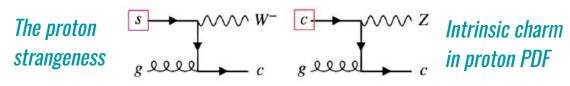
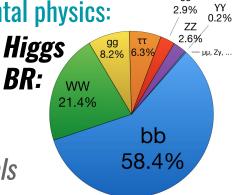
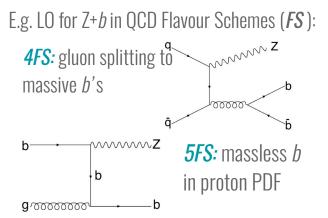
Experimental aspects of jet flavour definition

LHC EW WG General Meeting – 10th July 2024

Federico Sforza (University and INFN Genoa)


The importance of Beauty anche Charm (quarks)


Heavy-flavour (HF) quarks, *b* & *c*, are important for exploring fundamental physics:

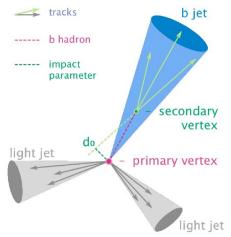

- \Rightarrow A window on the Higgs properties:
- Dominating $H \rightarrow b\bar{b}$ decay, allow high stat. test of rare production modes
- Test of Yukawa coupling to 2nd generation using $H \rightarrow c\bar{c}$ decay
- ⇒ Crucial for top-quark identification and present in many BSM models

\Rightarrow Probe of complex QCD processes:

- How to include HF-quark mass in pQCD predictions?
- Reliability of state-of-the-art MC+PS generators at LHC?
- Test the HF content and models of proton PDFs?

How LHC experiments deal with high- p_T HF-jet identification

HF-jet identification, i.e. tagging, relies on detectable HF-hadron characteristics inside reco-jets:


- \rightarrow Long lifetime, $O(10^{-12} s)$, and complex decay chains give secondary/tertiary decays displaced from primary vertex \rightarrow lnv. mass of B- & D-meson using charged particle tracks \rightarrow Charged hadron trajectories with *impact parameter* > 0
- \rightarrow Information recorded by state-of-the-art tracking detectors extremely close to beamline (E.g. ATLAS IBL or LHCb VeLo)

 \rightarrow Often advanced machine-learning (ML) algorithms used to condense tracking & jet info for optimal separation *b*- vs *c*- vs *light-jets*

"Reco tag" added on top of reconstructed & calibrated anti-k_T jet</sub>

"MC truth tag" added if ≥1 HF-hadron lies within anti-k_{\tau} jet</sub>

How does it look a high- p_T b-jet from the Higgs boson? [CMS-DP-2017-032 (2017)]

CMS Experiment at LHC, CERN Data recorded: Fri Aug 5 02:45:13 2016 CEST Run/Event: 278239 / 427634038 Lumi section: 287

000

secondary vertex from

-2

 $egin{array}{l} {
m AK8 \ jet} \ E_T=2088 \ {
m GeV} \ \eta=0.63 \ \phi=0.84 \end{array}$

b-hadron candidate

pile-up vertices from multiple pp collisions

 $egin{array}{l} \mathrm{AK8} \ \mathrm{jet} \ E_T = 2009 \ \mathrm{GeV} \ \eta = -0.65 \ \phi = -2.30 \end{array}$

-6

-8

 $egin{aligned} \mathrm{muon} & \ p_T = 20.1 \; \mathrm{GeV} \ \eta = -0.64 & \ \phi = -2.27 & \end{aligned}$

0

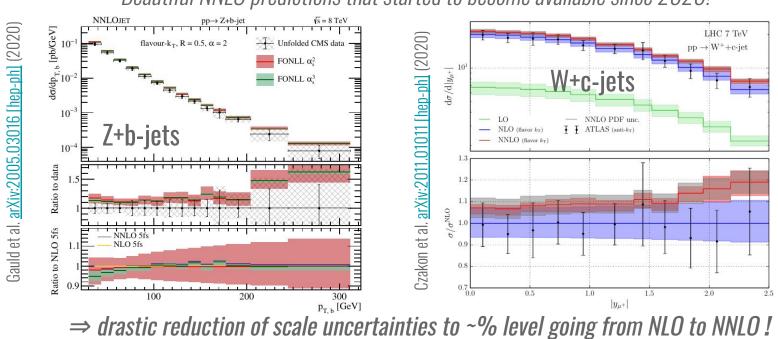
2

Reconstructed tracks in $H \rightarrow bb$ decay candidate in boosted event CMS, 13 TeV pp collision data, 2016 **NB: reference scales are in cm**

6

8

2


0

-2

-4

10

Flavour is now also part of QCD pheno NNLO revolution!

Beautiful NNLO predictions that started to become available since 2020!

NB: *but misleading comparison against data*, which is unfolded using anti- k_T jets while predictions need **IRC-safe flavour assignation...** here using **flavour**- k_T jet algorithm [arXiv:hep-ph/0601139] (2006)

The (many) IRC safe (possible) solutions to jet flavour labelling

Four IRC safe algorithms († including post-IRC safety test adaptations) An algorithm is IRC safe if able to correctly label jet flavour in these and similar cases Flav-Dressing Flav-k **CMP IFN** 2208.11138[†]GHS hep-ph/0601139[†] 2205.11879† 2306.07314 Genuine b-jet Fake b-jet modified k_t-like modified anti-kt like after-burner on jets separates flavourabove p_t threshold Most of jet's pt is in distance when distance for $low-p_t$ recomb. from Little of jet's pt is in the b-quark the b-quark kinematic recomb. quark is softer quark pairs (large p_{t,b} / p_{t,jet}) (small p_{tb} / p_{tiet}) b and b-bar tend to Flavoured jets have Jets with flavour \neq Identical kinematics Identical kinematics b and b-bar tend to be well separated be separated by different effective anti-k, also have \neq to reference alg. to reference alg. $(large \Delta R)$ ΔR~1 radius & kinematics kinematics works with anti-k_t, works with anti-k_t. replaces replaces k_t alg anti-k_t alg $C/A \& k_t$ C/A (incl. 7 substructure) Banfi, GPS, Zanderighi Czakon, Mitov, Poncelet Gauld, Huss, Stagnitto Caola, Grabarczyk, Hutt, GPS, Scyboz, Thaler

Flavour- k_T algorithm cannot be used for experimental jet definition \Rightarrow push from pheno community for a (maybe too wide) set of IRC-safe & (possibly) experimentally suitable jet flavour labelling algorithms! Issues: each jet algo has 1-3 free settings, may need anti- k_T jet changes, may need extensive truth-info, etc..

A workshop to use and discuss new flavoured jets algorithms

Feasibility studies, algorithm comparisons, and best practices need to be developed in order to bridge experimental and theoretical communities \Rightarrow Workshop@IPPP organized last month!

Flavoured Jets at the LHC

Jun 11, 2024, 9:00 AM → Jun 12, 2024, 6:00 PM Europe/London

PH8 (Physics)

Joey Huston (Michigan State University), Michael Spannowsky (IPPP, Durham University),

Simone Marzani (Università di Genova and INFN Sezione di Genova)

Description Heavy-flavour jets play a central role in LHC phenomenology, ranging from Higgs boson physics, searches for new particles, as well as measurements of Standard Model properties.

Rapid progress on the experimental side has been matched by novel high-precision theoretical calculations, which include NNLO corrections in QCD. In order to exploit this progress, new jet algorithms that allow for jet flavour labelling in an infrared and collinear (IRC) safe way have been proposed.

https://conference.ippp.dur.ac.uk/event/1301/

This workshop aims to bring together theorists and experimentalists working on this topic to assess the experimental feasibility of these new jet algorithms quantitatively.

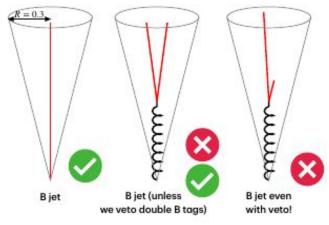
Summarizing later a few findings of the many, still in progress, studies done by colleagues for the workshop:

⇒ Test of jet flavour labelling effects in various contexts NB: results mostly taken from authors, no big work from my side

Analysis of jet-flav algorithms in practical terms

Studies by R. Grabarczyk: <u>talk</u>

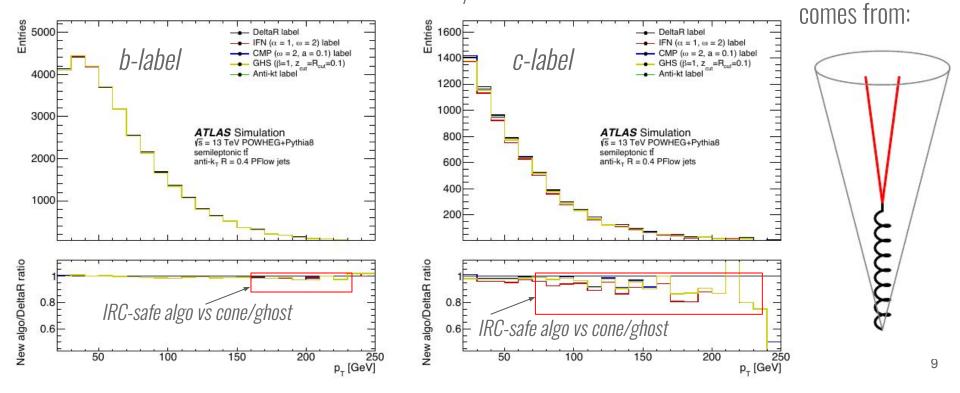
How to test the effect of new IRC safe flavour-labels in experiments?


Compare vs default jet-label used by experiments in HF-tagging ML training in MC with b-/c-jets

Default ATLAS cone-label: HF-hadrons with $p_{T,HF} > 5$ GeV and $\Delta R(jet,HF-had.) < 0.3$. Label anti- k_T jet as b-jet if ≥ 1 if b-had. is found, label anti- k_T jet as c-jet if ≥ 1 c-had. is found and no b-had

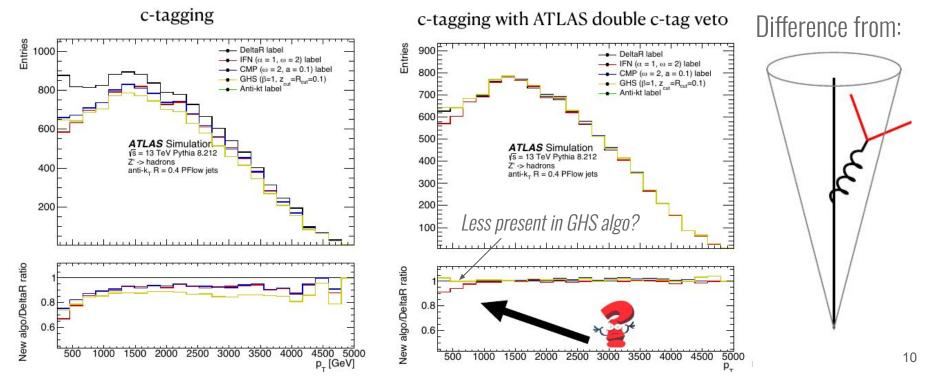
Default CMS ghost matching: HF-hadrons with $p_{T,HF} > 5$ GeV. Set p_T to 10⁻²⁰ GeV, count HF-content in anti- k_T jet after new clustering

Parameters choice for IRC safe algorithms in FASTJET:

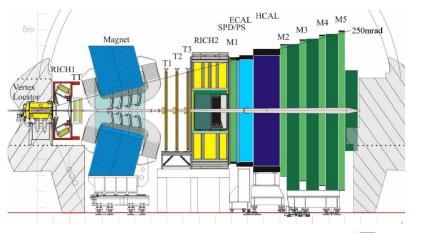

- Flavour anti- k_T (CMP): $\omega = 2, a = 0.1$
- Flavour dressing (GHS): $\beta = 1$, $R_{cut} = z_{cut} = 1$
- Interleaved Flavour Neutralisation (IFN), $\omega = 2, \alpha = 1$

3

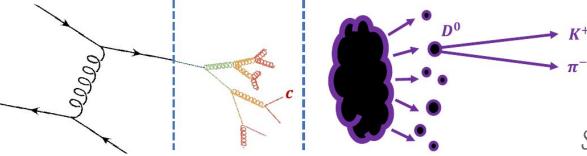
Analysis of jet-flav algorithms in Top-quark decay


 \rightarrow Jets from top decay are well separated and do not origin from gluon \rightarrow However small differences appear at medium p_{τ} for b-jets, and earlier for c-jets

Difference

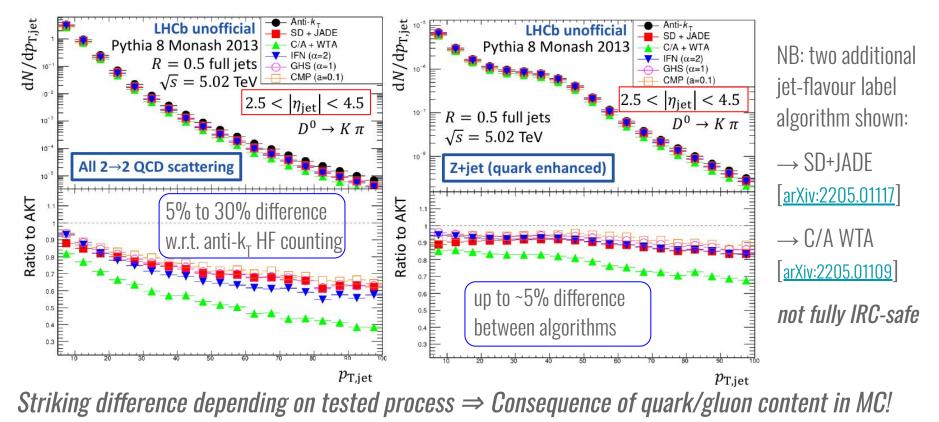

Analysis of jet-flav algorithms for high-mass $Z' \rightarrow bb$ or $Z' \rightarrow cc$

→ Similar pattern for Z' → bb or Z' → cc, *but additional effect at low* p_T (stronger for c-jets) → Reduced after veto of g→cc in c-jet (N=2 c-had.) \Rightarrow *Origin from* g→*cc with out-of-jet emission*!?



An other side of jet-flavour comparison: LHCb exclusive states

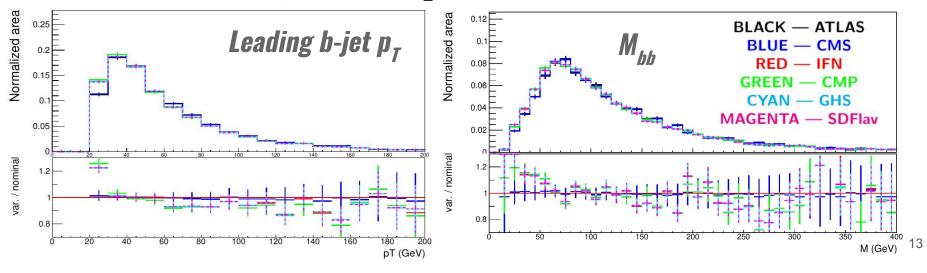
- \rightarrow LHCb has special kinematic coverage: 2 < η < 5
- \rightarrow Excellent single-hadron reconstruction and ID
- \rightarrow Common LHCb analyses select QCD multi-jet final states for exclusive HF-decay reconstruction


 \rightarrow Testing IRC-safe jet-flavour algorithm in c-jets with exclusive decay: $D^0 \rightarrow K^{\pm} \pi^{\mp}$

Py8 used to generate LO $2\rightarrow 2$ MC+PS events for di-jet and Z+jets production in $2 < \eta < 5$

Studies presented by E. Lesser [<u>talk</u>]

An other side of jet-flavour comparison: LHCb exclusive states

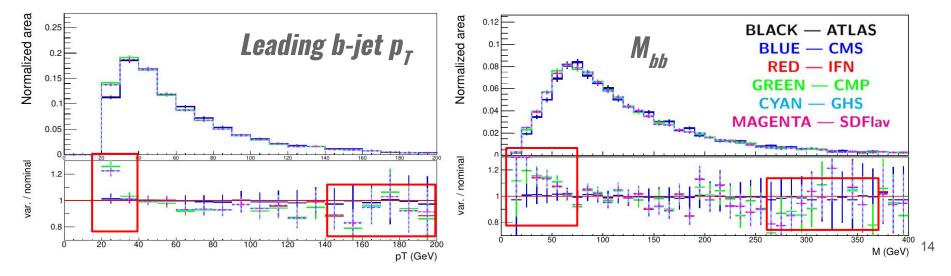


Jet flavour test as close as possible to real measurements: Rivet

Testing jet-flav. algorithms in Z+bb "ATLAS-style" Rivet analysis on Z+jets MGaMC LO+PS:

- 1. Anti- k_t jets with CMS-style ghost flavour labelling
- 2. Anti- k_t jets with ATLAS-style ΔR flavour labelling
- 3. IFN algorithm 5. GHS algorithm
- 4. CMP algorithm 6. SDFlav algorithm

NB: work in progress, by A. Rescia [<u>talk</u>]

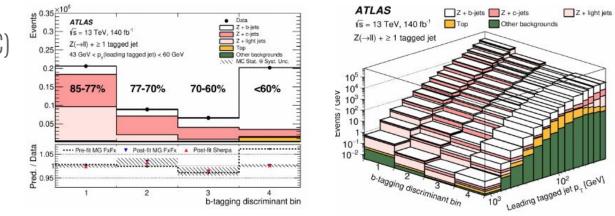

Jet flavour test as close as possible to real measurements: Rivet

Difference observed at the level of clustered jet kinematic:

 \Rightarrow Reason at low p_T : anti- k_T jets include HF-hadron decay products (untouched by ghost/cone labelling). *IRC-safe jet-flav. labelling needs undecayed HF-hadrons*

 \Rightarrow *Reason at high p*_T : g \rightarrow bb splitting assigned as light-flavour jet

NB: work in progress, by A. Rescia [<u>talk</u>]


Last example: Z+HF measurement compared to NNLO predictions

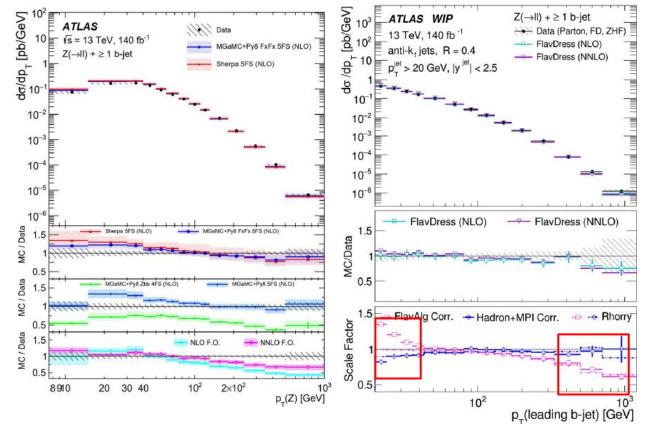
Z+*HF measurement* [*arXiv:2403.15093 [hep-ex]*] *used IFN flavour-jet algorithm implemented in FASTJet for comparison vs NNLO predictions calculated with the same IRC-safe algorithm*

- \rightarrow Using full Run 2 data and pseudo continuous b-tagging, for kinematic-dependent background fit
- → Multi-differential measurement, *3-10% precision,* of: *Z* + ≥ 1 *b-jet, Z* + ≥ 2 *b-jets, Z* + ≥ 1 *c-jet*

 \rightarrow Measurement shows mild sensitivity to Intrinsic Charm (IC)

→ Analysis presented at the
 Durham workshop by Y.Yu [talk]
 NB: paper just re-submitted,
 HEPData and Rivet soon available

Effect on ATLAS measured Z+≥ 1 b-jet cross section

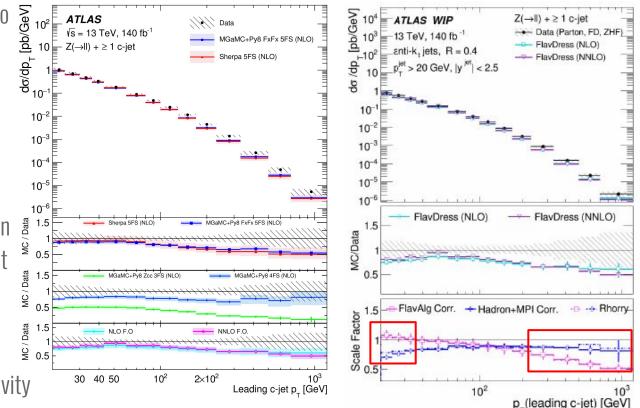

 \longrightarrow **b-jet** \mathbf{p}_{T} : 20 GeV to ~1 TeV, compared to many predictions

 \rightarrow unfolding to anti $k_{_T}$ jets

→ 2 step correction of NNLO
prediction to data unfolding:
1) parton IFN→hadron IFN
2) IFN hadron → cone-hadron

 \rightarrow Sensitive to g \rightarrow bb at high p_T

 \rightarrow HF-decay clustering at low p_T (compared vs MC w/o HF-decay)


Effect on ATLAS measured Z+≥ 1 c-jet cross section

 \rightarrow **c-jet p**_T: range from 20 GeV to ~1 TeV, compared to predictions after unfolding to anti k_T jets, NNLO comparison after jet-flav IFN algorithm 2-step correction

 \rightarrow Minor effect of HF-decay clustering at low p_T (less energy in HF-cascade) but visible MPI effect

 \rightarrow Sensitive to g \rightarrow cc at high p_T sizable effect, up to 50%!

 \rightarrow May be relevant for IC sensitivity

17

Summary and prospects

 \rightarrow Jet flavour physics has rich and only partially explored landscape at the LHC

 \rightarrow Experimental measurements and theoretical NNLO calculations are opening a new precisions era, but matching the two is not trivial...

 \rightarrow The need of IRC-save jet flavour definition have lead to many options on the market, experiments started to use them

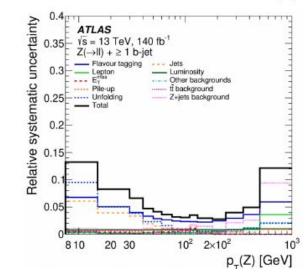
 \rightarrow *Discussion just started:* choice of the "best" algorithm? Practical issues as computing time and parameter settings?

What's your favourite flavour?

 \rightarrow Test show sizable effect on observables depending on topology and (as expected) on $g \rightarrow qq$ contribution, however MC based studies needs to be compared to data: **how?**

Extra slides & Backup Material

Uncertainties on the cross section measurements


- x2 improved precision on Z + b-jets measurements with respect to previous ATLAS results
- Dominant uncertainty contributions from

flavour-tagging, jet energy scale and resolution and unfolding

Statistical uncertainty on data <1%</p>

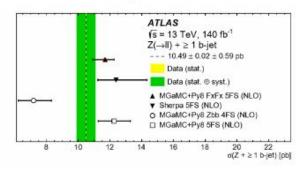
Differential distributions: total unc. <5% in Z+≥1 b-jet, ~10-15% in Z+≥2 b-jets and Z+≥1 c-jet for modest p_T

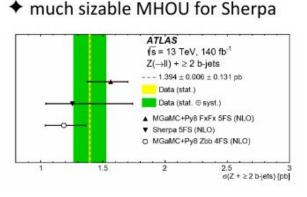
Source of uncertainty	$\begin{vmatrix} Z(\to \ell\ell) + \ge 1 \text{ b-jet} \\ [\%] \end{vmatrix}$	$\begin{vmatrix} Z(\to \ell\ell) + \ge 2 \text{ b-jets} \\ [\%] \end{vmatrix}$	$\left Z(\to \ell \ell) + \ge 1 c\text{-jet} \right $
Flavour tagging	3.6	5.7	10.3
Jet	2.4	4.3	6.5
Lepton	0.3	0.3	0.4
E ^{miss}	0.4	0.5	0.3
Z+jets background	0.6	1.5	1.6
Top background	0.1	0.3	< 0.1
Other backgrounds	< 0.1	0.2	0.1
Pile-up	0.6	0.6	0.2
Unfolding	3.3	5.8	5.0
Luminosity	0.8	0.9	0.7
Total [%]	5.6	9.4	13.2

Inclusive cross-section results

 σ (Z+≥1 b-jet) = 10.49 ± 0.02 (stat.) ± 0.59 (syst.) pb

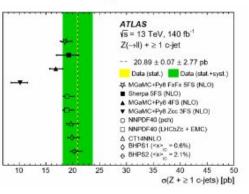
 σ (Z+≥2 b-jets) = 1.39 ± 0.01 (stat.) ± 0.13 (syst.) pb

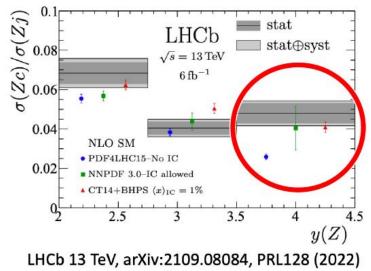

 σ (Z+≥1 c-jet) = 20.89 ± 0.07 (stat.) ± 2.77 (syst.) pb


$Z +\geq 1 b$ -jet

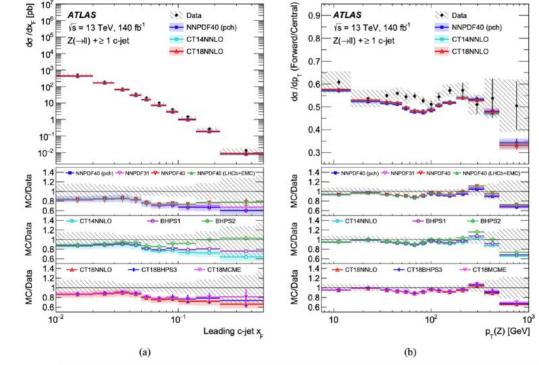
$Z + \ge 2 b$ -jet

4FS and 5FS agrees with data

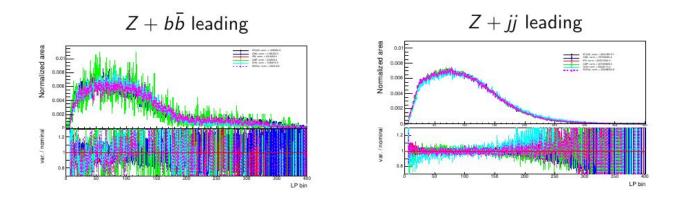

- ✤ Good description from 5FS
- ✦ 4FS with large underestimation



$Z + \ge 1 c$ -jet


- ✤ 5FS in agreement with data
- ✤ 3FS with large underestimation

Probing HF content of the proton


Is intrinsic charm present in the proton? May need a better understanding of the theory, and in particular the heavy flavor jet algorithm.

ATLAS13 TeV, Z+c-jet, 140 fb^{-1} arXiv:2403.15093

Testing JSS with different jet flav algorithms

Lund Jet Plane

LJP seems to be mostly independent of choice of algorithm GHS shows trend in Z + jj