

# Low mu runs (ATLAS)

Fabrice Balli, CEA Saclay/IRFU/DPhP

LHC EW WG General Meeting

CERN, July 10th-12th, 2024







## W p<sub>T</sub> motivation : m<sub>W</sub>





#### Main motivation is to

- Reduce the uncertainty from pTW in m<sub>W</sub> measurements
- Avoid relying on the pTZ measurement (needs assumptions on the extrapolation to W, pTW/pTZ predicted by theory)
  - 7 TeV m<sub>W</sub> discarded some predictions based on u//\_lepton
    - But not ideal to rely entirely on Z pT: need at least a direct crosscheck: W pT in bins of ~5 GeV with ~1% uncertainty



## Event topology, definitions of observables

- Detect single (inclusive) W boson decaying into a lepton and a neutrino
- The ATLAS detector measures :

Q positively an

the

e E

the

an

meas

unfol

• The lepton charge and 4-vector (transverse momentum  $\vec{\mathbf{p}}_{\mathsf{T}}\ell$ Applications Places 🚯 🚫 🎒 💾





related to the recoil than  $\Sigma E_{\rm T}$ , and better represents the e lerlying event.

Mw7TeV Paper.pdf — Sens (8 of 89 Q positively and ∧ ∨ Not found unde the  $\vec{u}_T$ : vector sum of nPFOs and related to the recoil than  $\Sigma E_{\rm T}$ , and istri Enab lerlying event. cPFOs excluding lepton deposits defi trans e magnitude and direction of the transverse-momentum vector of the decay neutrino, m the vector of the missing transverse  $_{1}M_{T} = \sqrt{[2 P_{T}\ell P_{T}^{miss}](1 - COS \Delta \Phi)]}$  the m Is th e in the transverse plane and is defined as:

W-boson transverse mass,  $m_{\rm T}$ , is

rged lepton as follows:

Mw7TeV\_Paper.pdf — ATLAS draft

Not found

Impossible to fully reconstruct m<sub>w</sub> because of the neutrino

p

e m









- Recoil resolution highly impacted by mu
- Median pT density (median of jets transverse momenta in the event)



- Dependence of uncertainty (statistical + recoil calibration systematic) in first p<sub>T</sub>(W) bin (0-5 GeV) vs μ (pileup) for 300 pb<sup>-1</sup> integrated luminosity
  - Goes >>1% for typical pileup values at LHC
- Dependence of  $\Sigma E_T$  as  $(\sqrt{s})^{1/2}$

ATL-PHYS-PUB-2018-026/





50

100

150

200

250

 $\Sigma E_T^{Acc}$  [GeV]

300







arXiV:2404.06204

## Datasets



|                                | 2017, √s=5.02 TeV | 2017+2018, √s=13 TeV |
|--------------------------------|-------------------|----------------------|
| Luminosity (pb-1)              | 254.9 +- 2.6      | 338.1 +- 3.1         |
| W+ events after selection      | 855k              | 2.27M                |
| W- events after selection      | 538k              | 1.77M                |
| Total W events after selection | 1.39M             | 4.04M                |
| Total Z events after selection | 121k              | 379k                 |

• Note the limited Z statistics, used for measuring  $p_T(Z)$  but also for **calibration** 





## Analysis methodology

- Standard W and Z selections performed
- Multijet background estimated with data-driven ABCD method (improved and) similar as previous mW measurements
- Bayesian unfolding of u<sub>T</sub> in the W and p<sub>T</sub>(*ℓℓ*) in the Z, separately in electron and muon channels
  - Binning and number of iterations optimised to minimise total uncertainty in the Sudakov region
    - 9 (25) iterations, 7 GeV bin width at low p<sub>T</sub>(W) for the W at 5.02 (13) TeV
    - 2 iterations, 2 GeV bin width at low  $p_T(Z)$  for the Z
- electron and muon channels combined with BLUE, all giving good  $\chi^2$



- lepton  $p_T > 25$  GeV, lepton  $|\eta| < 2.5$
- W :
- p<sub>T</sub> <sup>v</sup> >25 GeV
- m<sub>T</sub> > 50 GeV
- Z : 66 < m\_ll < 116 GeV











## Results at unfolded level: uncertainties



- Data statistics is clearly a limitation in the 5.02 TeV Z measurement
- Still large even in coarse bins for the W
  - Would like to reduce further the binning in future measurements







## Recoil calibration: parenthesis

- Calibration of recoil *in-situ* using Z events
  - Modeling of underlying activity: ΣΕ<sub>T</sub>-u<sub>T</sub>
    - Reweight ΣE<sub>T</sub>-u<sub>T</sub> in slices of p<sub>T</sub>(II)
    - Further correction in bins of calibrated uT
  - Response and resolution corrections, azimuthal angle
    - Use projections of recoil onto Z axis (parallel and perpendicular) as a function of p<sub>T</sub>(II) and ΣE<sub>T</sub>-u<sub>T</sub>

12

Multi-dimensional corrections, limited in statistics with a few 100k Z events !

#### Resolution





#### Scale



### Results : cross-sections and cross-section ratios



- Best precision on integrated fiducial cross-sections for these processes, thanks to clean pileup conditions and best luminosity determination (<1%) achieved at LHC !</li>
- Several centre of mass energies : may further help constrain parameters in parton shower tunes
- Opens the window towards a low-pileup W mass measurement, complementary to high-pileup existing one
  - more weight to transverse mass in these measurements



### Results : cross-sections and cross-section ratios



- Best precision on integrated fiducial cross-sections for these processes, thanks to clean pileup conditions and best luminosity determination (<1%) achieved at LHC !</li>
- Several centre of mass energies : may further help constrain parameters in parton shower tunes
- Opens the window towards a low-pileup W mass measurement, complementary to high-pileup existing one
  - more weight to transverse mass in these measurements



## Results at 5 TeV



- Good description of W p<sub>T</sub> from ATLAS tuned on 7 TeV Z data at low p<sub>T</sub>
- Better performance of Sherpa 2.2.5 at high p<sub>T</sub>



# And now for something completely different



# Jet physics

- Jet cross-sections have at lowpT the largest NNLO k-factors
  —> Strong test of pQCD!
  - Also, non-perturbative correction (hadronisation and underlying event) are quite large in this region, very interesting to probe!
- Also possibility to extend measurements of the running of α<sub>s</sub> to lower scales (cross-section ratios)
- Impact of pileup on jet uncertainties would be largely reduced with low-mu runs
  - At the moment, jet calibration for existing low mu is ongoing (useful for HI cross-calibration)
  - Very limited by statistics for forward jet calibration!







## Outlooks

- p<sub>T</sub>(W) and p<sub>T</sub>(Z) measurements thanks to low-pileup data, sensitivity to the Sudakov region will bring improvements in future m<sub>W</sub> measurements
  - 7 GeV bin width, in 8 channels, together with ratios, with uncertainty about 1.5-2% in the peak
  - Comes with most precise integrated W/Z cross-sections
  - Statistics is a dominant effect, in measurement and calibrations : strong case for more low-pileup data taking at LHC
    - Estimated need : ~1fb-1 at mu~2
- Strong case for jet physics measurements using low mu data as well
  - More statistics can only help with calibrations (strong limitation at the moment in eta intercalibration)



BACKUP



F.Balli — Low mu run in ATLAS — LHCEWWG, July 1

## WpT: let's diverge a little bit

- This can be resummed at all orders and gives

$$\frac{d\sigma}{d\tau dy dp_T^2} = \left(\frac{d\sigma}{d\tau dy}\right)_{Born} \frac{4\alpha_s}{3\pi} \frac{\ln s/p_T^2}{p_T^2} \exp(-\frac{2\alpha_s}{3\pi}\ln^2 s/p_T^2)$$



- Where the exponential is referred to as the 'Sudakov form factor'
- Approximation as this is assuming uncorrelated gluon emission (not even LL)
- Several resummation formalisms and calculations to resum the leading, next-to-leading and nextto-next-to leading logs
  - e.g., RESBOS, DYRES, Geneva, RADISH...
- Can also use parton showers (typically done in simulations) : Sherpa, Pythia, Herwig...
  - high p<sub>T</sub>~M : fixed-order V+1 jet (MC : fixed-order matrix elements) ; resummation does not work
  - do/dpT<sup>2</sup> goes as 1/pT<sup>2</sup>
  - low p<sub>T</sub> << M : fixed-order breaks down, resummation comes in (MC : Parton showers)</li>
  - Transition region : no fixed boundary
    - Resummation works but fixed-order gives sensible results as well
      - Best prediction from consistent combination of the two
      - MC : Matrix element + parton shower merging/matching