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Low pileup run in 2017

Dedicated low pileup run taken at the end of 2017 (together with ATLAS)

- ~5days of collisions, in total ~ 2 x 102 proton-proton collisions

— 200 /pb recorded and useful, about 1.6 M reconstructed leptonic W’s

- Average pile up measured to be around (PU) = 3

Runs, fills and machine availability during that time:

Fill Stable beams Start Stable beams End Delivered lumi Recorded lumi

6404 11/21/2017 17:05 11/21/2017 19:14 13.607 6.41
6405 11/21/2017 21:36 11/22/2017 8:01 45.699 43.893
6411 11/22/2017 21:45 11/23/2017 14:53 52.752 50.907
6413 11/23/2017 19:37 11/25/2017 0:14 84.303 79.013
6415 11/25/2017 4:26 11/25/2017 21:43 50.773 48.443
6417 11/26/2017 1:57 11/26/2017 10:31 25.153 23.856

Total lumi delivered/recorded:

Used for analysis (with HLT trigger):
Total SB time

Total interfill time

Delivered(useful) lumi rate

2721252 Ipb (eff. 92%)

200 /pb — lower due to high lumi LS at fill start

84 hours

Recording efficiency
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30 hours (25% of total) — 75% time efficiency

60(40) /pb per day
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Low pileup run in 2017

CMS W and Z inclusive cross-section measurement

- Bothat 13 and 5.02 TeV (HI reference run)
- https://cds.cern.ch/record/2868090

W Differential measurement in progress on the same datasets

Inclusive Top cross-sections using lepton+jets
- Only at 5.02 TeV
- https://cds.cern.ch/record/2895219

Other potential analyses can be done (see later for an overview)
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W mass using lepton kinematics Illl |

Leptonic channel most promising in LHC environment by precisely measuring the lepton p.

le7

Very mild dependency on pileup 200-
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Maximal sensitivity to the lepton momentum scale

- 10~ relative precision required for a 4 MeV impact on m,, e
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W mass using transverse mass I ] I i I

The transverse mass as an orthogonal measurement of m , to lepton kinematics

CMS simulation
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- More challenging in LHC environment as recoil highly depends on pileup = 0.03F i .

- Different experimental signature: lepton + missing transverse energy (MET)

- Weaker dependency on lepton momentum scale and theory

- Not negligible, but also less constraining power 0.0152

- Trade off: MET and recoil calibration enter into the analysis ' 2
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Transverse mass requires a good MET resolution and excellent control of the _ R e
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- Resolution dominantly driven by pileup, but also my’ (GeV)

- Detector effects (ageing, radiation, holes)

- Underlying event — scales with center-of-mass mr = \/ 2pT p?‘“ — cos Ag)
- Excellent recolil calibration procedure is crucial

- Recaoil is a complex object and difficult to model in Monte Carlo

- Goal to calibrate recoil to 1073 relative precision

- Sophisticated MC—data calibration needed based on Z—ll events



MET performance I I I l l
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Regardless of the potential use of transverse mass in high pileup, a
measurement of m,, in an independent low pileup dataset is beneficial

- ltis based on particle-flow MET in a “clean” environment

- The result can be used to validate the usage of more sophisticated MET estimators

in high pileup ' 7
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Projection studies I I I l l

Ideally, aim for a competitive as standalone measurement targeting ~ 15 MeV uncertainty

- Based on a dedicated low-pileup dataset to be take next year (?)
- Bonus: can measure precisely the W width in the tails of m_

- Resulting in a rich and well-scrutinized dataset that can be used for other measurements (see later)

Detailed projection studies ongoing based on 2017 low pileup dataset 5mW

-  Estimate the necessary run time, integrated luminosity and under what pileup conditions
we need to take data to reach a given uncertainty on m,,

- Projection studies also used to understand the interplay of theoretical uncertainties and (PU) @

PDFs, which can become dominant int

- Combination with high pileup W mass analysis

Preliminary results show 15 MeV is achievable,

collecting 1 fb™' under the 2017 pileup conditions Runtime



Timeline and constraints Illil

Based on the 2017 lowPU run and conditions, it takes 20-30 machine days to take 1 fb

120

- As a consequence, roughly 20-30 fb™" highPU data “lost” during nominal operation

CMS BN LHC delivered: 115.48 fb™

- Corresponds to 5-9% reduction in Run 3 luminosity =10 S remmssaossE

80+

Potential low pileup run to be taken next year in 2025
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- No beam foreseen in 2026 (?)

Total integrated luminosity (fb™

20

- Can take the run independently of ATLAS (and other LHC experiments)

. . 0
- Beam separation (already done in 2018 between ATLAS-CMS) 2P0 P P Baat ? 3P e Py Ha et 0%

Date

Current Run-3
integrated luminosity

- Though it seems more difficult to control the luminosity

Considerations of when to take the run in 2025

- ldeally during the first part of 2025 to minimize ageing/radiation damages

- Can take at the early beginning of the 2025 run during ramp-up phase to reduce the highPU data loss
- Desired to have highPU runs before or after

- For alignment, lepton calibration (also cosmics during lowPU), efficiencies

- Avoid Technical stops, magnet ramps, machine interruptions, etc.

- Desired to have VdM before and/or after the run



What else can we do with low pileup data? Ill.l

Necessary to optimize the data-taking conditions for maximal profit Events produced for 1 fb™

- Adedicated dataset of 1 fb™! provides various opportunities for other physics w* 108
- Well understood dataset in terms of leptons, MET and other objects Wz_ 2’(18:
X

ttbar 8x10°
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Almost direct by-products of measuring m , using transverse mass Higgs (gluon fusion) 5x10

w Higgs (VBF) 4e10°

- Inclusive cross-sections J/Psi 6e10'°
- Competitive differential measurement (W boson p;) — direct test of theory

predictions and models developed and used in m,,, measurements
CMS Fill 6255, 13.6 TeV (2022)

— Ref. luminosity
~+ Z boson rate

Need to have excellent control of the integrated luminosity

- Apart from traditional luminosity measurements, rely on Z(Il) counting 7.5
- Collect as many J/Psi’s: complement luminosity measurement, but also heavily >0
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Triggers?

- Bandwidth allows to design exotic triggers or (drastically) lower trigger thresholds 10



Jet and QCD physics using low pileup data

Large benefit for QCD and jet analyses

e o , Dataset can become
- Possibility for exclusive jet clustering

) , competitive with LEP?
- Measuring the neutrals becomes possible

Examples of potential/ongoing analyses

Inclusive jet cross section towards lower jet p..

Dedicated Jet Energy Corrections and jet reconstruction techniques

- JEC uncertainty driven by jet flavor in low jet p.. regime

Lund jet plane measurements using Z+jets events

- Useful to study gluon jets which are not well constrained by LEP measurements

- Potential improvement to isolate gluon jets from quark jets — reduction in JEC uncertainty

Study BFKL parton evolution scheme opposed to DGLAP

- Using e.g. Mueller-Navelet jets with a wide rapidity separation

Heavy flavor jet observables (e.g. b-jet fraction)
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Conclusion Illil-

Presented the CMS point-of-view for a potential low pileup run to be taken next year

Motivation to have a standalone and independent measurement of the W mass with a competitive ~ 15 MeV uncertainty
Projection studies ongoing, but 1 fb™! using (PU) = 3 is reasonable
Exact data taking conditions are being studied and optimized

A successful low pileup run will result in a rich and well-scrutinized dataset with various opportunities for other physics

analyses

12
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W mass measurements at hadron colliders

Exp.

DO
ATLAS
LHCb
CDF 1l

CMS

Final states Lumi W produced W reconstructed Stat. Unc. Syst. Unc. Total unc.
Ifb (M) (M) (MeV) (MeV) (Mev)
W—ev  (mg,p,) 4.3(1.96 TeV) | 120 1.7(e) 13 22 23
W — p(e)v  (py) 4.6 (7 TeV) 450 7.8(e), 5.9(u), 13.7(tot) | 7.0 17.8 19.0
W—pv  (p;) 1.7(13TeV) | 35 2.5(u) 23.0 21.7 31.6
W — p(e)v  (m,, p;, MET) | 8.8(1.96 TeV) | 224 1.8(e), 2.4(u), 4.2(tot) | 6.4 6.9 9.4
W—pv  (p;) 16.8 (13 TeV) | 3400 100 () ?? 22 ??
5 e oMS, 18 pb, 8 TeV oW
LHC W mass programme at TeV scale proton-proton: § 10 EEEg?T”I? o W‘ E
© - A UA2 =]
Profit from larger boson production cross sections C T Z 1
Drawback at 13.6 TeV is the increase of underlying event activity (~ V's) §_ _§
PDFs more challenging than p—pbar — in situ constraints 10_1:_ _:
: 570 20 : 4

Center of-mass energy [TeV]



LowPU vs highPU

Recorded Luminosity (pb !/1.00)
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CDF and ATLAS mW

Distribution =~ W boson mass (MeV) x2/dof
mr (e, v) 80 429.1-510.34a4 5850yt 39/48
ph(e) 80 411.4:510. 7504 -11.85yy  83/62
P (e) 80 426.3:514.5gapE11. Ty 69/62
mr(u, v) 80 446.150. 20t 17.36yst  50/48
P () 80 428.249.6540c110.35ysy  82/62
Y (1) 80 428.9:513. 15404 £10.95yst  63/62
Combination 80 433.5£6.4gtat 6. 9syst 7.4/5

Unc. [MeV ] | Total Stat. Syst.
p 162 11.1 118
mr 244 114 21.6
Combined 15:9 98 122
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