with DY data in a range of mass and center-of-mass energies Natasa Raicevic's talk
- Extraction of HERWIG7 and PYTHIA8 DPS tunes from CMS multi-jet measurements

Studies to cross-check the tunes' validity & possible improvements

- Tune with **jet substructure** analyses to fix the Data/MC discrepancies observed in some jet-substructure measurements
- Tune for **NNPDF4.0**
- Include **Sherpa** in the tuning study

Current generator tunes in CMS Run3

Generators	 Madgraph5_aMC@NLO: 2.9.X Other versions of Madgraph5_aMC@NLO are supported Pythia: 8.306 Herwig: 7.X
PDF	 NNPDF3.1 (unchanged from Ultra Legacy Run2) Alternate sets will mostly contain NNLO PDFs including NNPDF4.0
Tune	 ❖ CPX family for Pythia8 (GEN-17-001) ❖ CHX family for Herwig7 (GEN-19-001) ❖ Intrinsic-k_T tune introduced for Drell-Yan processes
НЕРМС	❖ HEPMC2 (unchanged from Ultra Legacy Run2)

CPX and **CHX** families are recommended for Run3 samples

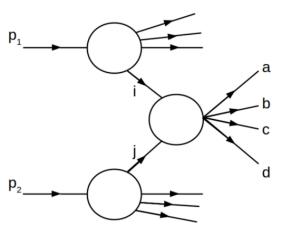
CP5 and **CH3** tunes are the most commonly used in Run3

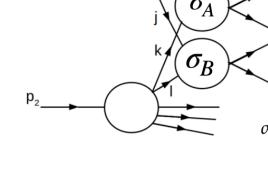
Intrinsic-k_T tune is used in Run3 NLO **DYJets** and **WJets** production

Double Parton Scattering (DPS)

SPS and **DPS** show different topologies in the final state

DPS cross section is suppressed w.r.t SPS


$$rac{\sigma_{DPS}}{\sigma_{SPS}} \sim rac{\Lambda^2}{Q^2}$$
 (Hadronic scale ~1GeV)


- DPS becomes more important as the collider energy grows. Larger density of partons at small-x values
- DPS can become competitive with SPS when SPS is hindered by small couplings; e.g. same-sign WW production

At the LHC, DPS has been studied in multiple final-states such as

❖ 4 jets, 4 jets with b-jets, γ +3 jets, W(→ $l\nu$)+dijet, $Z(\rightarrow l^+l^-)+J/\psi$, $J/\psi+J/\psi$, same sign WW, etc

Single Parton scattering (SPS)

One hard scattering in a single pp collision. Final states particles are correlated.

Double Parton scattering (DPS)

Two separate hard interactions in a single pp collision. Two pairs of partons from the incoming hadrons interact independently with each other.

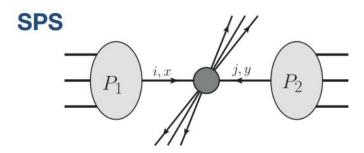
DPS sensitive observables: 4 jets example

DPS sensitive observables

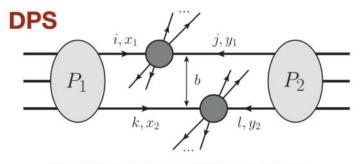
❖ The difference in azimuthal angle between the light jet pair

$$\Delta \phi = |\phi(j_1) - \phi(j_2)|$$

❖ The balance in p_T of the two light jets


$$\Delta p_T = \frac{|p_T(j_1) + p_T(j_2)|}{(||p_T(j_1)| + |p_T(j_2)||)}$$

(Soft jets are expected to be produced by a 2nd scattering)


The azimuthal angle between the two dijet pairs

$$\Delta S = \frac{(p_T(j_3, j_4).p_T(j_1, j_2))}{(|p_T(j_3, j_4)| + |p_T(j_1, j_2)|)}$$

$$\stackrel{\vec{p}_T(j^1, j^2)}{p_T(j^1, j^2)}$$
Phys. Rev. D **97**, 035013

correlated topologies, back-to-back jets

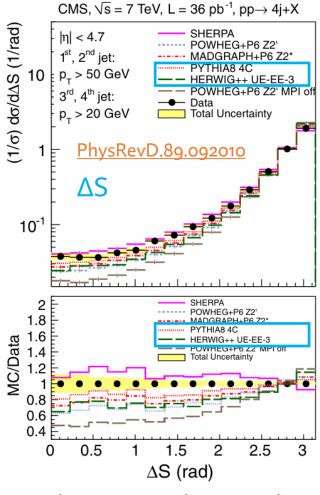
Uncorrelated topologies, back-toback jets only for each of the independently produced jet pairs

Description of DPS observables

CP5 and CH3 tunes fail at describing DPS observables from CMS multi-jet

Studies ongoing to get a better description of these variables

Multi-parton interaction (MPI) parameters are obtained through a fit to multi-jet measurements data collected by the CMS experiment at $\sqrt{s} = 7$ TeV [1,2]

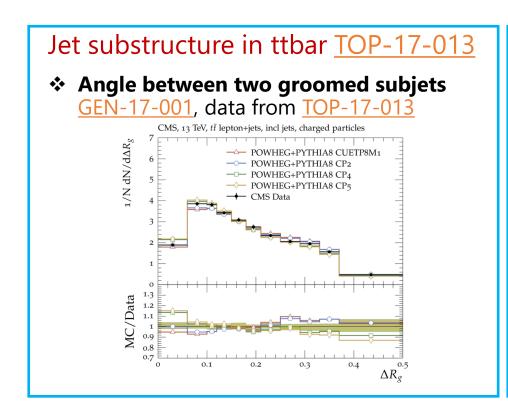

Relevant parameters

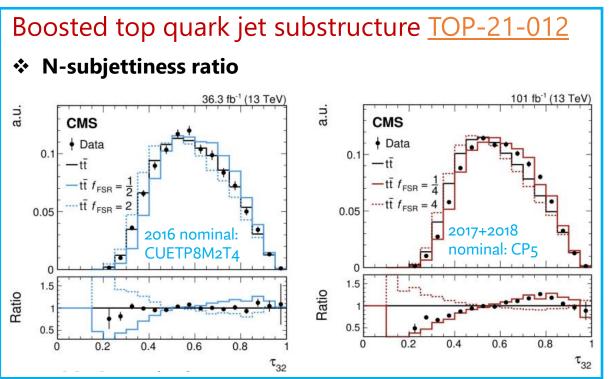
❖ PYTHIA8

- pT0Ref
- coreFraction
- coreRadius

❖ HERWIG7

- ColourReconnector:ReconnectionProbability
- MPIHandler:InvRadius
- MPIHandler:Power
- MPIHandler:pTmin0


The PYTHIA8 and HERWIG7 have similar behavior in CP5 and CH3


Description of jet substructure

Standard CP5 and CH3 are tunes of 4~5 minimum-bias and color reconnection parameters

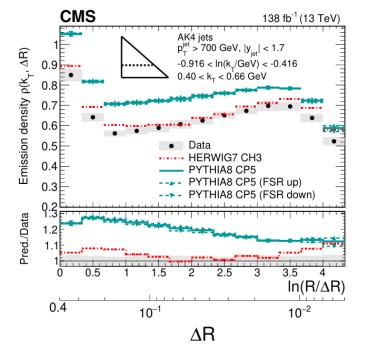
❖ No focus on jet substructure (mostly sensitive to shower development (FSR) & hadronization effects)

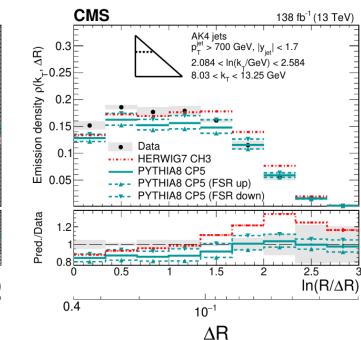
Measurements show jet substructure is not well modeled by simulation

Description of jet substructure

Lund plane: 2D representation of QCD radiation

❖ A given jet is represented as a number of points in the Lund plane


hard In(k_T/GeV) hadronization large angle small angle $ln(1/\Delta R)$

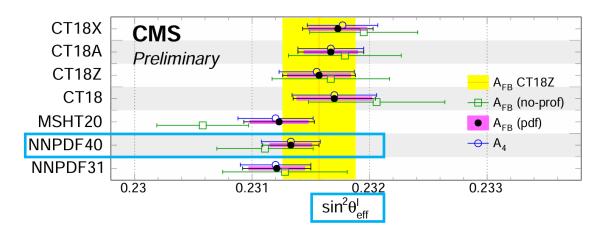

SMP-22-007 Measurement of the primary Lund jet plane density in

pp collisions at 13 TeV

Neither CP5 nor CH3 describe data well everywhere

❖ 10−20% differences across phase space

NNPDF4.0 in CMS



NNPDF4.0 was published with outstanding uncertainties (around 1% at the most x)

- ❖ NNPDF4.0 was already included in Run3 sample production
- Corresponding tune is in development

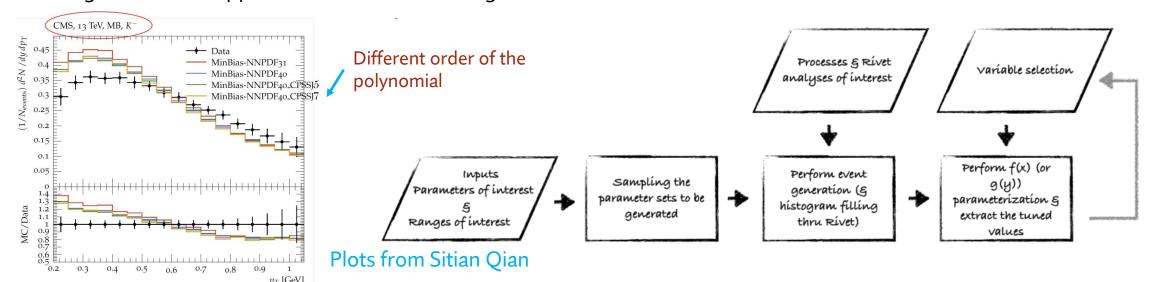
CMS GEN group got several queries about how to use it

❖ Measurement of the weak mixing angle with DY: <u>SMP-22-010</u> tested NNPDF4.0 (details in <u>Rhys Taus' talk</u>)

NNPDF4.0 shows the best performance

NNPDF4.0 in CMS

<u>NNPDF4.0</u> was published with outstanding uncertainties (around 1% at the most x)


- NNPDF4.0 was already included in Run3 sample production
- Corresponding tune is in development

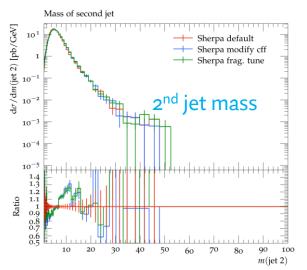
CMS GEN group got several queries about how to use it

❖ Measurement of the weak mixing angle with DY: <u>SMP-22-010</u> tested NNPDF4.0 (details in <u>Rhys Taus' talk</u>)

Need a new tune for NNPDF4.0: chance to have a common automated workflow for tunning

Tuning tool itself is applicable to different event generators, use NNPDF4.0 as a demonstration

Test of the Sherpa cluster hadronization tune



Cluster Hadronization tune in Sherpa

- Reference: https://arxiv.org/abs/2203.11385
- Tuned Hadronization Parameters google doc

Sherpa v2.2.15 is current CMS recommendation

- ME and PS, Hadronization are separate in Sherpa
- Possible to tune Sherpa in the current CMS workflow (tested with the cluster Hadronization tune)
 - Once cross sections integrated (compressed as **Sherpack** in CMS), could rerun the shower with new parameter values

Sherpa default:

- **Sherpack** with **default** parameters
- **Default** parameters in the **configuration**

Sherpa modify cff:

- **Sherpack** with **default** parameters
- Cluster hadronization tune parameters in the configuration Sherpa frag. tune:
- **Sherpack** with **cluster hadronization tune** parameters
- Cluster hadronization tune parameters in the configuration

Sherpa Tune

Parameters in 2.2.11 sherpa/AHADIC++/Tools/Hadronisation_ Parameters.C	Default	Tuned CSS	Tuned Dire
STRANGE_FRACTION BARYON_FRACTION DECAY_OFFSET DECAY_EXPONENT P_qs_by_P_qq P_ss_by_P_qq P_di_1_by_P_di_0	0.6049 1.0 1.202 2.132 0.3 0.01 1.0	0.535 1.48 1.29 3.03 0.26 0.012 0.93	0.513 1.49 1.39 3.18 0.153 0.005 0.51
G2QQ_EXPONENT PT_MAX PT_MAX_FACTOR SPLIT_EXPONENT SPLIT_LEADEXPONENT SPECT_EXPONENT SPECT_LEADEXPONENT	1.08 1.0 1.0 0.1608 1.0 1.739	0.60 1.48 1.34 0.24 1.49 1.49 10.32	1.02 1.37 1.48 0.23 1.41 1.21 4.04

Summary

CPX and **CHX** families are recommended for Run3 in CMS

CP5 and CH3 tunes are the most commonly used

Ongoing studies to improve current tunes

- Intrinsic- k_T tune: fix the discrepancy between the CP5 tune and data in the low p_T DY spectrum
- New tune sets to improve the discrepancies shown (such as: DPS variables, jet substructure, ...)

New opportunities

Common automated workflow development for tunning