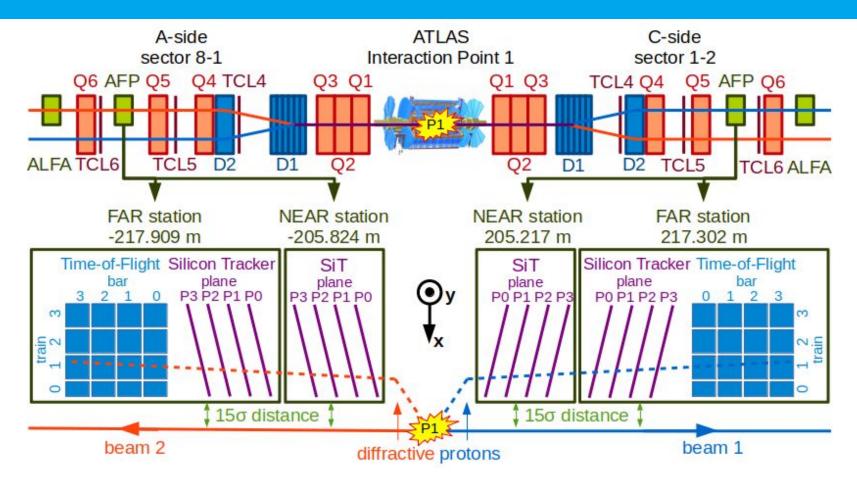
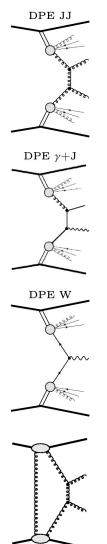
ATLAS Forward Proton (AFP) view on a long low-mu run

Savannah Clawson (DESY), on behalf of the ATLAS Forward Detectors group


LHC EWWG Meeting 10th July 2024


What is AFP?

- Four detector stations housed in **Roman Pots (RP)** inside the LHC vacuum chamber
- All stations have a **Silicon Tracker (SiT)** to reconstruct proton kinematics
- FAR stations have additional Time-of-Flight (ToF) detectors to reconstruct proton interaction vertex
 - Additional background suppression when $mu \ge 1$

DESY. | Savannah Clawson | savannah.clawson@desy.de | AFP view on a long low-mu run

AFP physics interest and needs at low-mu

Exclusive Production

- AFP takes data in both standard high-mu and special low-mu runs
- Lots of interesting physics potential with forward proton tagging in low-mu
- Group focus is mainly on jet physics:

	Analysis	\mathcal{L} [pb ⁻ 1]	Optimal μ
Single diffractive dijets	SD jj	10-100	0.01-1.0
Double pomeron exchange	DPE jj	10-100	0.5–5.0
dijets Dhatan Liat	DPE γ+j/jj	> 200	1.0-2.0
Photon+jet DPE jet-gap-get	DPE j-g-j	> 100	0.1-2.0
Single diffractive Z/W	SD Z/W	10-100	0.1–1.0
Central exclusive dijets	QCD CEP jj	$\sim 10^{3}$	10–20
Diffractive top physics	$\gamma \mathbb{P} / \mathbb{PP} \rightarrow t\bar{t}$	$\sim 10^4$	5

Upper range of optimal mu for processes with two intact protons assumes working ToF detector with timing resolution between 10 - 20 ps

Table by Maciej Lewicki and Marek Tasevsky

Rough idea of

How much data is already available?

- AFP has always been a customer of low-mu runs
- Dedicated special runs already in Run 3, with $0.005 \le \mu \le 1$
 - → Total integrated luminosity of ~ 1 pb⁻¹ (dominated by μ = 1)
- Unforeseen μ ~ 1 run recently with ATLAS magnets down
 - Collected 18 pb⁻¹ of data = ~18x increase in integrated luminosity of all previous Run 3 low-mu runs combined!!
 - → A quick look at data quality suggests that at least 80% of this will be usable in analysis
 - → **Challenge:** requires development of new jet calibrations
 - → **Caveat:** No working time-of-flight system
- AFP also plans to take data during pp reference run this year
 - \rightarrow Foreseen to have $\mu = 4$
 - → Plan is to demonstrate working ToF system
 - → Probe different \sqrt{s} = 5.36 TeV

The short answer is:

From the physics point of view AFP would like to participate in a long low-mu run

to enhance dataset for double-tagged semi-exclusive analyses, e.g. ttbar, searches for New Physics or dijets

We believe such a run will be especially interesting for us if we can demonstrate a working time-of-flight system (but does not depend on this)

The longer story: LHC optics

- AFP acceptance depends heavily on the LHC beam optics
- Concerns from LHC about total radiation dose to inner triplet magnets

We foresee two possible scenarios in 2025 (and 2026):

- 1. Current 2024 optics (inner triplet polarity inverted w.r.t. 2022 and 2023)
- 2. Current 2024 optics + switch to horizontal crossing angle at ATLAS IP1
- Scenario 1 is easy in terms of this low-mu run as we will operate as normal
 - The only question would be to keep the detector fully operational until the point at which such a run would happen

The longer story: LHC optics

- In the case of **Scenario 2**, AFP has ~zero acceptance with nominal optics setup
- CT-PPS will set their pots to run with vertical crossing angle
 - Changing back to horizontal (current setup) is not an option for them since this is mechanical movement of stations
- For AFP to participate in a special low-mu run, we will have to request for this run to be taken with vertical crossing angle at IP1
 - → Probably feasible, but LHC will need dedicated time to qualify the machine
 - → Extra AFP alignment would then be needed which will add additional time
- To participate in this scenario, the AFP community will have to either:
 - A. Ask the LHC if they can operate with vertical crossing angles in both ATLAS and CMS during this run
 - B. Ask CT-PPS to take data with non-optimal conditions (horizontal crossing angle)

Summary

- AFP would like to take part in a long low-mu run
- Main physics interest is diffractive (semi)-exclusive processes
- However there are several unknowns and challenges
 - → LHC optics determines our acceptance
 - → Ageing detector with high radiation damage
 - → Many analyses would benefit from working ToF system

For more details and feasibility studies, see:

Comprehensive overview of forward physics at the LHC [arXiv:1611.05079] Single-tagged Exclusive Jets at the LHC [arXiv:1503.00699] Exclusive top quark pair production at the LHC [arXiv:2202.01257]

