

Energy correlator measurements at the ATLAS and CMS

Meng Xiao (Zhejiang University) on behalf of ATLAS and CMS

LHC-EW General meeting, 2024.07.10

Energy-energy correlator at e+e-

All particles Energy weight Azimuthal distance

EEC: event shape observable proposed for e⁺e⁻ experiment in 1978 [PRL 41 (1978) 1585]

$$\sigma_{e^+e^- \to ij+X} \delta(\cos \chi - \cos \theta_{ij}),$$

Widely measured at e⁺e⁻

Extract αS at NNLO+NNLL ~ 2% precision [arXiv:1804.09146].

Energy-energy correlator at LHC

Adaptions for hadron collider

Angular correlation between jets in an event

EEC inside jets arXiv:2004.11381

Angular correlation between particles in a jet

All particles inside a jet

$$\sum_{i,j}^{n} \int d\sigma \, \frac{E_i E_j}{E^2} \delta(x_L - \Delta R_{i,j}),$$

$$\Delta R$$

Energy-energy correlator at LHC

Adaptions for hadron collider

Angular correlation between jets in an event

Energy scale Q ~ O (TeV)

Fixed order QCD dominant NNLO pQCD available [JHEP 03 (2023) 129]

EEC inside jets arXiv:2004.11381

Angular correlation between particles in a jet

Energy scale Q ~ pT * ΔR ~ O (10 GeV)

Collinear QCD dominant NLO+NNLLapprox, arXiv:2307.07510

Measurement of TEEC

TEEC

ATLAS, JHEP 07 (2023) 85

Measurement of TEEC

Anti-kt jets, R = 0.4HT=pT1+pT2: [1, 3.5] TeV

TEEC Uncertainty

COS ϕ

ATLAS, JHEP 07 (2023) 85

ATEEC Uncertainty

(A)TEEC compared to theory

A leap of uncertainty reduction from LO to NNLO Prediction avoid collinear and back-to-back regions $|\cos\varphi| < 0.92$ Excellent agreement

(A)TEEC compared to theory

Comparison in multiple HT regions [1, 3.5] TeV

as extraction from TEEC

 $\alpha_{\rm s}(m_Z) = 0.1175 \pm 0.0006 \,({\rm exp.})^{+0.0034}_{-0.0017}$ (theo.)

 $\alpha_{\rm s}(m_Z) = 0.1185 \pm 0.0009 \,({\rm exp.})^{+0.0025}_{-0.0012}$ (theo.).

as extraction from TEEC

 $\alpha_{\rm s}(m_Z) = 0.1175 \pm 0.0006 \,({\rm exp.})^{+0.0034}_{-0.0017}$ (theo.) $\alpha_{\rm s}(m_Z) = 0.1185 \pm 0.0009 \,({\rm exp.})^{+0.0025}_{-0.0012}$ (theo.).

> Highest energy scale in as extraction Highest precision in beyond TeV scale

Jet substructure observable, sensitive to jet formation

Unfolded E2C vs MC

97 ~ 1784 GeV

Data vs various parton shower model, difference ~ 10%

No model match data well in all p_t^{jet} region

- : Exp systematic
- : Theo systematic

E3C/E2C

Benefit of taking ratio

- Data MC difference: ~ 10% => ~ 3%
- Exp sys: ~ 8% => ~ 3%

All models agree well

 $p_T^{jet} \uparrow$, Slope~ $\alpha_S \downarrow$

Direct observation of asymptotic freedom

Unfolded E3C/E2C vs NNLLapprox

Theoretical uncertainty from LL->NNLL

Data agrees with NNLLapprox within uncertainty

Unfolded E3C/E2C vs NNLLapprox

Ratio

ð

 $(m_{Z'})$

48

Uncertainty $\sim 4\%$, Q~ O(10) GeV, collinear regime Most precise from jet substructure to date

- Energy correlators revive at hadron colliders
 - Different definition adaptation concentrate on complementary phase spaces
- High precision experimental measurements on energy correlators
 - TEEC: high Q, jet correlation
 - E2C and E3C: collinear, jet substructure
- High precision α_s determination from both methods
 - Both theoretical uncertainty dominant

From Ian Moult

Improving the α_s measurement

- Measure on tracks.
- Measure the higher point ratios to over constrain α_s from quark gluon fractions.
- Go to highest possible energy.

Unfolded E3C/E2C vs NNLLapprox

Analytical predictions

- .02 Ratio 0.98 t .02 $(m_{Z'})$ 0.98 1.02 🖸 48 0.98 1.02 0.98
- NNLL_{approx}: Parton level E3C/E2C
 - Chen, Gao, Li, Xu, Zhang, and NLO+NNLLapprox Zhu, *arXiv:2307.07510*
- Same phase space as the analysis

Hadronization factors

- Bin by bin factor
 - average of Pythia&Herwig
- E2C, E3C: 5 40%
- E3C/E2C: 3%

Theo sys:

(shape only, no normalization effect)

- QCD scale of NNLL_{approx} prediction
- Hadronization factors
- QCD scale in hard scattering
- Underlying event + parton shower tune
- PDF

