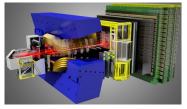
Physics with $W/Z/\gamma$ + Jets at the LHCb and ALICE Experiments

Nate Grieser, on behalf of the Collaborations

University of Cincinnati

LHC EW General Meeting 2024

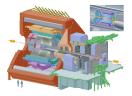

10-07-2024

Introduction and Overview

\rightarrow LHCb Strengths of Design:

- Long tracking distances for improved flavour physics
- Ring-Imaging Cherynkov (RICH) detectors for particle identification (PID)

PRD 93, 074008 (2016)


- Isolated photon-jet correlations in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in ALICE arXiv 2208.08523
- Study of Z Bosons Produced in Association with Charm in the Forward Region PRL 128, 082001 (2022)
- Multidifferential study of identified charged hadron distributions in Z-tagged jets in proton-proton collisions at √s = 13 TeV PRD 108, L031103 (2023)

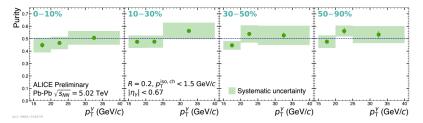
Nate Grieser (Cincinnati)

LHCb/Alice - V+Jets

\rightarrow ALICE Strengths of Design:

- Designed for ion physics focus
- Excellent calorimetry for photon and jet measurements

CERN-LHCC-2012-012

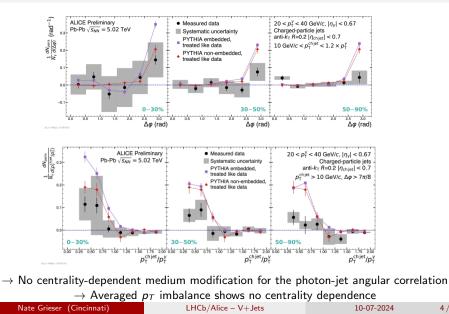

Pipeline of Future results:

- W + jets production cross section (Run 2 LHCb)
- Z + bb production cross section (Run 2 LHCb)
- W/Z + charm jets (Run 3 LHCb)
- γ + jets (Run 3 ALICE)

$\gamma {+} {\rm jets}$ Correlations

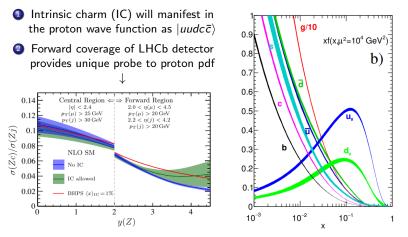
(ALICE Preliminary) arXiv 2208.08523

Motivation: Jets interact strongly with the QGP, photons interact weakly \rightarrow Study partonic energy loss in QGP

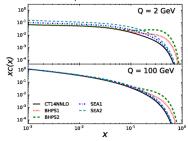


Photon isolation is used to select prompt photons, suppressing photons from meson decays

 \rightarrow Additional measurement of shower shapes is used to characterize further background contributions


$\gamma {+} {\rm jets}$ Correlations

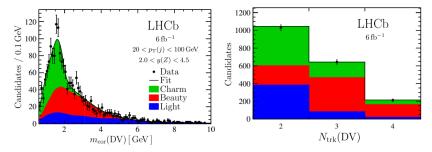
(ALICE Preliminary) arXiv 2208.08523


4/18

Study of the proton wave function has been a topic for discussion for many years \rightarrow Does the proton wave function contain a a valence-like charm contribution beyond the $g \rightarrow c\bar{c}$ perturbative gluon radiation?

Analysis Strategy: Use jets produced in association of a Z boson to study the intrinsic charm production

Forward production of Zc allows to specifically probe high-x of the proton PDF \downarrow

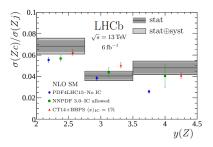


Analysis is made differentially in y_Z bins, with charm-jet yields caclulated in p_T^j bins

Result is given as the ratio of yields of Zc to total Zj yield:

$$R_c^j \equiv rac{N(c-tag)}{\epsilon(c-tag)N(j)}$$

Charm Tagging: *c*-jets defined as jets containing long-lived *c* hadron with $p_T^h > 5 \text{ GeV}$

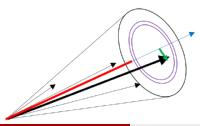

Displaced Vertex (DV) jet properties are used to extract c-jet yields

 \rightarrow Efficiencies vary as function of $p_T^{c-\mathrm{jet}}$, roughly around 25%

Results: R_c^j measurements show consistency with valence-like intrinsic charm theory Conclusions on the *p* wave function can be drawn with inclusion in global PDF analyses

- Systematics dominated by c-tag procedure, arising from tag-and-probe method scale factor calculations
 - c-tagging efficiency and Z + c yield are highly correlated → taken into account in the systematic calculation
- Theoretical predictions allowing IC are limited due to very little data available to constrain the charm PDF in this region
 - Fixed values of IC contribution reduces this uncertainty and has strong agreement with R_c^j measurement

Source	Relative Uncertainty
c tagging	6-7%
DV-fit templates	3-4%
Jet reconstruction	1%
Jet $p_{\rm T}$ scale & resolution	1%
Total	8%


PRD 108, L031103 (2023)

Observing quarks and gluons in isolation is impossible \rightarrow Must relate quark-gluon degrees of freedom to observables of bound state hadrons

- Parton Distribution Function (PDF)

 The nucleus hard-scatter part, The momentum the partons carry
 - Fragmentation Functions (FF) The long-range hadronization part, The momentum the hadrons carry

Hadronization

FF and PDFs must be constrained by experimental measurements, used to tune MC generators

 Jet Fragmentation Functions (JFFs)
 – Provide probe of FFs using jet substructure

Motivation: Set constraints on fragmentation functions and parton distribution functions of *pp* hard-scatter factorization, providing tune-able feedback to MC generators

Analysis Strategy: Use jets produced in association with Z boson to study JFF parameters \rightarrow Jets contain identified charged hadrons

Two observables employed to study the longitudinal and transverse contributions:

1
$$z = \frac{\mathbf{p}_{had} \cdot \mathbf{p}_{jet}}{|\mathbf{p}_{jet}|^2}$$

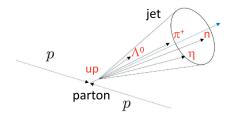
2 $j_T = \frac{|\mathbf{p}_{had} \times \mathbf{p}_{jet}|}{|\mathbf{p}_{jet}|}$

Event selection follows closely the Z-production measurement

- 1 m_Z window: $60 < m_{\mu^+\mu^-} < 120 \text{ GeV}$
- 2 μ^{\pm} acceptance: $p_T^{\mu} > 20 \text{ GeV}$; $2.0 < \eta^{\mu} < 4.5$ 3 Jet acceptance:
 - 20 < $p_T^{
 m jet}$ < 100 GeV ; 2.5 < $\eta^{
 m jet}$ < 4.0

Inclusive measurement of the observable yields in differential p_T^{jet} bins shows agreement with theory and previous 8 TeV LHCb analysis

Yields are defined as:


$$f(z, j_T) = \frac{1}{N_{\mathrm{Z+jet}}} \frac{\mathrm{d}N_{\mathrm{had}}(z, j_T)}{\mathrm{d}z\mathrm{d}j_T}$$

Nate Grieser (Cincinnati)

LHCb/Alice - V+Jets

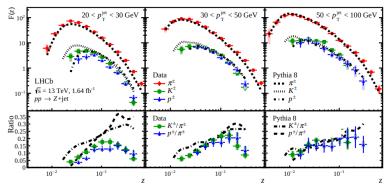
10-07-2024 10 / 18

Identifying the Hadrons: Identification of the charged hadrons is performed using the RICH systems

The speed of the particle can be calculated from the angle of emission of the photon:

- $cos\theta_c = \frac{c}{nv}$
- The radius then gives an accurate measurement of θ_c: r = fθ_c

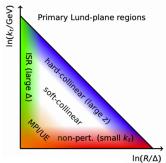
Connecting the dots:


- Connect initial state (parton) to final state (hadron) using jets
- Connecting initial flavor (parton) to final flavor (hadron)

PRD 108, L031103 (2023)

Results: Integrated differential distributions for both z and j_T show similar behavior between the two consider centre-of-mass energies Significant overestimation of heavier charged particles (kaons and protons) relative to

pions is shown in low jet p_T



 \rightarrow Information can be used to tune MC generation of identified charged particles

Run 2 Pipelines – Physics with V + Jets

Upcoming Measurements: Numerous V+jets measurements are in late-stage of the analysis life-cycle, and will be public in the near future

→ Measurement of Z + bb production cross section: Test 4FS vs. 5FS → Measurement of the Lund Jet Plane: Probe of pQCD

LHCB									
Data set	NNPDF4.0		NNPDF3.1		BMP16	CT18	MSHT2		
LHCb Z 940 pb	1		1		x	×	1		
LHCb $Z \rightarrow ee 2$ fb	1		1		1	1	1		
LHCb $W, Z \rightarrow \mu$ 7 TeV	1	1		,	1	1	1		
LHCb $W, Z \rightarrow \mu 8 \text{ TeV}$	1	1			1	1	1		
LHCb $Z \rightarrow \mu\mu, ee~13$ TeV	1	×		¢ .	×	×	×		
		ATI	A	s					
Data set		NNPDI	F4.0	NNPDF3.1	ABMP16	5 CT18	MSHT2		
ATLAS W, Z 7 TeV (2010)		1		1	1	1	1		
ATLAS W, Z 7 TeV (2011)		1		1	× .	1	1		
ATLAS low-mass DY 7 TeV		1		1	× .	×	×		
ATLAS high-mass DY 7 TeV		1		1	× .	×	1		
ATLAS W 8 TeV		1		×	× .	×	1		
ATLAS DY 2D 8 TeV		1		×	× .	×	1		
ATLAS high-mass DY 2D 8 TeV		1		×		×	1		
ATLAS $\sigma_{W,Z}$ 13 TeV		1		×	1	×	×		
ATLAS W ⁺ +jet 8 TeV		1		×		×	1		
ATLAS Z pT 8 TeV		1		1	× .	1	1		
ATLAS σ_{tt}^{tot} 7, 8 TeV		1		1	1	×	×		
ATLAS of tot 13 TeV		1		1	1	×	×		
ATLAS t lepton+jets 8 TeV		1		1		1	1		
ATLAS tl dilepton 8 TeV		1		×	×	×	1		
ATLAS single-inclusive jets 7 Te	V, R=0.6	×		1		1	1		
ATLAS single-inclusive jets 8 Te	V, R=0.6	1		×	×	×	×		
ATLAS dijets 7 TeV, R=0.6		1		×	*	×	×		
ATLAS direct photon production 13 TeV		1		×	×	×	×		
ATLAS single top Rt 7, 8, 13 Te	v	1		×	1	×	×		
ATLAS single top diff. 7, 8 TeV		1		×	×	×	×		
ATLAS single top diff. 8 TeV		1		×	*	×	×		

 \rightarrow Measurement of W+jets production cross section: PDF fit contributions

Run 3 Outlook

arXiv:1808.08865

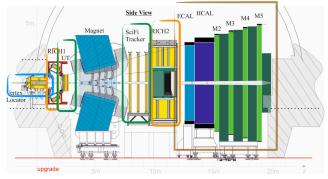
A significant increase in luminosity will help to explore less common modes.

\rightarrow What is envisioned:

- Differential Z boson production, along with V + heavy flavour measurements \rightarrow Set important constraints on out-of-reach $x-Q^2$ phase-space
- γ + charm and beauty associated productions \rightarrow Further probe the intrinsic charm and beauty contributions providing access to the high-x portion of PDFs
- $\gamma+$ jet correlations at ALICE \rightarrow Study the interactions of photons and jets in dense medium, probing behavior of QGP
- Z+jets provides a very clean environment for studying jets at the LHC, combining with low μ at LHCb
 - \rightarrow Continuing to study jet substructure to understand further QCD observables

Stayed tuned!

LHCb/Alice - V+Jets


BACKUP

LHCb Upgrade I

arXiv:2305.10515

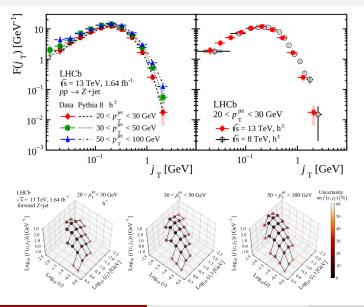
Significant upgrades to the LHCb detector were made during the recent LHC LS2

- New Vertexing Detector → Closer to beam; Silicon pixels improve IP resolution
- New PID detector → New photon detectors and improved readout
- New tracking system → Silicon strip UT for improved tracking granularity; Fibre tracking for high particle density momentum resolution
- New Readout Systems
- BONUS : New GPU-based trigger

Nate Grieser (Cincinnati)

LHCb/Alice - V+Jets

16 / 18


Z Bosons in Association with Charm BU Plots $_{PRL 128, 082001 (2022)}$

Nate Grieser (Cincinnati)

10-07-2024

Charged Hadron in Z-tagged Jets BU Plots PRD 108, L031103 (2023)

