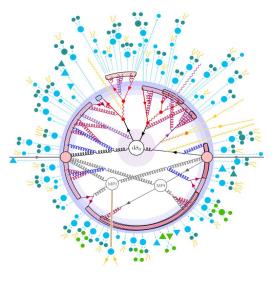
LHCEWWG — 10th July 2024

MC Tuning Prospects in ATLAS

Ynyr Harris (University of Bonn) with input from Tim Martin (University of Warwick)


What is Tuning?

Tuning is the fitting of the free parameters of the **phenomenological models** used in

MC event generators to describe [LHC] data

Stages of a MC event generator

- Hard Scatter (e.g. DY $qq \rightarrow ee$)
- Parton Shower (PS)
- Hadronisation (Had)
- Colour Reconnection (CR)
- Multiple Parton Interactions (MPI)

Pythia 8.3 schematic event

Pheno.-driven models, all implemented differently in the main generators (Pythia, Sherpa, Herwig, Epos, ...), all with many free parameters that aren't known in advance

Underlying Event (UE)

'everything else

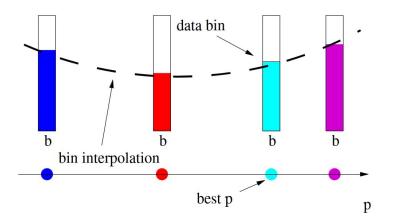
Today

What do recent measurements bring to a potential MC tuning campaign?

- Overview of tuning methodology
- Snapshot of new models available in MC event generators
 - Non-exhaustive list just to indicate development
- Overview of recent measurements sensitive to model choices and tunes
 - With contributions from ATLAS Jet/Photon, Soft QCD, W/Z, and Top groups

*Throughout: 'new' ~ new for use in tuning

Overview of Current Tuning Methodology


Use the tried-and-tested Professor toolkit

0907.2973, hepforge

- Polynomial interpolation of bin response to changes of the parameter vector *p*
- Bin-weighted χ^2 -minimisation wrt data

$$\chi^{2}(\boldsymbol{p}) = \sum_{\mathcal{O}} w_{\mathcal{O}} \sum_{b \in \mathcal{O}} \frac{(f^{(b)}(\boldsymbol{p}) - \mathcal{R}_{b})^{2}}{\Delta_{b}^{2}}$$

$$MC_b(\mathbf{p}) \approx f^{(b)}(\mathbf{p}) = \alpha_0^{(b)} + \sum_i \beta_i^{(b)} p'_i + \sum_{i \le j} \gamma_{ij}^{(b)} p'_i p'_j$$

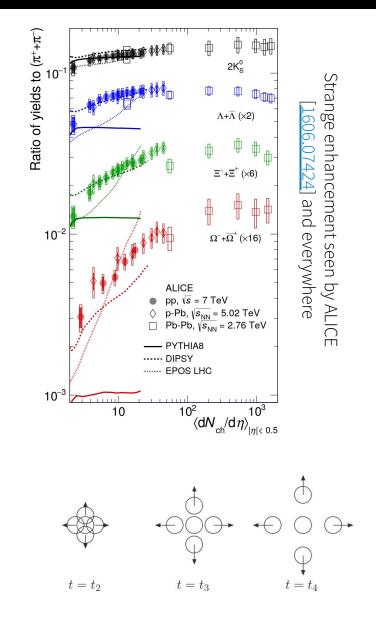
- \circ $\;$ Weights are user-defined and depend on tune priorities $\;$
- Current ATLAS tunesets: A3 for MB, A14 for UE + Had, AZ for Z pT (+ more)

See this talk by Stefan Kiebacher (Herwig) for recent methodological ideas Making tuning more convenient / less expert-dependent

New Features in Pythia

 $t = t_1$

SU(3)-based CR [<u>1505.01681</u>]


- MPI counteracts $1/N_c^2$ suppression
- Full multiplet structure enables string junction formation (baryons) [2404.12040]

Colour ropes [<u>1412.6259</u>]

- Colour strings can overlap, forming 'ropes'
- Ropes have higher string tension κ
 - Enhances strange production
 (probability ~ exp(-π m_s² / κ))

String shoving [<u>1612.05132</u>]

- Pressure gradient between inside and out ropes generates k_T
 - Induces flow/collective effects ✔

New Features in Pythia

SU(3)-based CR [<u>1505.01681]</u>

- MPI counteracts 1/N_c² suppression
- Enables string junction formation (baryons)

2404.12040

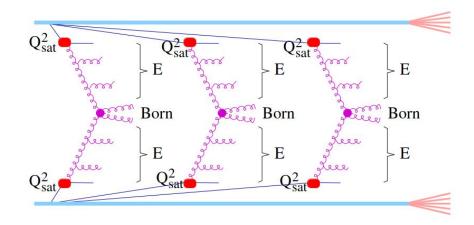
Strange enhancem 4 + 4 $2K_s^{\circ} = 0$ 4 + 4 4 + 4 $E^{+} = (x6)$ $E^{+} = (x6)$

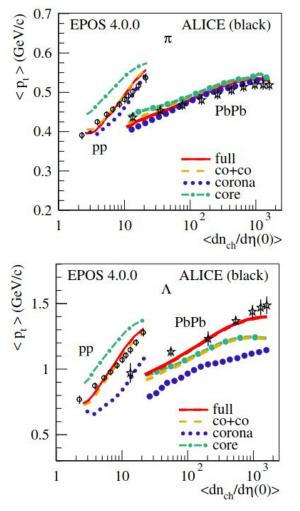
Interesting new features that have never been tuned together in Pythia 8.3 (?)

- Conclusion of [<u>2404.12040</u>] and conversations with Harsh (Pythia) [<u>NPTA Workshop</u>]
- Ropes have higher string tension κ
 - Enhances strange production

(probability ~ exp(- π m_s² / κ)) \checkmark

String shoving [<u>1612.05132</u>]

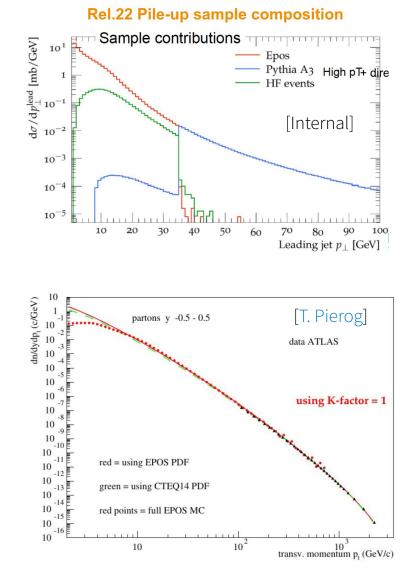

- Pressure gradient between inside and outside ropes generates k_T
 - Induces flow/collective effects ✔


New Features in EPOS

EPOS 4 presented in 2301.12517 and by Tanguy Pierog at the NPTA Workshop

EPOS 4 solves conceptual problems (to do with maintaining factorisation during parallel scatters) w.r.t. EPOS-LHC. Now good for:

- "Normal" high-pT *pp* physics
- High-multiplicity *pp* physics
- AA scattering at LHC and RHIC



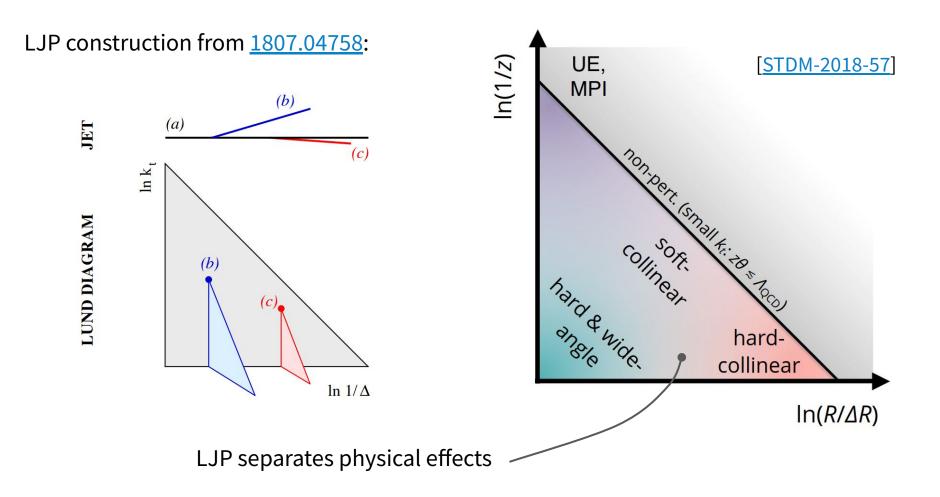
Consistent description of *pp* and AA [2301.12517

EPOS 4 For Pile-Up Modelling?

ATLAS Run 3 pileup-modelling strategy involves mixing Pythia 8 A3 + EPOS-LHC based on leading jet-pT

With EPOS 4 good for high-pT physics, consider EPOS only?

LHC EWWG Ynyr Harris — 10 Jul 2024

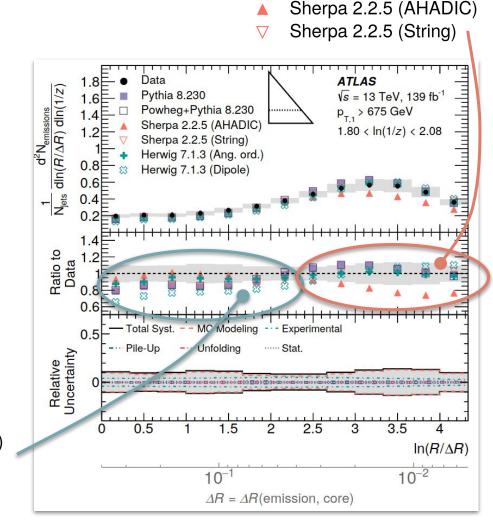

Jet Measurements

Thanks to Josu Contero for input.

Analysis		Models	Rivet?		
	UE/MB	PS	CR	Had	[Rivet coverage]
Lund Jet Plane (ATLAS) 🔗		~	~	~	ATLAS 2020 11790256
Lund Multiplicities (ATLAS) 🔗		~	~	~	No
Multijet Event Shapes (ATLAS) 🔗		~			ATLAS 2020 11808726
Multijet Event Isotropies (ATLAS) 🔗		~			No
TEECs (ATLAS) 🔗		~			ATLAS 2023 12625697
TEECs (CMS) 🔗		~			No
Intra-Jet Properties (ALICE) 🔗		v	~	~	No

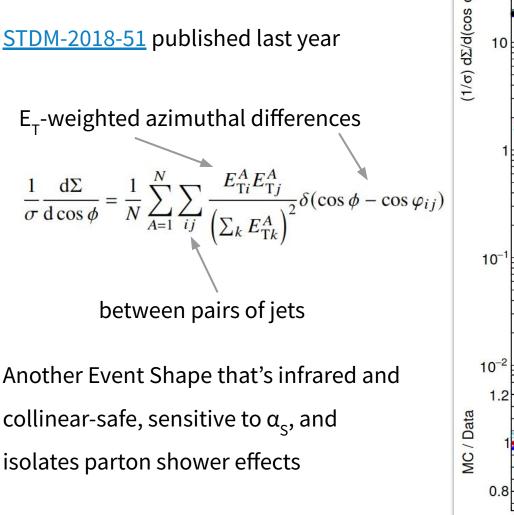
✓ in model column ~ model particularly sensitive to measurement

Lund Jet Plane @ 13 TeV

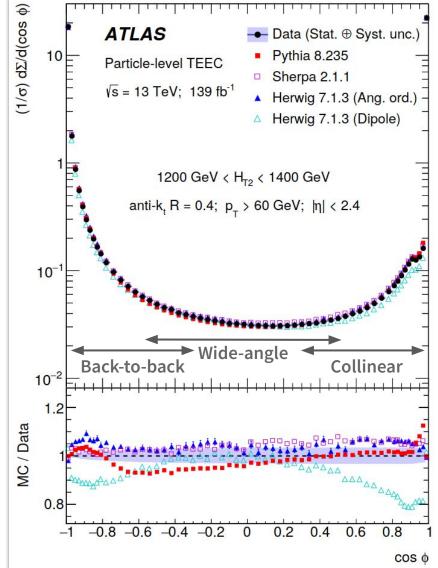

This is a great phase space for tuning, and has never been used before (?)!

Lund Jet Plane @ 13 TeV

E.g. this plot of $d^2 N_{emissions}~vs~ln(R/\Delta R)$


- For hard emissions at larger angles, note parton shower differences
- For hard emissions at small angles, see hadronisation model differences

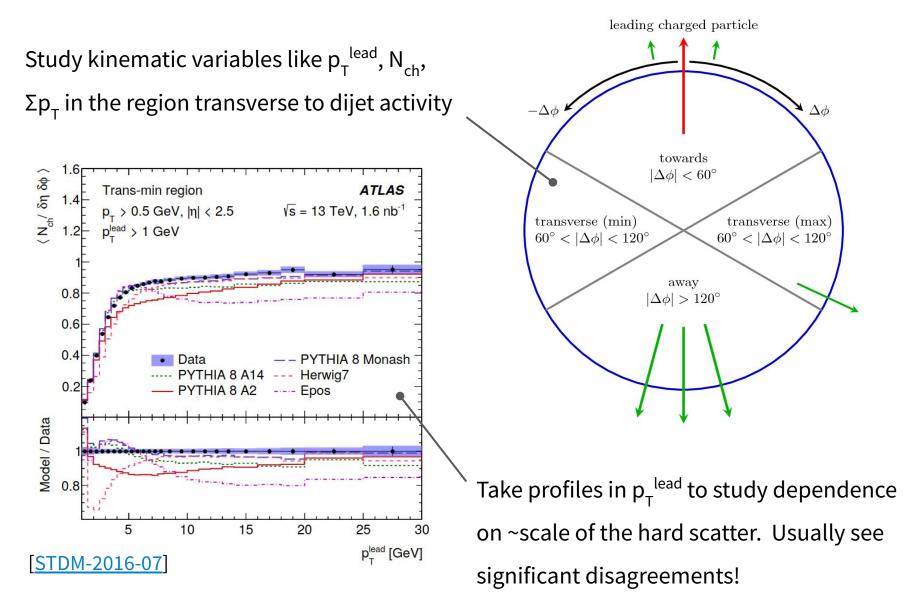
Herwig 7.1.3 (Ang. ord.)
 Herwig 7.1.3 (Dipole)



Fixed kT slice [STDM-2018-57]

Transverse Energy-Energy Correlators (TEECs) @ 13 TeV

Also measured by CMS [SMP-22-015]

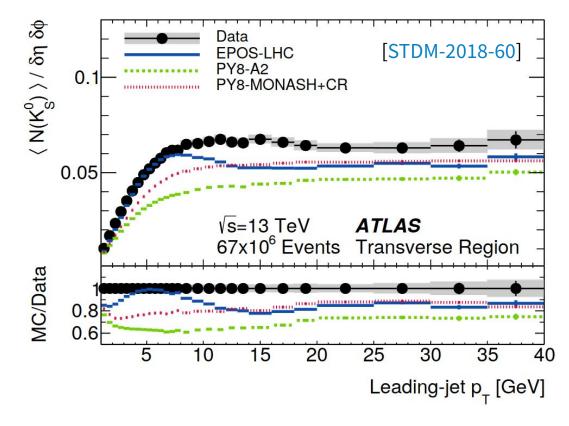

Soft QCD Measurements

Thanks to Karel Cerny for input.

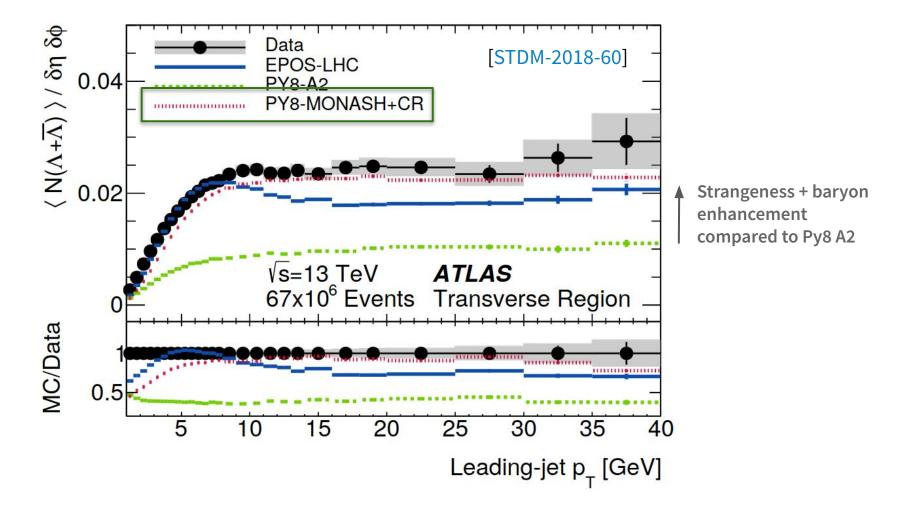
Analysis		Models	Rivet?		
	UE/MB	PS	CR	Had	[Rivet coverage]
Leading-track UE (ATLAS) 🔗	 ✓ 		~		ATLAS 2017 11509919
Z boson UE (ATLAS) 🔗	 ✓ 		~		ATLAS 2019 11736531
Strange UE (ATLAS) 🔗	 ✓ 		~	~	Coming soon
Azimuthal ordering (ATLAS) 🔗	~		~	~	ATLAS 2012 1091481
Tracks-based Event Shapes (CMS) 🔗	~		~	~	Coming soon
Transverse spherocity (ALICE) 🔗	~		~	~	No

 in model column ~ model particularly sensitive to measurement

Leading-track UE @ 13 TeV

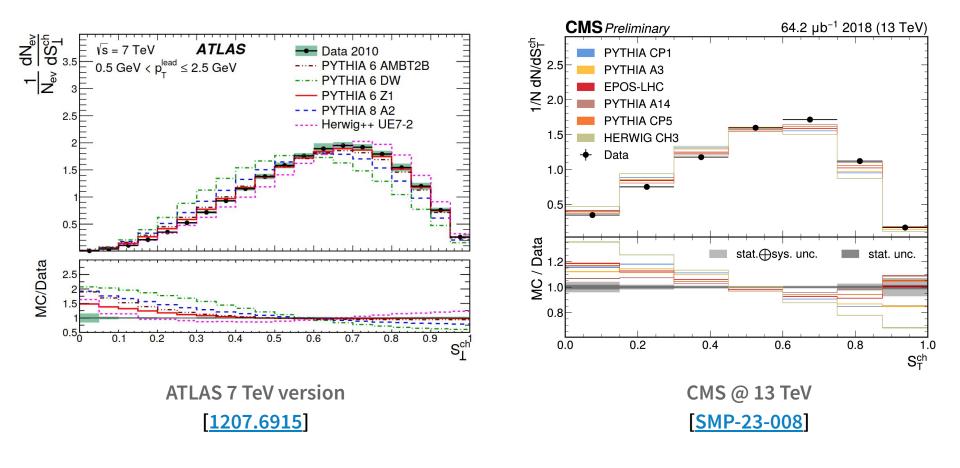

Strange UE @ 13 TeV

Like the leading-track UE but this time counting strange hadrons K_s^{0} and Λ


Strange hadron masses ~ Λ_{QCD} makes this measurement very sensitive to hadronisation

Counting A baryons makes it sensitive to three-way colour reconnection

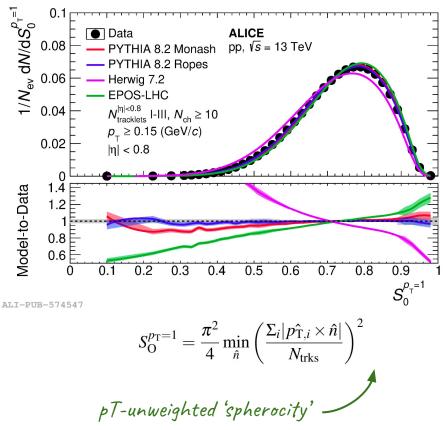
See <u>Tim Martin's talk</u> for more information


Strange UE @ 13 TeV

See effects of Pythia's SU(3)-based CR model on baryon multiplicities

What's Going On With "Event Shapes"?

Simple observation: tracks-based Event Shapes appear to have always been quite mis-modelled, with data tending to be more isotropic

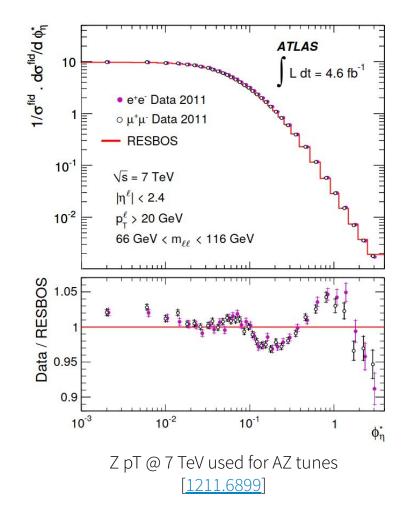


What's Going On With "Event Shapes"?

[JHEP 05 (2024) 184]

Curious that **Pythia 8 + Ropes** appears to describe transverse spherocity well (although the string shoving wasn't included)

(Measure Event Shapes with tracks again, like CMS just did [<u>SMP-23-008</u>], and compare latest models?)



Measurements of W/Z Bosons

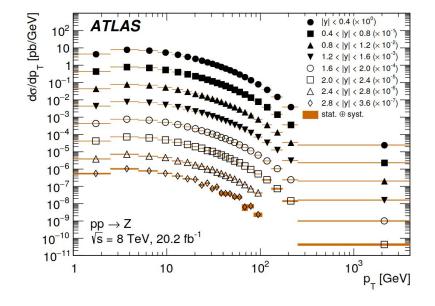
The Z p_T spectrum isolates initial state effects (ISR and primordial k_T) important for low p_T^{V} -modelling — this motivated a dedicated tuning in the past

Pythia 8 tuned to Z ϕ_{η}^{*} distribution (correlated to pT but less sensitive to systematics [1009.1580]) \rightarrow AZ tunes [ATL-PHYS-PUB-2013-017]

⇒ In principle improves W pT modelling, and reduces W mass error

Measurements of W/Z Bosons

Thanks to Stefano Camarda for input.


Special mention: double-differential Z pT and

rapidity distributions @ 13 TeV

STDM-2018-05

Factorise-away the analytic dependence on polaristion!

 $\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y\,\mathrm{d}m\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}\,\mathrm{d}y\,\mathrm{d}m} \\ \left\{ (1+\cos^{2}\theta) + \frac{1}{2}\,A_{0}(1-3\cos^{2}\theta) + A_{1}\,\sin2\theta\,\cos\phi \right. \\ \left. + \frac{1}{2}\,A_{2}\,\sin^{2}\theta\,\cos2\phi + A_{3}\,\sin\theta\,\cos\phi + A_{4}\,\cos\phi \right. \\ \left. + A_{5}\,\sin^{2}\theta\,\sin2\phi + A_{6}\,\sin2\theta\,\sin\phi + A_{7}\,\sin\theta\,\sin\phi \right\}.$

- ~ 5% agreement with state-of-the-art pQCD predictions in pT
- 0.2 0.5% accuracy in rapidity

Tune Z pT again?

Measurements of Tops

Top-antitop events used in the past for their PS and Had information [A14]

Analysis	Models Probed				Rivet?
	UE/MB	PS	CR	Had	[Rivet coverage]
Strange production (ATLAS) 🔗		V	~	~	ATLAS 2019 11746286
Top mass m _{lµ} (ATLAS) 🔗		V	~	~	No
<i>b</i> -fragmentation with tracks (ATLAS) 🔗		~		~	No
CR observables (ATLAS) 🔗		~	~		ATLAS 2022 12152933
Jet substructure (ATLAS) 🔗		~	~		No

Now a pertinent question: **does the top quark colour reconnect?**

Colour reconnection scale ~ 1 fm > top-quark decay length ~ 0.2 fm

Measurements of Tops

Top-antitop events used in the past for their PS and Had information [A14]

Analysis		Models	Rivet?		
	UE/MB	PS	CR	Had	[Rivet coverage]
Strange production (ATLAS) 🔗		v	~	~	ATLAS 2019 11746286
Top mass m _{lµ} (ATLAS) 🔗		~	~	~	No
<i>b</i> -fragmentation with tracks (ATLAS)		~		~	No
CR observables (ATLAS) 🔗		~	~		ATLAS 2022 12152933
Jet substructure (ATLAS) 🔗		v	~		No

Focussed measurements of *b* fragmentation-sensitive variables

b-Fragmentation With Soft Muon Tags

The r_b parameter of the Lund-Bowler *b*-fragmentation function affects top mass extraction [<u>TOPO-2017-17</u>] — A14-r_b tune produced to control this

$$f(z) = \frac{1}{z^{1+br_b m_b^2}} (1-z)^a \exp(-bm_T^2/z)$$

New ATLAS analysis (kicked off **last Monday!**) plans to measure fragmentation-sensitive variables using soft muons from B-hadron decays

Higher $r_h - \text{softer } x_B$ 1/N dN/dx_B $3.5 \stackrel{-}{\models} e^+ e^- \rightarrow b\overline{b}, \sqrt{s} = m_z$ **ALEPH Data** ATLAS Pythia8, A14-*r*_b ATLAS PYTHIA8, A14 --- ATLAS HERWIG7.1.3 1.5 0.5 **Ratio to Data** H Data uncertainty 0.5 0.6 0.7 0.8 0.3 0.4 X_B Fraction of b-quark energy ending up in the B-hadron

Conclusion

- Presented an arbitrary assortment of new models and recent measurements
- Currently a good environment for tuning, with lots of new ideas and data!
 - As has recently been discussed in ATLAS (though there's no central effort **yet**)
- Theorists provide default tunes, experimentalists make precision tunes!
 - Complete with systematic uncertainties
- More accurate models + tunes → physics understanding, smaller systematics, ...

<u>ChatGPT advice</u> (courtesy of Stefan Kiebacher):

 Continual Improvement: The tuning process is ongoing as new experimental data becomes available or as theoretical understanding advances. Regularly revisit the tuning procedure to incorporate new information and improve the accuracy of the event generator.

EXTRAS

Recent Methodological Ideas

For an active expert's overview, see <u>this recent talk</u> by Stefan Kiebacher (Herwig)

Include a percentage "theory" uncertainty of ~ 5%
 Avoid over-fitting to high-statistics bins at the expense of others
 Regularised goodness-of-fit functions
 Professor
 Exclude bins that cannot be described
 Reject bins if data not in the envelope of of sampled parameters
 Find decorrelated subspaces to tune in

Systematic Uncertainties on Tunesets

What's the best way to produce uncertainties on tunesets ?

```
The "eigentunes" method of Professor —
usually underestimates uncertainties.
Define a 'tolerance' as is done in PDF
fitting [2112.11266]? \Delta \chi^2 = N_{df} / 2 was
used in A14
```

Take the spread of an ensemble of fits [<u>1812.07424</u>]? Laborious but meaningful

Some effort to automate tune variations on-the-fly [<u>P. Skands</u>, <u>2308.13459</u>] !

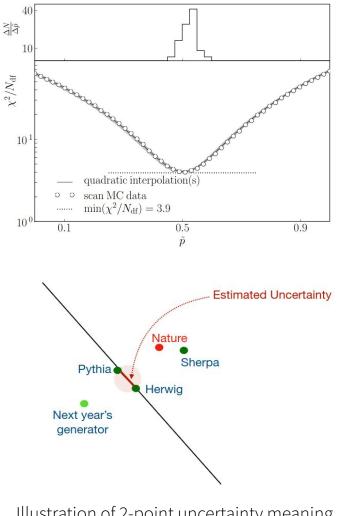
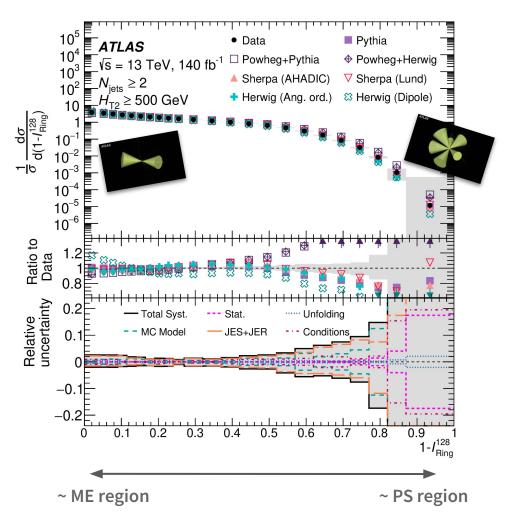
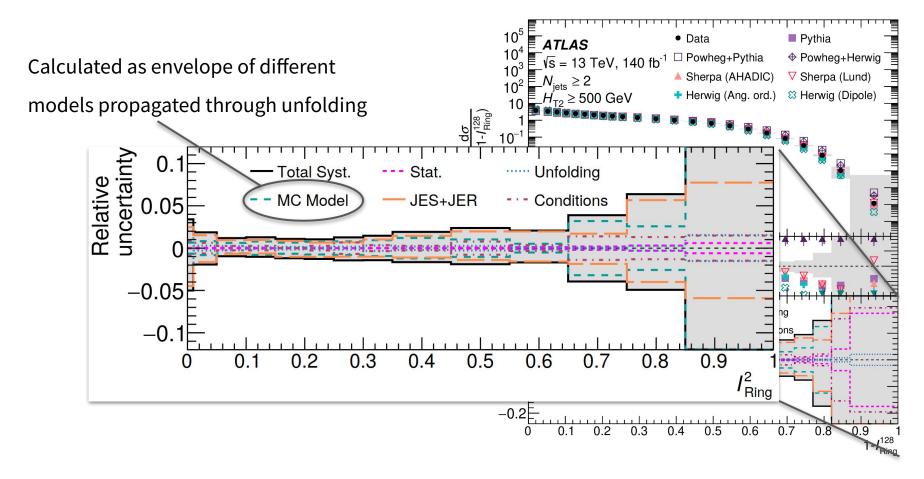


Illustration of 2-point uncertainty meaning Ghosh & Nachman [2109.08159]

Lund Subjet Multiplicities @ 13 TeV

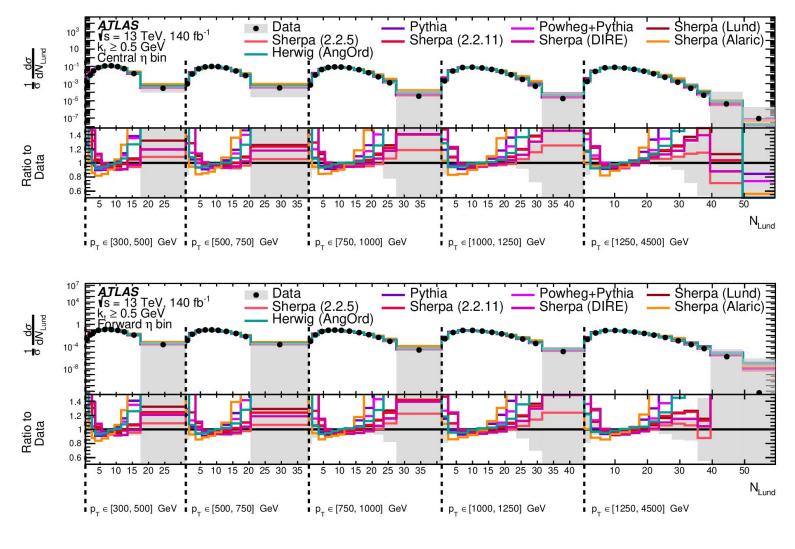

16 $\langle N_{Lund} \rangle$ Data Similar to the LJP measurement, but ATLAS 14 Pythia Powheg+Pythia √s = 13 TeV, 140 fb⁻¹ **Model choice** 12 p_ > 300 GeV Sherpa (2.2.5) Sherpa (2.2.11) this time counting emissions 10 Sherpa (Lund) 8 Sherpa (DIRE [STDM-2023-07]: Sherpa (Alaric) 6 Herwig (Ang. Órd.) NLO+NNDL+NP 4 2 Ratio to Data 1.1 .05 0.95 0.9 Total Syst. MC Model Stat. Unfolding Experimental 5 $N_{lund} = 5$ 0 -0.02 N_{Lund} measured in bins of jet p_{τ} for 10^{2} 10 1 k_{t,cut} [GeV] increasing emission-k, requirements

More non-perturbative

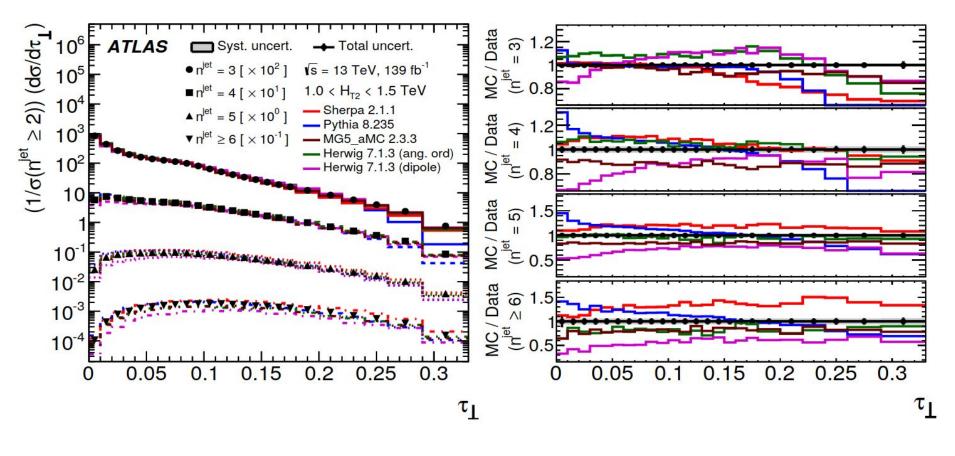

Multijet Event Shapes @ 13 TeV

[STDM-2020-20]

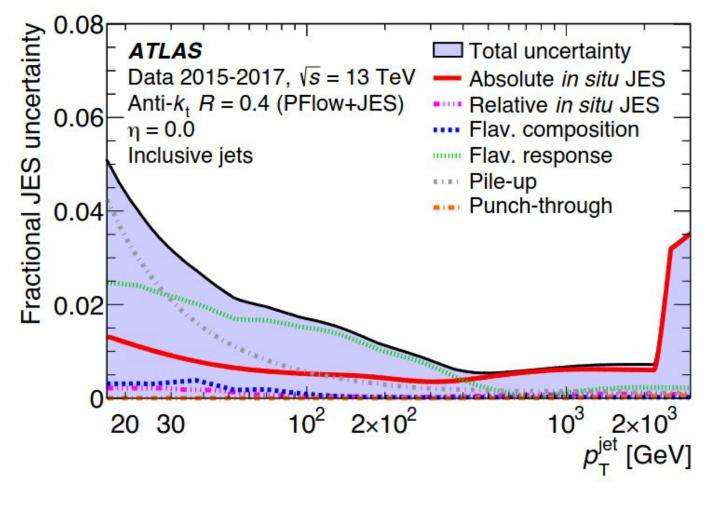
Measurements of multijet Event Isotropies [STDM-2020-20] and Event Shapes [STDM-2019-02] are sensitive to choice of parton shower model



Common Theme From These Jet/Photon Analyses


'MC modelling' uncertainty is a dominant systematic. Modelling also affects JES. Bad for physics analysis, but great for tuning!

Lund Subjet Multiplicities @ 13 TeV


<u>[STDM-2023-07]</u>

Hadronic Event Shapes @ 13 TeV

[<u>STDM-2019-02</u>]

Effects of MC Modelling on JES Uncertainty, e.g.

<u>JETM-2018-05</u>